
Operating System Concepts

(slides adapted from 10th ed. Silberschatz, Galvin and Gagne)

Chapter 17
Protection

Objectives

• Discuss the goals and principles of protection in a
modern computer system

• Explain how protection domains combined with an
access matrix are used to specify the resources a
process may access

• Examine capability and language-based protection

• Describe how protection mechanisms can mitigate
system attacks

3Copyright ©2020 John Wiley & Sons, Inc.

Goals of Protection

• In one protection model, computer consists of a
collection of objects (resources), hardware or software

• Each object has a unique name and can be accessed
through a well-defined set of operations

• Protection problem - ensure that each object is
accessed correctly and only by those processes that are
allowed to do so

4Copyright ©2020 John Wiley & Sons, Inc.

Mechanism vs. policy: “how” vs. “what”

Principles of Protection 1

• Guiding principle – principle of least privilege

• Programs, users and systems should be given just enough privileges to
perform their tasks

• Properly set permissions can limit damage if entity has a bug, gets abused

• Can be static (during life of system, during life of process)

• Or dynamic (changed by process as needed) – domain switching,
privilege escalation

• Compartmentalization a derivative concept regarding access to data

• Process of protecting each individual system component through the use of
specific permissions and access restrictions

5Copyright ©2020 John Wiley & Sons, Inc.

17.3-17.4 Protection Domains

Protection Rings 3

• Components ordered by amount of privilege and protected from each
other

• For example, the kernel is in one ring and user applications in another

• This privilege separation requires hardware support

• Instructions to transfer between levels, e.g., RISC-V ecall, sret

• Also traps and interrupts

• (Hypervisors introduced the need for yet another ring)

8Copyright ©2020 John Wiley & Sons, Inc.

Essential building block for operating system platform protection!

Protection Rings (MULTICS)

9Copyright ©2020 John Wiley & Sons, Inc.

e.g., RISC-V privileges machine > kernel > user mode

The Big Picture: Software Isolation

10Copyright ©2020 John Wiley & Sons, Inc.

OS (and hypervisor, similar but not covered here) uses CPU privilege rings and
virtual memory to build “walls” for memory isolation between applications

Generalization: Domains of Protection 1

• OS controls access between domains and objects

• Hardware objects (such as memory, devices) and software objects (such
as files, programs, semaphores)

• Domain can be e.g., user, process, procedure

• Process for example should only have access to objects it currently
requires to complete its task – the need-to-know principle

• Controlled domain switches to change access rights

13Copyright ©2020 John Wiley & Sons, Inc.

== principle of least privilege

Domain Structure
• Access-right = <object-name, rights-set>

where rights-set is a subset of all valid operations that can be performed on the object

• Domain = set of access-rights

14Copyright ©2020 John Wiley & Sons, Inc.

Domain Implementation (UNIX)
• Domain = user-id

• Domain switch accomplished via file system

• Each file has associated with it a domain bit (setuid bit)

• When file is executed and setuid = on, then user-id is set to owner of the file being
executed

• When execution completes user-id is reset

• Domain switch accomplished via passwords

• su command temporarily switches to another user’s domain when other domain’s
password provided

• Domain switching via commands

• sudo command prefix executes specified command in another domain (if original
domain has privilege or password given)

15Copyright ©2020 John Wiley & Sons, Inc.

Least privilege principle: don’t
run everything as root(!)

Domain Implementation (Android App I Ds)

• In Android, distinct user I Ds are provided on a per-application basis

• When an application is installed, the installd daemon assigns it a distinct user I D (U I

D) and group I D (G I D), along with a private data directory (/data/data/<appname>)
whose ownership is granted to this U I D/G I D combination alone.

• Applications on the device enjoy the same level of protection provided by UNIX
systems to separate users

• A quick and simple way to provide isolation, security, and privacy.

16Copyright ©2020 John Wiley & Sons, Inc.

17.5-17.7 Access Control Matrix

Access Matrix
• View protection as a matrix (access matrix)

• Rows represent domains

• Columns represent objects

• Access(i, j) is the set of operations that a process executing in Domaini
can invoke on Objectj

18Copyright ©2020 John Wiley & Sons, Inc.

Policy vs. mechanism: matrix
can be implemented in different ways

Use of Access Matrix 1

• If a process in Domain Di tries to do “op” on object Oj, then “op” must be in
the access matrix

• User who creates object can define access column for that object

• Can be expanded to dynamic protection

• Operations to add, delete access rights

• Special access rights:

• owner of Oi

• copy op from Oi to Oj (denoted by “*”)

• control – Di can modify Dj access rights

• transfer – switch from domain Di to Dj

• Copy and Owner applicable to an object

• Control applicable to domain object

19Copyright ©2020 John Wiley & Sons, Inc.

Access Matrix of Figure A with Domains as
Objects

20Copyright ©2020 John Wiley & Sons, Inc.

Use of Access Matrix 1

• If a process in Domain Di tries to do “op” on object Oj, then “op” must be in
the access matrix

• User who creates object can define access column for that object

• Can be expanded to dynamic protection

• Operations to add, delete access rights

• Special access rights:

• owner of Oi

• copy op from Oi to Oj (denoted by “*”)

• control – Di can modify Dj access rights

• transfer – switch from domain Di to Dj

• Copy and Owner applicable to an object

• Control applicable to domain object

21Copyright ©2020 John Wiley & Sons, Inc.

Access Matrix with Copy Rights

22Copyright ©2020 John Wiley & Sons, Inc.

Use of Access Matrix 1

• If a process in Domain Di tries to do “op” on object Oj, then “op” must be in
the access matrix

• User who creates object can define access column for that object

• Can be expanded to dynamic protection

• Operations to add, delete access rights

• Special access rights:

• owner of Oi

• copy op from Oi to Oj (denoted by “*”)

• control – Di can modify Dj access rights

• transfer – switch from domain Di to Dj

• Copy and Owner applicable to an object

• Control applicable to domain object

23Copyright ©2020 John Wiley & Sons, Inc.

Access Matrix With Owner Rights

24Copyright ©2020 John Wiley & Sons, Inc.

Implementation of Access Matrix 1

• Generally, a sparse matrix

• Option 1 – Global table

• Store ordered triples <domain, object, rights-set> in
table

• A requested operation M on object Oj within domain Di -> search
table for < Di, Oj, Rk >

• with M R∈ k

• But table could be large -> won’t fit in main memory

• Difficult to group objects (consider an object that all domains can
read)

26Copyright ©2020 John Wiley & Sons, Inc.

Conceptual, but not used in practice!

Implementation of Access Matrix 2

• Option 2 – Access control lists (ACL) for objects

• Each column implemented as an access list for one object

• Resulting per-object list consists of ordered pairs
<domain, rights-set> defining all domains with
non-empty set of access rights for the object

• Easily extended to contain default set -> If M default ∈
set, also allow access

27Copyright ©2020 John Wiley & Sons, Inc.

e.g., (Alice: read,write; Bob: read)

Implementation of Access Matrix 3

• Each column = Access-control list for one object
Defines who can perform what operation

Domain 1 = Read, Write
Domain 2 = Read
Domain 3 = Read

• Each Row = Capability List (like a key)
For each domain, what operations allowed on what objects

Object F1 – Read
Object F4 – Read, Write, Execute
Object F5 – Read, Write, Delete, Copy

28Copyright ©2020 John Wiley & Sons, Inc.

Implementation of Access Matrix 4

• Option 3 – Capability list for domains

• Instead of object-based, list is domain based

• Capability list for domain is list of objects together with allowed operations

• Object represented by its name or address, called a capability

• Execute operation M on object Oj, process requests operation and specifies
capability as parameter

• Possession of capability means access is allowed

• Capability list associated with domain but never directly accessible by domain

• Rather, protected object, maintained by O S and accessed indirectly

• Like a “secure pointer”

• Idea can be extended up to applications

29Copyright ©2020 John Wiley & Sons, Inc.

Capability example: File descriptors

30

Protected table in kernel memory(!)

→ capability is “unforgeable”

Open file structure records access rights, offset, etc.

→ fast check if read is allowed

Integer = capability reference

Comparison of Implementations 1

• Many trade-offs to consider

• Global table is simple, but can be large

• Access lists correspond to needs of users

• Determining set of access rights for domain non-localized so difficult

• Every access to an object must be checked

• Many objects and access rights -> slow

• Capability lists useful for localizing information for a given process

• But revocation capabilities can be inefficient

32Copyright ©2020 John Wiley & Sons, Inc.

Comparison of Implementations 2

• Most systems use combination of access lists and
capabilities

• First access to an object -> access list searched

• If allowed, capability created and attached to process

• Additional accesses need not be checked

• After last access, capability destroyed

• Consider file system with A C Ls per file

33Copyright ©2020 John Wiley & Sons, Inc.

Hybrid example: File access control
1/ Per-file access control list (slow)

2/ File descriptor capability (fast)

Revocation of Access Rights 2

• Capability List – Scheme required to locate capability in the system before
capability can be revoked

• Reacquisition – periodic delete, with require and denial if revoked

• Back-pointers – set of pointers from each object to all capabilities of that object
(Multics)

• Indirection – capability points to global table entry which points to object – delete
entry from global table

• Keys – unique bits associated with capability, generated when capability created

• Master key associated with object, key matches master key for access

• Revocation – create new master key

• Policy decision of who can create and modify keys – object owner or others?

36Copyright ©2020 John Wiley & Sons, Inc.

17.8-9 Access Control Types

Discretionary Access Control (DAC) in UNIX (user,group,other)

38

Rules specified by
and for users!

Mandatory Access Control (MAC)
• Operating systems traditionally had discretionary access control (DAC) to limit

access to files and other objects (for example UNIX file permissions and Windows
access control lists (A C Ls))

• Discretionary is a weakness – users / admins need to do something to increase protection

• Stronger form is mandatory access control, which even root user can’t circumvent

• Makes resources inaccessible except to their intended owners

• Modern systems implement both MAC and DAC, with MAC usually a more secure, optional
configuration (Trusted Solaris, TrustedBSD (used in macOS), SELinux/AppArmor),
Windows Vista MAC)

• At its heart, labels assigned to objects and subjects (including processes)

• When a subject requests access to an object, policy checked to determine whether or not
a given label-holding subject is allowed to perform the action on the object

39Copyright ©2020 John Wiley & Sons, Inc.

Important: finer-grained!
→ user (DAC) vs. process (MAC)

e.g., unclassified < secret < top-secret

http://magazine.redhat.com/2007/05/04/whats-new-in-selinux-for-red-hat-enterprise-linux-5/

Discretionary vs. Mandatory Access
Control

MAC better enforces principle of least privilege!

Role-based Access Control
• Protection can be applied to non-file

resources (e.g., system calls)

• Oracle Solaris 10 provides role-based
access control (R B A C) to implement least
privilege

• Privilege is right to execute system call or
use an option within a system call

• Can be assigned to processes

• Users assigned roles granting access to
privileges and programs

• Enable role via password to gain its
privileges

• Similar to access matrix

41Copyright ©2020 John Wiley & Sons, Inc.

17.10-11 Further confinement

“Capability”-Based Systems
• (Hydra and CAP were first true capability-based systems)

• Now included in Linux, Android and others, based on POSIX.1e (that never became a
standard)

• Essentially slices up root powers into distinct areas, each represented by a bitmap bit

• Fine grain control over privileged operations can be achieved by setting or masking the
bitmap

• Three sets of bitmaps – permitted, effective, and inheritable

• Can apply per process or per thread

• Once revoked, cannot be reacquired

• Process or thread starts with all privs, voluntarily decreases set during execution

• Essentially a direct implementation of the principle of least privilege

• An improvement over root having all privileges but inflexible (adding new privilege
difficult, etc)

43Copyright ©2020 John Wiley & Sons, Inc.

Unfortunate naming,
not really “capabilities”…

→ Rather least-privilege
confinement

Capabilities in POSIX.1e

44Copyright ©2020 John Wiley & Sons, Inc.

Generalization: Sandboxing

• Running process in limited environment

• Impose set of irremovable restrictions early in startup of process
(e.g., at fork(), before main())

• Process then unable to access any resources beyond allowed set

• Java and .NET implement at a virtual machine level

• Other systems implement with MAC (e.g., SELinux, AppArmor)

45Copyright ©2020 John Wiley & Sons, Inc.

Demo: Webserver containment with SELinux/Apparmor

Example only, no need to know commands!

• System integrity protection (SIP)

• Introduced by Apple in macOS 10.11

• Restricts access to system files and resources, even by root

• Uses extended file attribs to mark a binary to restrict changes, disable
debugging and scrutinizing

• Also, only code-signed kernel extensions allowed and configurably only
code-signed apps

Further Confinement Mechanisms
• System-call filtering

• Like a firewall, for system calls

• Can also be deeper –inspecting all system call arguments

• Linux implements via SECCOMP-BPF (Berkeley packet filtering)

47Copyright ©2020 John Wiley & Sons, Inc.

Code signing

Code signing allows a system to trust a program or script by
using crypto hash to have the developer sign the
executable

• So code as it was compiled by the author

• If the code is changed, signature invalid and (some) systems
disable execution

• Can also be used to disable old programs by the operating
system vendor (such as Apple) cosigning apps, and then
invaliding those signatures so the code will no longer run

48Copyright ©2020 John Wiley & Sons, Inc.

Two-edged sword: User protection vs. user freedom...

Used by all major OSs nowadays
(e.g., Debian SecureApt, etc.)

Wrap-up Part 2: Protection
• Software isolation rooted in the CPU

→ protection rings (+ virtual memory)

• Good protection mechanisms allow for versatile policies

→ e.g., expressed in access control matrix, implement with
• Access Control Lists (ACL)
• Capabilities

• General: strive for principle of least privilege!

→ e.g., sandboxing with MAC, system call filtering, etc.

49Copyright ©2020 John Wiley & Sons, Inc.

Not-covered: 17.12
“Language-based protection”

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32
	Slide 33
	Slide 34
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

