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Chapter 17
Protection



Objectives

• Discuss the goals and principles of protection in a 
modern computer system

• Explain how protection domains combined with an 
access matrix are used to specify the resources a 
process may access

• Examine capability and language-based protection

• Describe how protection mechanisms can mitigate 
system attacks
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Goals of Protection

• In one protection model, computer consists of a 
collection of objects (resources), hardware or software

• Each object has a unique name and can be accessed 
through a well-defined set of operations

• Protection problem - ensure that each object is 
accessed correctly and only by those processes that are 
allowed to do so
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Mechanism vs. policy: “how” vs. “what”



Principles of Protection 1

• Guiding principle – principle of least privilege

• Programs, users and systems should be given just enough privileges to 
perform their tasks

• Properly set permissions can limit damage if entity has a bug, gets abused

• Can be static (during life of system, during life of process)

• Or dynamic (changed by process as needed) – domain switching, 
privilege escalation

• Compartmentalization a derivative concept regarding access to data

• Process of protecting each individual system component through the use of 
specific permissions and access restrictions
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17.3-17.4 Protection Domains



Protection Rings 3

• Components ordered by amount of privilege and protected from each 
other

• For example, the kernel is in one ring and user applications in another

• This privilege separation requires hardware support

• Instructions to transfer between levels, e.g., RISC-V ecall, sret

• Also traps and interrupts

• (Hypervisors introduced the need for yet another ring)
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Essential building block for operating system platform protection!



Protection Rings (MULTICS)
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e.g., RISC-V privileges machine > kernel > user mode



The Big Picture: Software Isolation
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OS (and hypervisor, similar but not covered here) uses CPU privilege rings and
virtual memory to build “walls” for memory isolation between applications



Generalization: Domains of Protection 1

• OS controls access between domains and objects

• Hardware objects (such as memory, devices) and software objects (such 
as files, programs, semaphores)

• Domain can be e.g., user, process, procedure

• Process for example should only have access to objects it currently 
requires to complete its task – the need-to-know principle

• Controlled domain switches to change access rights
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== principle of least privilege



Domain Structure
• Access-right = <object-name, rights-set>

where rights-set is a subset of all valid operations that can be performed on the object 

• Domain = set of access-rights 
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Domain Implementation (UNIX)
• Domain = user-id

• Domain switch accomplished via file system

• Each file has associated with it a domain bit (setuid bit)

• When file is executed and setuid = on, then user-id is set to owner of the file being 
executed

• When execution completes user-id is reset 

• Domain switch accomplished via passwords

• su command temporarily switches to another user’s domain when other domain’s 
password provided

• Domain switching via commands

• sudo command prefix executes specified command in another domain (if original 
domain has privilege or password given)
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Least privilege principle: don’t
run everything as root(!)



Domain Implementation (Android App I  Ds)

• In Android, distinct user I  Ds are provided on a per-application basis

• When an application is installed, the installd daemon assigns it a distinct user I  D (U I 

D) and group I D (G I D), along with a private data directory (/data/data/<appname>) 
whose ownership is granted to this U  I D/G I D combination alone. 

• Applications on the device enjoy the same level of protection provided by UNIX 
systems to separate users

• A quick and simple way to provide isolation, security, and privacy. 
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17.5-17.7 Access Control Matrix



Access Matrix
• View protection as a matrix (access matrix)

• Rows represent domains

• Columns represent objects

• Access(i, j) is the set of operations that a process executing in Domaini 
can invoke on Objectj
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Policy vs. mechanism: matrix
can be implemented in different ways



Use of Access Matrix 1

• If a process in Domain Di tries to do “op” on object Oj, then “op” must be in 
the access matrix

• User who creates object can define access column for that object

• Can be expanded to dynamic protection

• Operations to add, delete access rights

• Special access rights:

• owner of Oi

• copy op from Oi to Oj (denoted by “*”)

• control – Di can modify Dj access rights

• transfer – switch from domain Di to Dj

• Copy and Owner applicable to an object

• Control applicable to domain object
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Access Matrix of Figure A with Domains as 
Objects
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Use of Access Matrix 1

• If a process in Domain Di tries to do “op” on object Oj, then “op” must be in 
the access matrix

• User who creates object can define access column for that object

• Can be expanded to dynamic protection

• Operations to add, delete access rights

• Special access rights:

• owner of Oi

• copy op from Oi to Oj (denoted by “*”)

• control – Di can modify Dj access rights

• transfer – switch from domain Di to Dj

• Copy and Owner applicable to an object

• Control applicable to domain object
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Access Matrix with Copy Rights
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Use of Access Matrix 1

• If a process in Domain Di tries to do “op” on object Oj, then “op” must be in 
the access matrix

• User who creates object can define access column for that object

• Can be expanded to dynamic protection

• Operations to add, delete access rights

• Special access rights:

• owner of Oi

• copy op from Oi to Oj (denoted by “*”)

• control – Di can modify Dj access rights

• transfer – switch from domain Di to Dj

• Copy and Owner applicable to an object

• Control applicable to domain object
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Access Matrix With Owner Rights
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Implementation of Access Matrix 1

• Generally, a sparse matrix

• Option 1 – Global table

• Store ordered triples <domain, object, rights-set> in 
table

• A requested operation M on object Oj within domain Di -> search 
table for < Di, Oj, Rk > 

• with M  R∈ k

• But table could be large -> won’t fit in main memory

• Difficult to group objects (consider an object that all domains can 
read)
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Conceptual, but not used in practice!



Implementation of Access Matrix 2

• Option 2 – Access control lists (ACL) for objects

• Each column implemented as an access list for one object

• Resulting per-object list consists of ordered pairs 
<domain, rights-set> defining all domains with 
non-empty set of access rights for the object

• Easily extended to contain default set -> If M  default ∈
set, also allow access
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e.g., (Alice: read,write; Bob: read)



Implementation of Access Matrix 3

• Each column = Access-control list for one object 
Defines who can perform what operation

Domain 1 = Read, Write
Domain 2 = Read
Domain 3 = Read

• Each Row = Capability List (like a key)
For each domain, what operations allowed on what objects

Object F1 – Read
Object F4 – Read, Write, Execute
Object F5 – Read, Write, Delete, Copy
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Implementation of Access Matrix 4

• Option 3 – Capability list for domains

• Instead of object-based, list is domain based

• Capability list for domain is list of objects together with allowed operations

• Object represented by its name or address, called a capability

• Execute operation M on object Oj, process requests operation and specifies 
capability as parameter

• Possession of capability means access is allowed

• Capability list associated with domain but never directly accessible by domain

• Rather, protected object, maintained by O  S and accessed indirectly

• Like a “secure pointer”

• Idea can be extended up to applications
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Capability example: File descriptors
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Protected table in kernel memory(!)

→ capability is “unforgeable”

Open file structure records access rights, offset, etc.

→ fast check if read is allowed

Integer = capability reference



Comparison of Implementations 1

• Many trade-offs to consider

• Global table is simple, but can be large

• Access lists correspond to needs of users

• Determining set of access rights for domain non-localized so difficult

• Every access to an object must be checked

• Many objects and access rights -> slow

• Capability lists useful for localizing information for a given process

• But revocation capabilities can be inefficient
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Comparison of Implementations 2

• Most systems use combination of access lists and 
capabilities

• First access to an object -> access list searched

• If allowed, capability created and attached to process

• Additional accesses need not be checked

• After last access, capability destroyed

• Consider file system with A  C Ls per file
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Hybrid example: File access control
1/ Per-file access control list (slow)

2/ File descriptor capability (fast) 



Revocation of Access Rights 2

• Capability List – Scheme required to locate capability in the system before 
capability can be revoked

• Reacquisition – periodic delete, with require and denial if revoked

• Back-pointers – set of pointers from each object to all capabilities of that object 
(Multics)

• Indirection – capability points to global table entry which points to object – delete 
entry from global table

• Keys – unique bits associated with capability, generated when capability created

• Master key associated with object, key matches master key for access

• Revocation – create new master key

• Policy decision of who can create and modify keys – object owner or others?
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17.8-9 Access Control Types



Discretionary Access Control (DAC) in UNIX (user,group,other)
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Rules specified by
and for users!



Mandatory Access Control (MAC)
• Operating systems traditionally had discretionary access control (DAC) to limit 

access to files and other objects (for example UNIX file permissions and Windows 
access control lists (A  C Ls))

• Discretionary is a weakness – users / admins need to do something to increase protection

• Stronger form is mandatory access control, which even root user can’t circumvent

• Makes resources inaccessible except to their intended owners

• Modern systems implement both MAC and DAC, with MAC usually a more secure, optional 
configuration (Trusted Solaris, TrustedBSD (used in macOS), SELinux/AppArmor), 
Windows Vista MAC)

• At its heart, labels assigned to objects and subjects (including processes)

• When a subject requests access to an object, policy checked to determine whether          or not 
a given label-holding subject is allowed to perform the action on the object 
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Important: finer-grained!
→ user (DAC) vs. process (MAC)

e.g., unclassified < secret < top-secret



http://magazine.redhat.com/2007/05/04/whats-new-in-selinux-for-red-hat-enterprise-linux-5/

Discretionary vs. Mandatory Access 
Control

MAC better enforces principle of least privilege!



Role-based Access Control
• Protection can be applied to non-file 

resources (e.g., system calls)

• Oracle Solaris 10 provides role-based 
access control (R B A C) to implement least 
privilege

• Privilege is right to execute system call or 
use an option within a system call

• Can be assigned to processes

• Users assigned roles granting access to 
privileges and programs

• Enable role via password to gain its 
privileges

• Similar to access matrix
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17.10-11 Further confinement



“Capability”-Based Systems 
• (Hydra and CAP were first true capability-based systems)

• Now included in Linux, Android and others, based on POSIX.1e (that never became a 
standard)

• Essentially slices up root powers into distinct areas, each represented by a bitmap bit

• Fine grain control over privileged operations can be achieved by setting or masking the 
bitmap

• Three sets of bitmaps – permitted, effective, and inheritable

• Can apply per process or per thread

• Once revoked, cannot be reacquired

• Process or thread starts with all privs, voluntarily decreases set during execution

• Essentially a direct implementation of the principle of least privilege

• An improvement over root having all privileges but inflexible (adding new privilege 
difficult, etc)
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Unfortunate naming,
not really “capabilities”…

→ Rather least-privilege
confinement



Capabilities in POSIX.1e
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Generalization: Sandboxing

• Running process in limited environment

• Impose set of irremovable restrictions early in startup of process 
(e.g., at fork(), before main())

• Process then unable to access any resources beyond allowed set

• Java and .NET implement at a virtual machine level

• Other systems implement with MAC (e.g., SELinux, AppArmor)
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Demo: Webserver containment with SELinux/Apparmor

Example only, no need to know commands!



• System integrity protection (SIP)

• Introduced by Apple in macOS 10.11

• Restricts access to system files and resources, even by root

• Uses extended file attribs to mark a binary to restrict changes, disable 
debugging and scrutinizing

• Also, only code-signed kernel extensions allowed and configurably only 
code-signed apps

Further Confinement Mechanisms
• System-call filtering

• Like a firewall, for system calls

• Can also be deeper –inspecting all system call arguments

• Linux implements via SECCOMP-BPF (Berkeley packet filtering)
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Code signing

Code signing allows a system to trust a program or script by 
using crypto hash to have the developer sign the 
executable

• So code as it was compiled by the author

• If the code is changed, signature invalid and (some) systems 
disable execution

• Can also be used to disable old programs by the operating 
system vendor (such as Apple) cosigning apps, and then 
invaliding those signatures so the code will no longer run
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Two-edged sword: User protection vs. user freedom...

Used by all major OSs nowadays
(e.g., Debian SecureApt, etc.)



Wrap-up Part 2: Protection
• Software isolation rooted in the CPU

→ protection rings (+ virtual memory)

• Good protection mechanisms allow for versatile policies

→ e.g., expressed in access control matrix, implement with
• Access Control Lists (ACL)
• Capabilities

• General: strive for principle of least privilege!

→ e.g., sandboxing with MAC, system call filtering, etc.
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Not-covered: 17.12
“Language-based protection”
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