
VulCAN: Efficient Component Authentication and Software
Isolation for Automotive Control Networks

Jo Van Bulck
imec-DistriNet, KU Leuven
jo.vanbulck@cs.kuleuven.be

Jan Tobias Mühlberg
imec-DistriNet, KU Leuven

jantobias.muehlberg@cs.kuleuven.be

Frank Piessens
imec-DistriNet, KU Leuven

frank.piessens@cs.kuleuven.be

ABSTRACT
Vehicular communication networks have been subject to a growing
number of attacks that put the safety of passengers at risk. This
resulted in millions of vehicles being recalled and lawsuits against
car manufacturers. While recent standardization efforts address
security, no practical solutions are implemented in current cars.

This paper presents VulCAN, a generic design for efficient ve-
hicle message authentication, plus software component attesta-
tion and isolation using lightweight trusted computing technology.
Specifically, we advance the state-of-the-art by not only protecting
against network attackers, but also against substantially stronger
adversaries capable of arbitrary code execution on participating
electronic control units. We demonstrate the feasibility and practi-
cality of VulCAN by implementing and evaluating two previously
proposed, industry standard-compliant message authentication pro-
tocols on top of Sancus, an open-source embedded protected mod-
ule architecture. Our results are promising, showing that strong,
hardware-enforced security guarantees can be met with a minimal
trusted computing base without violating real-time deadlines under
benign conditions.

CCS CONCEPTS
• Security and privacy → Embedded systems security; Dis-
tributed systems security; Key management; Security protocols;
Domain-specific security and privacy architectures;

KEYWORDS
Automotive security, CAN, Protected module, Trusted computing

ACM Reference Format:
Jo Van Bulck, Jan Tobias Mühlberg, and Frank Piessens. 2017. VulCAN:
Efficient Component Authentication and Software Isolation for Automo-
tive Control Networks. In Proceedings of 33th Annual Computer Security
Applications Conference (ACSAC’17). ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3134600.3134623

1 INTRODUCTION
Today’s road vehicles are controlled by a growing number of inter-
connected Electronic Control Units (ECUs) that jointly operate the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC’17, December 2017, San Juan, Puerto Rico, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5345-8/17/12. . . $15.00
https://doi.org/10.1145/3134600.3134623

car’s behavior and safety-critical functionality. Abstractly speaking,
these ECUs exchange messages and form an extensive distributed
system that interprets sensor readings and reacts to important
events by triggering the relevant actuators, e.g., brakes, airbags,
or steering gear. In practice, however, these software interactions
are susceptible to adversarial manipulations, as automotive com-
munication standards, including the widely used Controller Area
Network (CAN), typically provide no message authenticity guaran-
tees at all. This lack of security becomes untenable with the advent
of networked infotainment systems that expose safety-critical com-
ponents to remote attackers, threatening the safety of passengers
and other road users alike. The past years have indeed seen a steady
stream of automotive attack demonstrations [8, 10, 19, 22, 27, 28, 50],
whose risks have been acknowledged by emerging industry stan-
dards [1, 40] that encompass authentication and software security.

Recent research [34, 38] studies CAN authentication protocols
compliant to these standards. Importantly, however, these protocols
are not deployed in existing vehicles, and experimental implemen-
tations lack the performance needed to satisfy stringent automotive
real-time constraints. Moreover, existing proposals only address
software security and key confidentiality with respect to adver-
saries that do not control code execution on targeted ECUs. Yet, it
has been shown repeatedly that attackers are capable of influencing
code execution or even running their own code on individual ECUs
to compromise key material or messages before or after authentica-
tion [22, 28]. As such, we consider threat models that assume only
network communication can be interfered with rather naive.

This paper introduces VulCAN,1 an efficient approach to im-
plement secure distributed automotive control software on light-
weight trusted computing platforms. Our approach is distinguished
from previous work by relying on trusted hardware and a mini-
mal software Trusted Computing Base (TCB), suitable for thorough
validation and formal verification. Specifically, we rely on hardware-
enforced memory protection primitives to isolate critical software
components on participating ECUs, and to harden them against
code-abuse attacks such as return-oriented programming [9]. We
furthermore show how to securely interface such “vulcanized” soft-
ware components with peripheral I/O devices, and dynamically
attest their integrity across the untrusted vehicle network. Finally,
we leverage the hardware-level cryptographic primitives commonly
found in trusted computing architectures to efficiently implement
message authentication for the CAN bus, which is an essential
condition to preserve real-time deadlines when not under attack.

At the hardware level, our VulCAN prototype is based on San-
cus [33], an open-source protected module architecture that ex-
tends an embedded openMSP430 processor. At the application level,

1 Vulcan, the ancient Roman deity of fire and smithery, was entrusted with the forgery
of weapons and armor for gods and heroes.

https://doi.org/10.1145/3134600.3134623
https://doi.org/10.1145/3134600.3134623

ACSAC’17, December 2017, San Juan, Puerto Rico, USA Jo Van Bulck, Jan Tobias Mühlberg, and Frank Piessens

we implement and evaluate two recently published AUTOSAR-
compliant CAN authentication protocols [34, 38], which we com-
pare in terms of performance overhead, TCB size, and offered se-
curity. We provide a detailed description of our FPGA-based setup,
and explain how to securely shield an off-the-shelf Seat instru-
ment cluster via a CAN security gateway. To encourage future
research on the evaluation of security architectures and protocols
for automotive control networks, we make our hardware designs,
a simulator, and the deployed software stack publicly available at
https://distrinet.cs.kuleuven.be/software/vulcan. In summary, we
make the following contributions:
• We explore the use of embedded trusted computing technol-
ogy in automotive control networks to improve on software
security, and to reduce message authentication overhead.
• To our knowledge, we present the first comparison of CAN
authentication protocols in terms of security guarantees,
performance results and TCB size. As part of our analysis,
we discovered a novel and practical replay attack against
vatiCAN’s [34] frequent nonce renewal scheme.
• We discuss practical implications of our approach with re-
spect to vehicle maintenance and key management, and in-
troduce a security gateway approach to transparently shield
unmodified legacy devices on the CAN bus.
• We present an extended application scenario that demon-
strates our security guarantees, and may serve as a basis for
future automotive security research in general.

2 BACKGROUND
2.1 Controller Area Network Authentication
The CAN bus is the most commonly used broadcast communication
medium in modern automobiles. From an application’s perspective,
a CAN message consists of an 11-bit ID, followed by an optional 18-
bit extended identifier, and up to 8 bytes of data payload (see Fig. 1).
Dedicated transceiver hardware chips implement a protocol for mes-
sage acknowledgement and bus arbitration for sending/receiving
data frames. Specifically, CAN requires a fixed data transmission
rate, and allows recessive bits (one) to be overwritten by dominant
bits (zero) during transmission. Message acknowledgement can
thus simply be implemented by overwriting the ACK bit at the end
of the data frame in real-time. Likewise, to solve bus arbitration,
CAN transceivers are required to continue listening on the bus
while sending the message ID at the beginning of the data frame,
and to back off when one of their ID bits has been overwritten.
This scheme ensures that messages with lower IDs effectively have
higher priorities. Finally, each CAN frame features a 16-bit Cyclic
Redundancy Check (CRC) field to detect transmission errors.

Figure 1: Extended data frame standardized by CAN 2.0B.

CAN was originally developed in 1983, when remote attackers
were of no concern, and does not provide any form of message
authentication. Any ECU connected to the network can spoof mes-
sages with arbitrary sender ID and payload, which forms the basis

of many attacks [10, 22, 27, 28]. As a response, the AUTOSAR [1]
standardization body published industry guidelines for backwards-
compatible message authentication in vehicular networks. To the
best of our knowledge, only two AUTOSAR-compliant CAN au-
thentication protocols have been proposed to date: LeiA [38] and
vatiCAN [34], where only the latter was actually implemented and
evaluated in terms of performance. Both protocols require a sym-
metric pre-shared cryptographic key at sender and receiver ECUs to
compute a Message Authentication Code (MAC) over the message
ID, payload, and a monotonically incrementing nonce to protect
against replay attacks. To deal with CAN payload length limitations
and to ensure backwards compatibility, 64-bit MACs are sent as a
separate message with a different ID, following the actual message
to be authenticated.

2.2 Embedded Protected Module Architectures
Security Primitives. The VulCAN approach provides a notion

of authenticated CAN components, which entails integrity and
authenticity of critical messages, both while in transit over the
untrusted vehicular network, as well as during processing by iso-
lated software components on the participating ECUs. For this,
VulCAN builds on the trusted computing features provided by
Protected Module Architectures (PMAs) [24, 42], a new brand of
security architectures that support the secure and isolated execu-
tion of critical software modules with a minimal TCB. Hardware
implementations of PMAs for higher-end systems, notably Intel’s
Software Guard Extensions (SGX) [25] and ARM’s TrustZone [3],
as well as several lightweight prototypes for embedded application
domains [6, 11, 21, 31] have been presented. These proposals have
in common that they provide Protected Modules (PMs) with strong
confidentiality and integrity guarantees regarding their internal
state, without having to trust any other software executing on the
platform, including traditionally privileged operating system code.

Modern PMAs offer a number of security primitives to (i) iso-
late PM software protection domains, (ii) attest the integrity of an
isolated PM, and (iii) facilitate key management for secure com-
munication. In the following, we elaborate on these features as
provided by the Sancus architecture, but it should be noted that the
VulCAN solution can in principle be implemented on any platform
that provides the above security primitives.

Sancus. Sancus [31, 33] is a fully open-source2 embedded PMA
and hardware-only TCB that extends the memory access logic and
instruction set of a low-cost, low-power openMSP430 [13] micro-
controller. Sancus supports multiple mutually distrusting software
components that each consist of two contiguousmemory sections in
a shared single-address-space. A hardware-level program counter-
based access control mechanism [43] enforces that a PM’s private
data section can only be accessed by its corresponding code section,
which can only be entered through a single entry point. Sancus’
generic memory isolation primitive can furthermore be used to
provide secure driver PMs with exclusive ownership over Memory-
Mapped I/O (MMIO) peripheral devices that are accessed through

2https://distrinet.cs.kuleuven.be/software/sancus/

https://distrinet.cs.kuleuven.be/software/vulcan
https://distrinet.cs.kuleuven.be/software/sancus/

VulCAN: Vehicular Component Authentication and Software Isolation ACSAC’17, December 2017, San Juan, Puerto Rico, USA

Figure 2: An example CAN network scenario to illustrate basic attacks and the security guarantees offered by our approach.

the address space. Since Sancus modules only feature a single con-
tiguous private data section, however, secure I/O on Sancus plat-
forms requires the use of small driver modules entirely written in
assembly code, using only registers for data storage [32].

Sancus also provides hardware-level authenticated encryption,
key derivation, and key storage functionality by extending the CPU
with a cryptographic core. Specifically, to implement secure com-
munication and local/remote attestation, Sancus employs a three
level key hierarchy. At the root of this hierarchy, every Sancus-
enabled CPU contains a unique hardware-level node master key
only known by the infrastructure provider that owns the embed-
ded computing node. Infrastructure providers furthermore assign
unique identifiers to independent software vendors who are to in-
stall a PM on a particular node. These vendor identifiers are used in
the second level of the key hierarchy to derive vendor keys from the
node master key. Finally, module keys are derived from a vendor
key using the module identity, which is composed of the contents
of a PM’s code section and the load addresses of both its sections.
The security of Sancus’ attestation guarantees is based on the un-
forgeability of these module identities. Upon enabling PM isolation,
after the module has been loaded by untrusted system software,
a Sancus-enabled processor computes the corresponding module
key, and stores it in a hardware-level protected storage area for
exclusive use by the PM. The benign software vendor in posses-
sion of the vendor key can compute the module key independently.
The use of a certain module key (e.g., by creating a MAC over a
fresh challenge) thus suffices to attest that a PM with a specific
code section has been loaded on a specific device, with isolation
enabled and without having been tampered with. The symmetric
module key can now be used to establish a confidentiality and
integrity-preserving communication channel between a remote
software vendor and its newly deployed PM. For this, PMs can
benefit from Sancus’ efficient cryptographic hardware primitives
by means of dedicated processor instructions for authenticated en-
cryption/decryption using either the module key, or an in-memory
key provided by software. Likewise, Sancus supports secure linking
of two PMs residing on the same computing platform by means of
novel instructions for caller/callee authentication.

Sancus finally comes with a dedicated C compiler that automates
the process of PM creation, and hides low-level concerns such as

secure linking, private call stack switching, and multiplexing user-
defined entry functions through the single physical entry point.

3 VULCANIZED CAN COMPONENTS
In this section, we present our approach to secure, authenticated ex-
ecution of distributed automotive applications that run on multiple
ECUs and communicate via an untrusted vehicular network. Our
approach compartmentalizes such an application into a small group
of trustworthy authenticated software components, i.e., isolated PMs.
In contrast to previous work, VulCAN supports multiple mutually
distrusting components on a single ECU, such that – apart from clas-
sical denial-of-service attacks – code executing in one component
can never be adversely impacted by any other software executing
on the same or another processor in the CAN network. We de-
pict an exemplary CAN network in Fig. 2, where an authenticated
trusted path is set up between a software component that senses
a braking pedal and wheel rotations, over an Anti-lock Braking
System (ABS) component, all the way to a brake hydraulic actuator
component. In short, VulCAN guarantees that any braking action
by the actuator component can be traced back to the authenticated
software components that originally sensed the driver’s braking
pedal and the wheel speed.

In the following, we first introduce our attacker model, and
precisely formulate the requirements for practical and trustworthy
vehicle component security. Finally, we elaborate on how to achieve
the desired security guarantees.

3.1 Attacker Model
The adversary’s goal is to impersonate a protected component
connected to the CAN network. More specifically, she wants to trick
a receiver component into accepting a CANmessage with chosen ID
and payload, as if it originated from a valid sender component. We
protect against attackers with two important capabilities, namely
arbitrary message manipulation, and arbitrary code execution.

ArbitraryMessageManipulation. Analogous to previouswork [15,
18, 34, 38, 46], we consider an attacker without physical access, but
who has successfully gained remote access to the car’s internal
network. She might for instance infiltrate an ECU over one of the
numerous wireless interfaces in a modern automobile [8, 10]. This
gives her the ability to (i) broadcast her own CAN messages with

ACSAC’17, December 2017, San Juan, Puerto Rico, USA Jo Van Bulck, Jan Tobias Mühlberg, and Frank Piessens

arbitrary ID and payload, (ii) observe and record all traffic on the
CAN bus, and (iii) intentionally destroy or modify packets as they
pass by. Due to the inherent broadcast nature of the shared CAN
bus, denial-of-service attacks are ultimately out-of-scope.

Arbitrary Code Execution. Existing CAN authentication propos-
als (cf. previous paragraph) as well as vehicular hardware security
modules [49] explicitly assume an adversary who has not compro-
mised the ECU for which she intends to fake packets. It has been
repeatedly shown, however, that automotive software and update
mechanisms are vulnerable to a wide range of attacks [10, 22] that
allows an adversary to execute her own code on individual ECUs.
We therefore model an attacker with arbitrary code execution on
every ECU in the network. This means she can compromise all
software (including privileged operating system support software),
except for the trusted authenticated software components that are
explicitly protected by Sancus.

3.2 Problem Statement
We precisely state the requirements and challenges for trustwor-
thy component authentication on an unmodified CAN bus. We
distinguish between protocol and system requirements. The first are
reflected in the design of the CAN authentication protocol, whereas
the latter concern the actual ECUs that implement and participate
in the authenticated communication. Closely following previous
research [34, 38], we identified the following protocol requirements:
P1: Message Authentication. A receiver component should get

a strong guarantee that a message with specified ID and
payload was indeed sent by a trusted sender component.

P2: Lightweight Cryptography. The use of public key cryptog-
raphy is ruled out, for typical ECUs are severely constrained
in computational power and storage space.

P3: Replay Attack Resistance. Packet loss should be anticipated,
but the authentication scheme should be immune to replay
attacks, even when a large amount of traffic was captured.

P4: Backwards Compatibility. The authentication scheme must
be compatible with existing off-the-shelf CAN transceiver
chips. Legacy unmodified applications without authenticated
communication should continue to function.

While the above requirements are mostly met by at least two recent
CAN authentication protocols [34, 38], we argue that a practical
and trustworthy solution should furthermore offer the following
system-level guarantees, which are not achieved by state-of-the-art
authentication schemes:
S1: Real-Time Compliance. While denial-of-service attacks are

explicitly out-of-scope, the CAN bus is widely used to initi-
ate safety-critical functionality such as brakes and steering,
necessitating a fast authentication scheme that preserves
stringent real-time deadlines when not under attack.

S2: Component Isolation. The integrity of message processing
and authentication algorithms, and the confidentiality of
key material should be protected against an attacker with
arbitrary untrusted code execution on participating ECUs.

S3: Component Attestation. When starting her car, and while
driving, the motorist should get a strong guarantee that
critical software components have been loaded on specific

ECUs with isolation enabled (S2), and without having been
tampered with.

S4: Dynamic Key Update. The system should support secure key
provisioning at runtime, and allow broken ECUs to be re-
placed by a distrusted automobile repair shop. Extracting
keys in one ECU should not compromise message authenti-
cation (P1) for uninvolved components.

S5: Secure Legacy ECU Integration. Automotive suppliers can-
not be expected to adopt hardware/software changes imme-
diately on all ECUs that require authentication. It should be
possible to transparently shield unmodified legacy ECUs as
a transition measure.

3.3 Authenticated CAN Bus
Before explaining how we achieve the strong system-level software
security guarantees (S1–S5), we first elaborate on our protocol
requirements (P1–P4). We carefully selected the latter such that
they can be fulfilled by any AUTOSAR [1] compliant authentication
protocol. The VulCAN approach is inspired by, and remains largely
compatible with, two such proposals: vatiCAN [34] and LeiA [38].

Message Authentication (P1–P4). As explained in the background
section, CAN follows a publish-subscribe broadcast model where
prioritized 11-bit IDs (optionally enlarged with an 18-bit extended
identifier) are associated with a data payload of up to 64-bit. How-
ever, CAN does not reserve bandwidth for authentication metadata.
Our requirement for backwards compatibility (P4) with existing
CAN transceivers rules out previous research [15, 46] that lever-
ages the extra bandwidth provided by the CAN+ extensions (cf.
Section 7). Following the approach of vatiCAN and LeiA, we there-
fore decouple the authentication metadata from the actual message
to be authenticated. More specifically, we first broadcast the authen-
ticated message in plain text, and afterwards construct and transmit
authentication data on a different CAN identifier, to which only
authentication-aware receiver components subscribe. This scheme
ensures compatibility with unmodified legacy applications that do
not rely on message authentication (P4).

To satisfy requirements (P1, P2), we associate a symmetric 128-
bit cryptographic key with each authenticated CAN identifier. Like
vatiCAN, but in contrast to LeiA, our design allows multiple IDs to
share the same key to reduce memory consumption costs, if desired
(P2). Valid sender/receiver components use the key to construct
a 64-bit Message Authentication Code (MAC) over both ID and
payload (P1), including a monotonically increasing counter to pro-
tect against replay attacks (P3). More specifically, to authenticate a
message with identifier i , payload p, and counter ci , we compute:

m = MAC (keyi , (i | p | ci)) (1)

Note that, when keyi is truly unique per identifier (as in the LeiA
specification), i should not be included in the above message, since
it is implicitly authenticated through the key. After calculating the
MAC, the sender transmits it as the payload of a separate CAN
message with ID i + 1. This scheme practically avoids priority
inversion problems, for CAN identifiers are also used as priority
indicators during bus arbitration. In case, however, that the CAN
identifier i + 1 is already in use by the legacy application (P4), a
different application-specific authentication ID has to be selected.

VulCAN: Vehicular Component Authentication and Software Isolation ACSAC’17, December 2017, San Juan, Puerto Rico, USA

Nonce Initialization (P3, P4). Requirement (P3) demands that re-
playing a previously authenticated message should result in that
message being discarded by the receiver. To this end, our authenti-
cation scheme Eq. (1) includes a monotonically increasing counter
or nonce ci as a source of freshness in the MAC computation for a
message with identifier i . Identical nonce values should never be
reused under the same key and associated data, however, which
provides us with two important challenges: (i) nonce initialization
on platform reset or ci counter overflow, and (ii) nonce resynchro-
nization on packet loss.

A commonway to address the first challenge, nonce initialization,
is the use of short-term session keys [38, 46]. At system boot time,
or whenever the session counter ci overflows, both parties generate
a fresh session key based on the long-term pre-shared secret and a
larger epoch counter. With this scheme, individual session counters
ci can safely start from zero. Session keys thus reduce the burden of
secure nonce management for multiple sessions to secure persistent
storage of a single long-term key and epoch counter per connection
per ECU. Our final key provisioning scheme (S4) further relaxes
this requirement to secure persistent storage capacity on a single
trusted ECU, by leveraging trusted computing features as discussed
in more detail in Section 3.4.

Nonce Resynchronization (P3, P4). Receiver ECUs have to deal
with packet loss as they may miss a message or authentication
frame, for instance when in sleep mode or under heavy network
load. Due to the periodic broadcast nature of typical CAN applica-
tions, legacy receivers can easily recover from such failures. On an
authenticated CAN bus, subsequent MAC comparisons will fail if
sender and receiver nonces get out-of-sync. Observe that nonce val-
ues ci are not confidential, however, and that receivers can accept
MACs generated with any nonce that is strictly higher than the
previously authenticated nonce value. As such, packet loss could
be anticipated by including the plain text sender nonce as part
of the authentication payload, but our 64-bit MACs (P1) leave no
free space in a standard CAN frame. Depending on the application,
some unused parts of the message payload might be used to en-
code (the least significant bits of) the nonce, as also suggested by
AUTOSAR [1]. As a more general solution, VulCAN leaves nonce
resynchronization choices to the underlying protocol being used.

Our vulcanized LeiA [38] implementation encodes relatively
small 16-bit nonces in the extended CAN identifier field, and re-
establishes session keys on nonce counter overflow. This allows
receiver components to easily recover after missing one or more
authenticated messages. Furthermore, to be able to recover from
longer-term network failures, a genuine receiver can send a ded-
icated error frame that prompts a sender to broadcast its current
epoch counter value. Note, however, that LeiAmight partially break
legacy applications (P4) that rely on the availability of extended
CAN identifiers. For example, the vehicle instrument cluster dis-
cussed in Section 6 utilizes at least one extended CAN identifier.
Our experimental evaluation (Section 5) also reveals that LeiA’s
use of extended identifiers also comes with a performance penalty.

An alternative approach to dealing with packet loss, is provided
by the vatiCAN [34] protocol that uses larger 32-bit nonces, but
relies on a trusted global Nonce Generator (NG) component to peri-
odically reset nonces in the entire network. Specifically, every few

milliseconds, NG broadcasts a randomly chosen value to be used
by all participating ECUs as the new initial value for all counters
ci . NG is assumed to use a modified CAN transceiver, equipped
with hypothetical (P4) hardware-assisted spoofing prevention, such
that an attacker cannot inject arbitrary nonce renewal requests.
We show in Appendix A, however, that vatiCAN’s frequent ran-
dom nonce renewal design is vulnerable to advanced replay attacks
based on the (generalized) birthday problem from probability the-
ory. Depending on the targeted application, our attacks allow an
adversary to start replaying authenticated messages after recording
as little as 30 minutes of broadcast CAN traffic. Our vulcanized
vatiCAN implementation therefore omits global nonce generation,
and properly uses session keys, as discussed above, to ensure the
same ci value is never reused under the same cryptographic key.

Efficient MAC Computation (S1). Recall that the payload of an au-
thenticated CAN message is sent first, before the actual authentica-
tion frame containing the MAC. The vatiCAN [34] authors leverage
this property to compute MACs in parallel at both the sender and
receiver ECUs. The sender first broadcasts messagem to be authen-
ticated, and subsequently computes and sends the corresponding
MACs . As soon as m has arrived, the receiver starts computing
MACr , which is afterwards compared toMACs to authenticatem.
While such parallel MAC computation cuts authentication over-
heads by half, current software-only solutions still require several
milliseconds to compute a single 64-bit MAC [34].

Our Sancus-based VulCAN implementation on the other hand,
computes Eq. (1) using Sancus’ [31, 33] hardware-level authenti-
cated encryption primitive. We configured our Sancus cores with
128 bits of security, resulting in 128-bit message authentication
tags. To overcome CAN payload length limitations, we truncate
the resulting MAC by discarding the eight least significant bytes.
This approach adheres to the relevant AUTOSAR specification that
recommends to “always use a key length of at least 128 bit”, but
also states that “a MAC truncation can be beneficial. [...] In general,
MAC sizes of 64 bit and above are considered to provide sufficient
protection” [1]. An important advantage of using hardware-level
cryptography is that MAC computation times decrease with an
order of magnitude, as further explored in the evaluation section.
We consider such acceleration crucial to meet stringent real-time
automotive safety requirements in benign conditions (S1).

3.4 Component Isolation and Authentication
In this section, we elaborate on our system-level requirements (S2–
S5) that transform a conventional entangled vehicle network into
a minimal set of small and robust application components that
mutually authenticate and trust each other.

Software Isolation and Key Storage (S2). The security of any au-
thentication scheme critically relies on maintaining key confiden-
tiality. In this respect, previous automotive security proposals [15,
34, 38, 46] invariably assume uncompromised sender/receiver ECUs,
neglecting advanced attacker capabilities. Our strengthened at-
tacker model, on the other hand, considers adversaries with arbi-
trary ECU code execution such that any cryptographic key material
that is not explicitly protected against untrusted system software
can be trivially extracted. We therefore leverage PMA protection

ACSAC’17, December 2017, San Juan, Puerto Rico, USA Jo Van Bulck, Jan Tobias Mühlberg, and Frank Piessens

Figure 3: Load-time attestation and session key provisioning
protocol between trusted Attestation Server (AS) and indi-
vidual ECUs hosting PM software components.

to create isolated “safe harbors” for constructing and processing
authenticated CAN messages.

VulCAN reduces the TCB by explicitly distrusting management
software, including the CAN driver. Instead, authenticated CAN
messages are constructed and verified within a Sancus PM, such
that connection keys never leave the private data section. Critical
application software that reacts upon authenticated messages is
furthermore included in the PM protection domain, so as to assure
its untampered execution (S2). Moreover, the protected application
logic can integrate dedicated driver PMs to securely sense or actu-
ate I/O devices, as explained in Section 2.2. As such, a distributed
trusted path can be set up from a brake pedal sensor all the way
to a brake actuator component, without having to trust any of
the unprotected support software that processed the message on
sender/receiver ECUs. The unprotected software components in-
volved in relaying the message may be strictly necessary from a
functionality and availability perspective, yet, they are not involved
in implementing the security properties of the application. Thus,
our solution effectively guarantees that any braking action at the
receiver PM can be traced back to the sender PM that originally
sensed the driver’s brake pedal. As such, vulcanized CAN compo-
nents significantly reduce the TCB, making them more suitable for
safety and security certification, and well within reach of formal
software verification techniques [37].

Software Attestation and Key Provisioning (S3, S4). The above
guarantees are only maintained after PM authenticated compo-
nents have been correctly isolated and provisioned with symmetric
cryptographic keys. Since PMs are not persisted across reboots, an
attacker initially has full control over every ECU in the network
when the car is turned on. This confronts us with three closely re-
lated challenges: how to (i) attest the integrity of critical distributed
software components, (ii) establish session keys over the untrusted
CAN bus, and (iii) replace broken ECUs in an untrustworthy auto-
mobile repair shop.

To overcome these challenges, the VulCAN design includes a
trusted Attestation Server (AS) that engages in a remote attestation
protocol with individual PMs. Specifically, AS possesses the Sancus
module-specific 128-bit key KPM of every authenticated software
component in the network, such that it can get assurance that a
particular PM has been isolated on a specific ECU without having

Figure 4: Protocol for integrating a newECU into an existing
control network. The in-vehicle Attestation Server (AS) is
shipped with a certificate of its public key.

been tampered with (cf. Section 2.2). When starting the vehicle,
untrusted system software on the participating ECUs is in charge
of loading PM components, and the secure PMA hardware com-
putes the corresponding module-specific keys based on the PM’s
identity. A simple challenge-response attestation protocol to prove
possession of the expected KPM thus suffices for AS to establish
that PM has been properly loaded. To properly protect against re-
play attacks (P3), however, AS should make sure to always include
a monotonically incrementing attestation nonce n in the challenge.

Regarding the second challenge, session key distribution, we
leverage the observation that distributed load-time attestation al-
ready necessitates communication between AS and every PM. We
thus let AS generate random 128-bit session keys for all connec-
tions whenever starting the car, and modify the above attestation
protocol to include dynamic key provisioning (S4), as illustrated
in Fig. 3. AS first broadcasts an encrypted challenge for every PM,
containing the newly generated session key as well as the global
nonce value n. Note that 128-bit session keys wont fit within a
single CAN message, and the load-time challenge therefore needs
to be spread across multiple successive CAN frames. We encrypt
the challenge with KPM to ensure that session keys are only pro-
visioned to properly isolated and unmodified PM. The attestation
process is finally completed when a PM responds with a MAC over
n, using KPM . We propose to connect the vehicle ignition switch
directly to AS, such that the car refuses to start when load-time
attestation fails (S3). This way, the driver is given a strong assur-
ance that any critical event (e.g., braking) while driving can only
be caused by a legitimate sender component (e.g., braking pedal).

To address the final requirement, ECU replacement, we equip
AS with asymmetric cryptography. Note that this does not violate
our requirement for lightweight ECUs (P2), as every car only needs
a single authentication server component that would typically be
deployed on one of the higher-end vehicle processors. Specifically,
we assume AS is shipped with a certificate of its public key, signed
with the private key of the legitimate car vendor. Figure 4 outlines
the protocol. When a new ECU joins an existing control network,
it initially broadcasts a unique replacement identifier IDr . Upon
receiving IDr , AS sends its public key certificate and the new re-
placement identifier to the remote car vendor over the untrusted
automobile repair shop’s network connection. The car vendor acts
as the trusted infrastructure provider in the Sancus key hierarchy
(Section 2.2), and thus possesses the node master keys of all ECUs it

VulCAN: Vehicular Component Authentication and Software Isolation ACSAC’17, December 2017, San Juan, Puerto Rico, USA

produced. Upon receiving IDr and a valid AS certificate, the vendor
computes the Sancus module-specific key KPM for any authenti-
cated software components to be executed on that ECU, and uses
AS’s public key to send them securely back to the car. AS can now
proceed with the load-time attestation protocol for the newly joined
ECU over the local CAN bus, as depicted in Fig. 3.

To prevent an attacker from acquiring the module key KPM
herself, the remote car vendor shouldmark used part identifiers IDr ,
and never hand out KPM to a different vehicle attestation server.
Please also note that AS stores all module keys for subsequent
attestations, such that public key cryptography and a network
connection are only rarely needed, when upgrading the car. In this
respect, AS can reset its module-specific attestation nonce n after
every PM software update, since KPM depends on the code section.

Shielding Legacy ECUs (S5). VulCAN requires hardware and soft-
ware changes for critical ECUs, whereas part suppliers are typically
restrained to quickly implement such changes in the heterogeneous
automotive landscape. In this regard, previous software-only so-
lutions [34, 38] remain backwards compatible with, but cannot
provide any security guarantees for ECUs that do not adopt the
required software changes. We therefore present a transition mech-
anism that can be used to securely shield unmodified legacy ECUs
from an untrusted CAN bus.

Intuitively, we position a Sancus-enabled gateway ECU in front
of the legacy ECU, and perform the necessary authentication trans-
parently on behalf of the shielded legacy component(s). This basic
idea is similar to the already existing CAN gateways that separate
high-speed from low-speed traffic in modern automobiles. It has
been repeatedly shown [10, 22], however, that existing such CAN
gateways can easily be bridged by exploiting or reprogramming
their software. Our approach on the other hand relies on PMAs, as
outlined above, to establish a minimal TCB on the gateway ECU.
More specifically, the security gateway participates in message au-
thentication and software attestation protocols on the untrusted
CAN network as usual, but makes sure to only forward success-
fully authenticated messages over the trusted private CAN bus. To
prevent an attacker in control of untrusted software on the gate-
way ECU from forwarding traffic on the private CAN bus herself,
we deploy a secure I/O driver PM that takes exclusive ownership
over the CAN transceiver device. This of course implies that the
protected CAN driver code becomes part of the TCB, which we
consider acceptable given that the CAN driver needs to be trusted
on the gateway ECU only, and can be considerably simplified when
forwarding packets.

4 SECURITY ANALYSIS
Protocol Requirements (P1, P3). We first evaluate the protocol-

level message authentication and replay protection requirements for
a traditional adversary that controls the network, but not the soft-
ware on sender/receiver ECUs. In this case, the security argument
reduces to the security of the underlying MAC scheme. According
to Eq. (1), an adversary could collect a legacy CAN identifier and
plain text payload, plus its corresponding MAC and non-secret
nonce ci to try and brute-force all possible 128-bit session keys.
Finding the correct session key would require 2127 MAC evalua-
tions on average, which is considered infeasible even for extremely

motivated adversaries. Alternatively, the attacker could try to cor-
rectly guess the smaller 64-bit MAC output. Note, however, that the
birthday paradox for finding an arbitrary collision does not apply
here, for the adversary’s goal is to forge a message with chosen
ID, nonce, and payload. As such, the probability to correctly guess
the MAC output is 2−63. To verify her guess, however, the attacker
would have to interact online with the valid receiver. The available
time frame for such an attack is reasonably limited, for nonce coun-
ters are incremented after every legitimate message and session
keys are refreshed on counter overflow. The same property finally
ensures proper replay attack resilience.

Note that the security of the LeiA [38] CAN authentication pro-
tocol has been formally proven, under the MAC unforgeability
assumption. We present a practical replay attack against the vati-
CAN [34] protocol, however, in Appendix A. Being based on the
birthday paradox, the attack abuses the increased probability of
nonce reuse due to vatiCAN’s frequent random nonce renewal
scheme. As discussed above, our vulcanized vatiCAN implementa-
tion therefore omits the global nonce generator.

System Requirements (S2–S5). We first define the in-vehicle TCB3
for authenticated CAN components more precisely. As with any
execution platform, the processor is ultimately trusted, which ren-
ders the security argument for VulCAN’s system requirements
inevitably specific to the implementation platform (in our case the
minimalistic secure Sancus [31, 33] hardware). We furthermore
trust the relevant authenticated software components themselves;
in the case of braking for instance, only those PMs that participate
in the creation and processing of that event are considered trusted.
We expect the size of these modules to be within reach of formal
verification [37] and secure compilation [36] techniques. Finally, we
trust the global vehicle attestation server introduced above. That
is, we assume secure, tamper-proof storage capacity and code exe-
cution on the AS node. Importantly, unlike previous CAN security
proposals [34, 38, 46], our solution necessitates tamper-resistant
persistent storage on the AS node only. We thus relax the require-
ments for lightweight ECUs, and move the burden of long-term
cryptographic key and nonce storage to a single platform that can
be more easily maintained. Specifically, we advise the use of widely
available higher-end trusted execution technology such as ARM
TrustZone [3] or Intel SGX [25] on the processor hosting AS.

The security of distributed software attestation (S3) follows from
the correctness assumption of AS and the Sancus hardware. For
Sancus’ hardware-level key derivation scheme ensures that the
expected KPM is only available to a correctly isolated PM on a
specific ECU, and AS includes a persistent counter n in the attesta-
tion challenge to establish a fresh guarantee every time the driver
starts her car. Likewise, the security of isolated execution and key
secrecy (S2) reduces to the correctness of the Sancus hardware.
Please note that our adversary model considers physical attackers
that exploit hardware side-channels to extract cryptographic key
material out-of-scope. We do assume that all ECUs are shipped
with independent node master keys, however, such that extract-
ing keys from one ECU does not affect uninvolved components
(S4). Our Sancus-based implementation is furthermore immune to

3 Note that the development environments of the car vendor and part suppliers are
isolated from the in-vehicle network, and thus not within reach of the attacker.

ACSAC’17, December 2017, San Juan, Puerto Rico, USA Jo Van Bulck, Jan Tobias Mühlberg, and Frank Piessens

remotely exploitable software side-channels, since keys are never
directly processed by software, and Sancus uses a constant-time
hardware implementation of SpongeWrap [4] with spongent [5]
as the underlying hash function.

The security of our session key provisioning scheme (S4) follows
from the security of the attestation protocol, on which it piggybacks.
Likewise, the security of the ECU replacement protocol between
the vehicle attestation server and the remote car vendor entirely
depends on the correctness of AS. As long as the adversary does
not get hold of AS’s private key, she never gets to know KPM by
observing network traffic. An attacker that actively interacts with
the remote car vendor does not learnKPM neither, since the vendor
is required to keep track of assigned replacement IDs on a first-
come, first-served basis that ensures keys are never retransmitted to
a different attestation server. The only leverage left for an adversary
in this scheme, is to launch a denial-of-service attack by claiming
all replacement IDs. Such availability issues are out of the scope of
our work, but can easily be mitigated at the application level. The
car vendor could for instance engage in a complementary protocol
with the automobile repair shop to establish the legitimacy of the
replacement part to be installed, before actually assigning IDr and
handing out KPM to the vehicle attestation server AS.

Finally, the security of shielding unmodified legacy ECUs (S5)
with a Sancus-enabled gateway follows from the protocol-level
security guarantees (P1, P3), plus authenticated component isola-
tion (S2) and attestation (S3). Specifically, since the CAN driver
itself executes in a PM in this case, the gateway can guarantee that
only legitimate events (i.e., properly authenticated messages on the
public bus) trigger CAN forwarding on the private bus.

5 EXPERIMENTAL EVALUATION
We fully implemented the vatiCAN [34] and LeiA [38] specifica-
tions, but leave the implementation of the attestation server as
future work. We can only directly relate our approach to the previ-
ously reported software-only vatiCAN evaluation, however, for our
work presents the first actual implementation of LeiA. In this sec-
tion, we evaluate our vulcanized vatiCAN/LeiA implementations in
terms of runtime overhead, memory footprint, and TCB size. Note
that we do not evaluate bus congestion due to added CAN frames,
as this does not yield interesting results beyond what is reported
by vatiCAN, i.e., a modest 3% increase.

All experiments were conducted on a testbench featuring six
Xilinx Spartan-6 FPGAs, each synthesized with a Sancus-enabled
OpenMSP430 core [13, 33] running at 20MHz. With the given clock
speed, 1 CPU cycle corresponds to 50 ns, and 10,000 cycles cor-
respond to 0.5 ms. Each Sancus core was configured to provide
128 bits of security. Analogous to previous research [34], we inter-
faced our ECUs over SPI with widely used off-the-shelf Microchip
MCP2515 CAN transceiver chips on a common bus speed of 500
kBit/s. All source code was compiled with the Sancus C compiler
based on LLVM/Clang v4.0.0 with optimizations set for size (-Os).

5.1 TCB Size and Memory Footprint
We implemented vulcanized vatiCAN/LeiA as a small C library that
leverages Sancus’ hardware-level authenticated encryption prim-
itives, and that can optionally be included in a protected Sancus

Table 1: Overhead to send an (authenticated) CAN message
with/without Sancus encryption and software protection.

Scenario Cycles Time Overhead

Legacy (standard ID) 8,135 0.41 ms –
Legacy (extended ID) 9,620 0.48 ms 18%
vatiCAN (extrapolated†) 58,948 2.95 ms 625%
Sancus+vatiCAN (unprotected) 15,570 0.78 ms 91%
Sancus+vatiCAN (protected) 16,036 0.80 ms 97%
Sancus+LeiA (unprotected) 18,770 0.94 ms 131%
Sancus+LeiA (protected) 19,211 0.96 ms 136%

† Inferred from the observed Sancus+vatiCAN timings by replacing the hardware
based MAC computation cycles with the reported Keccak SHA-3 computation cycles.

PM. Importantly, when the library is included in a PM, the remain-
der of the software stack remains explicitly untrusted regarding
MAC computation integrity and confidentiality of key material.
That is, the TCB encompasses only the vatiCAN/LeiA library and
any application-specific protected message processing code. In this
regard, we measured 212 lines of trusted source code for LeiA, and
only 147 lines for vatiCAN, using the sloccount utility [47] and
excluding debug code. Regarding the unprotected software stack,
even our elementary CAN driver alone already requires 322 lines
of code. In comparison, we measured over 670 lines of code for the
popular CAN bus shield for Arduino devices [41], and established
embedded operating systems such as Contiki or FreeRTOS exceed
several tens of thousands of lines of code. As such, vulcanized CAN
authentication modules significantly reduce the TCB, making them
more manageable in security and safety validation efforts.

The memory footprint of the unprotected CAN driver measures
2,482 bytes. For our vulcanized vatiCAN/LeiA libraries on the other
hand, the total binary sizes measure respectively 790/1,818 bytes
when compiled as an unprotected application, and 906/1,948 bytes
when compiled as part of a protected module. The slightly increased
PM binary size is due to compiler-generated code stubs inserted
on every call to and from the unprotected CAN driver. vatiCAN
furthermore requires 22 bytes of metadata for each authenticated
connection (a 16-bit ID, 128-bit symmetric key, and 32-bit nonce),
whereas LeiA requires 44 bytes (16-bit ID, 64-bit epoch counter,
16-bit nonce, 128-bit long-term/session keys). Note that the 128-bit
long-term keys can be shared across multiple connections, depend-
ing on the required security guarantees.

5.2 Performance Evaluation
To yield a fair overhead comparison, it should be noted that vatiCAN
was evaluated on a 16MHz ATmega 8-bit ECU. We expect software
performance to be within the same order of magnitude, however,
on our 20MHz MSP430 16-bit microcontrollers.

MAC Computation. For each secure message, vatiCAN computes
a 64-bit MAC over 112 bits of associated data (ID, payload, nonce).
This operation reportedly requires about 47,600 clock cycles or 2.95
ms, using an optimized Keccak SHA-3 hash function in the software-
only vatiCAN implementation [34]. Our hardware-assisted solution
on the other hand is over 11 times faster, requiring only 4,222 clock
cycles or 0.21 ms to compute a 128-bit MAC. Our vulcanized LeiA

VulCAN: Vehicular Component Authentication and Software Isolation ACSAC’17, December 2017, San Juan, Puerto Rico, USA

Table 2: Round-trip (ping-pong) time intervals.

Scenario Cycles Time Overhead

Legacy 20,250 1.01 ms –
vatiCAN (extrapolated†) 121,992 6.10 ms 502%
Sancus+vatiCAN unprotected 35,236 1.76 ms 74%
Sancus+vatiCAN protected 36,375 1.82 ms 80%
Sancus+LeiA unprotected 42,929 2.15 ms 112%
Sancus+LeiA protected 43,624 2.18 ms 115%

implementation, on the other hand, uses only 16-bit nonces, which
reduces associated data to 96 bits and MAC computation time down
to 4,049 cycles (0.20 ms).

Cryptographic acceleration is crucial to fulfil real-world auto-
motive safety requirements (e.g., automated collision avoidance) in
benign conditions. At a highway speed of 100 km/h for instance,
vatiCAN’s software-based MAC computation corresponds to a trav-
elling distance of 8 cm, whereas VulCAN cuts this distance down
to a mere 0.6 cm. Naturally, authentication overhead becomes even
more important when a message has to be processed by multiple
interacting components, such as anti-lock braking, electronic brake
force distribution, and electronic stability control systems.

Message Transmission. We furthermore investigated the overall
overhead to send an authenticated message.4 The first row of Ta-
ble 1 lists the baseline, i.e., the time required by our CAN driver
to send a plain unauthenticated message with an 11-bit standard
ID (about 0.41 ms). Recall, however, that the limited CAN payload
length requires us to send MACs in a separate authentication mes-
sage, following the actual message to be authenticated. Due to this
inherent CAN limitation, VulCAN must send two messages for ev-
ery legacy message to be authenticated. In this respect, our baseline
measurement in Table 1 includes the time needed by the transceiver
chip to initiate transmission and signal acknowledgement from the
receiver device. Our driver also includes an option, however, to
return immediately after loading the relevant device registers, and
without waiting for the transmission to complete successfully. This
option is used in our vulcanized vatiCAN/LeiA implementations
when sending the legacy message that is to be authenticated. By
unblocking immediately after submitting the legacy payload for
transmission, VulCAN can start the MAC computation early on,
and only afterwards wait for acknowledgement of the legacy and au-
thentication messages. This optimization technique makes that the
overall time to send one authenticated message can still be slightly
less than the time to send two unauthenticated legacy messages.

As an important consequence of Sancus’ hardware-level crypto-
graphic primitives, our vulcanized vatiCAN/LeiA implementations
compute MACs in only half the time required to send a message,
whereas MAC computation in software-only vatiCAN easily out-
weighs the message transmission time (with almost a factor 6).
Comparing the third and fourth rows of Table 1 indeed reveals
that the total relative overhead for sending an authenticated mes-
sage with Sancus+vatiCAN decreases the relative overhead with
4 We focus on message sending here, since authenticated message reception delays
inherently rely on the behavior of the sender. We assess overall send/receive overhead
in a round-trip time macro benchmark.

Sender Receiver
ping

ping_auth

pong

pong_a
uth

compute
MACpinд

compute
MACponд

compute
MACpinд

compute
MACponдro

un
d-
tr
ip

tim
e

Figure 5: Round-trip time experiment timing overview.

a staggering 534%, as compared to the extrapolated software-only
vatiCAN case. Regarding LeiA, the second row of Table 1 reveals
that sending a legacy CAN message with an extended 29-bit identi-
fier is slightly more expensive (about 18%), as extra device registers
must be loaded. This explains why the overall overhead for San-
cus+LeiA is slightly larger than that of vulcanized vatiCAN.

In the last experiment, we not only use Sancus’ hardware-level
encryption, but also leverage its software isolation primitive to
maintain key secrecy on a partially compromised ECU. More specif-
ically, we construct CAN messages and their corresponding MACs
in a PM, such that keys are never exposed to untrusted system soft-
ware. As compared to the unprotected case, Sancus+vatiCAN/LeiA
now also has to transparently copy message memory buffers to
and from the unprotected CAN driver. Previous work [30, 44] has
demonstrated that such protection domain switches come with
a limited performance penalty, which is indeed reflected with a
modest 5 to 6% execution time overhead in Table 1.

Round-Trip Time. To assess authentication delays in a sender/
receiver scenario, we performed a round-trip time experiment. One
ECU first broadcasts an 8-byte CAN frame and upon successful
reception, the receiver ECU immediately broadcasts a reply mes-
sage. For a legacy, unauthenticated CAN network, we measured a
ping-pong time interval of 1.01 ms to exchange two messages in
total. On an authenticated CAN network, four messages have to
be exchanged, and sender and receiver each have to compute two
MACs, as shown in Fig. 5.

Table 2 lists the results of the round-trip time experiment. Since
twice the amount of messages have to be exchanged (to carry the
authentication codes), the performance overhead to be expected
is again around 100%. As compared to Table 1, however, the rela-
tive overhead for vulcanized vatiCAN/LeiA decreased even further,
down to respectively 74% and 112%. This reflects the fact that mes-
sages now also have to be received and processed by the receiver,
making the contribution of MAC computation less important in
the overall timing. Likewise, the induced Sancus software protec-
tion overhead amounts only 3 to 6%, and can be expected to drop
even further if the protected modules spend more time processing
the message. The extrapolated measurements for software-only
vatiCAN on the other hand, demonstrate once more that software-
level MAC calculation remains dominant, increasing the relative
overhead with over 400%.

We acknowledge that the above overheads may be prohibitive
for some existing real-world applications. Evaluating this is beyond

ACSAC’17, December 2017, San Juan, Puerto Rico, USA Jo Van Bulck, Jan Tobias Mühlberg, and Frank Piessens

Figure 6: Hardware-in-the-loop application scenario with
original instrument clusters and Sancus-enabled ECUs.

the scope of this paper. However, in comparison with state-of-the-
art software-only solutions, our results show that VulCAN can
target a substantially larger class of safety-critical applications
where real-time deadlines must be satisfied. Ultimately, the choice
of authentication protocol, communication technology, and trusted
computing platform remains application-specific.

6 AN EXTENDED APPLICATION SCENARIO
To explore the feasibility of our approach in actual application
scenarios, we constructed a moderate-sized automotive test bench.
Figure 6 shows a photograph of our setup, which consists of two
off-the-shelf automobile instrument clusters from the 2014 Seat
Ibiza model, and six Sancus-enabled ECUs that were configured
as described in Section 5. We furthermore attached a CAN-to-USB
convertor to be able to monitor traffic and inject CAN messages
from an ordinary laptop computer.

Application Overview. Figure 7 provides a simplified schematic of
the demo scenario. It involves a central ECU that hosts a protected
Sancus software module PMcs to securely process commands from
the legitimate motorist. To this end, we attach a keypad device that
abstracts the motorist’s interaction with the vehicle (i.e., steering
wheel and braking/accelerator pedals). To gain exclusive access to
the keypad peripheral, PMcs securely links to a local PMkey MMIO
driver assembly module, as explained in Section 2.2. For demon-
stration purposes, we also attached a second unprotected keypad,
which is colored red and sensed by attacker code to represent an
adversary with CAN message injection capabilities and arbitrary
unprotected code execution on the central ECU.

The setup further features four wheel ECUs that each simulate
an actuator (brake), abstracted by a peripheral LED display that
displays the current wheel RPM. Each wheel ECU hosts a protected
software module PMrpm that listens to authenticated CAN mes-
sages from the central system to update individual wheel RPM on
the local LED display via a secure MMIO driver module PMled .

Figure 7: Schematic of the demo scenario depicted in Fig. 6.

The two vehicle instrument clusters finally represent unmodified
legacy devices, where one is directly connected to the untrusted
CAN bus, and the other is shielded by means of a Sancus-enabled
gateway. The gateway ECU hosts a PMдw component that listens
to selected instrument cluster IDs on the global CAN bus, making
sure that only authenticated messages are forwarded. To prevent
untrusted software on the gateway ECU from injecting messages
directly on the CAN bus that connects to the shielded dashboard, we
include the CAN driver code in the PMдw protection domain, and
rely on a small PMspi assembly module to secure the interaction
with the MMIO-based SPI master peripheral that communicates
with the CAN controller

Discussion. An important benefit of our vulcanized vatiCAN/LeiA
software libraries, is that CAN authentication remains largely trans-
parent to the distributed application components. At the application
level, we programmed PMcs to accept keypad commands for speed-
ing up/down and steering left/right. In response to these events,
authenticated CAN messages are created that respectively update
the instrument’s cluster RPM needle and turning light indicators.
The distributed wheel ECUs respond to authenticated messages
to update their individual wheel RPM, where the central system
applies slightly more traction to the outer wheels while turning, as
commonly performed in automotive traction control systems. The
attacker keypad offers the same functionality, and indeed triggers
responses on the unprotected instrument cluster. However, criti-
cal PM components safely reject attacker-generated messages. In
particular, PMдw does not forward the spoofed CAN message to
the secure dashboard, but instead creates a message that triggers a
warning light indicator to notify the motorist of the ongoing attack.

Our solution encompasses untampered CAN authentication and
application-level message processing, as well as secure I/O. We
thus guarantee that any critical actuator event (i.e., wheel LED
display change or secure dashboard update) can only be caused by
a chain of processing events that can ultimately be traced back to the
authenticated component PMkey that originally sensed the keypad
input, provided by the motorist herself. Importantly, our approach
maintains this guarantee even when an attacker compromised the
network and the unprotected software stack on participating ECUs.

VulCAN: Vehicular Component Authentication and Software Isolation ACSAC’17, December 2017, San Juan, Puerto Rico, USA

7 RELATEDWORK
Authentication on the CAN. Besides vatiCAN [34] and LeiA [38],

a range of protocols and approaches for implementing authentica-
tion in automotive bus systems have been proposed, however these
do not comply with the AUTOSAR [1] industry recommendations.

CANAuth [46] and LiBrA-CAN [15] propose authentication pro-
tocols for the CAN+ [51] specification. These schemes are back-
wards compatible so that authentication-aware ECUs can co-exist
with legacy ECUs. Upgraded hardware, modified CAN transceivers
and more powerful ECUs, are required to implement the protocols
and cryptographic algorithms, however. For example LiBrA-CAN
was evaluated on high-end ECUs and laptop CPUs, showing cryp-
tographic performance comparable to our approach. VulCAN pro-
vides similar authenticity while being AUTOSAR-compliant, and
relying on much lighter ECUs and off-the-shelf CAN hardware.

MaCAN [7, 16] does not require specifically adapted CAN trans-
ceivers but divides 8-byte CAN data into a 4-byte payload and
a 4-byte MAC. Furthermore, the protocol requires network-wide
trusted key- and time servers. The secrecy of credentials in MaCAN
has been proven in [7] under a passive attacker model. LCAP [17]
requires only 2 bytes of a CAN message to carry authentication
information, but uses a large number of addresses (IDs) and mes-
sages to achieve node synchronization. CaCAN [23] introduces a
central monitor node, which authenticates other ECUs and destroys
unauthorized frames in real-time using custom CAN hardware.

All the above approaches require some form of specialized hard-
ware to efficiently implement cryptography and to allow for specific
operation on the CAN. The challenges of key distribution, software
integrity, and key confidentiality in the presence of active ECU
attackers, remain unaddressed. The VulCAN solution, on the other
hand, aims for strictly stronger security guarantees and implements
those by means of lightweight trusted computing technology.

A recent, comprehensive study [12] on the abilities of CAN
network-level attackers shows that eavesdropping, message mod-
ification and ECU impersonation are not the only attack vectors
in automotive control networks. From an availability perspective,
selected target nodes could for instance be muted completely. Such
attack vectors cannot be addressed by means of cryptography alone,
but require physical isolation of safety-critical control networks,
plus a notion of software security that prevents unauthorized soft-
ware from abusing existing CAN hardware (cf. Section 6).

Trusted Execution Technology in Cars. The idea of relying on
trusted computing components to develop secure automotive con-
trol systems was first coined in 2008 [35]. With the goal of at-
testing vehicular computing infrastructures, and providing addi-
tional security capabilities such as accelerated cryptography and
key management, few implementations that leverage trusted exe-
cution technology [20] have been published. One such approach
explored by the EVITA project, uses the Hardware Security Mod-
ule (HSM) [49], a secure co-processor for accelerated ciphers, key
storage, random number generation, and a secure clock. HSM runs
at several hundred MHz and consequently exhibits significantly
better cryptographic performance than Sancus, yet, it also relies
on a substantially larger and more expensive hardware TCB. With
Vector’s MICROSAR [14], operating system support and CPU infras-
tructure for an HSM-like co-processor is commercially available.

Lightweight PMA-based trusted computing architectures such
as Sancus provide strictly stronger security guarantees. Most impor-
tantly, PMAs are capable of not only attesting software components
at boot time, but also isolating them at runtime to maintain security
guarantees over the entire lifetime of the program. Our choice for
Sancus is motivated by a recent exhaustive PMA overview [24]
that indicates Sancus is the only embedded architecture with an
open-source hardware design and software tool chain.

Related PMA Use Cases. Sancus has been previously applied in a
secure smart metering infrastructure [29]. The security guarantees
that Sancus provides in this distributed application scenario have
been generalized and partly formalized [32], and are similar to our
approach. Yet, real-time requirements are relaxed in comparison
with automotive applications. An approach to securely share sys-
tem resources on Sancus has been proposed [44], and subsequent
research [45] has provided insight into implementing secure PM in-
terruptability and scheduling to ensure real-time responsiveness on
Sancus platforms.We expect these developments to further improve
our approach in terms of availability guarantees. Secure interrup-
tion of hardware-enforced embedded PMs was first explored in
TrustLite [21]. Subsequent work developed TyTAN [6], a minimal
software-based root of trust for dynamic attestation of interrupt-
ible tasks. We expect TyTAN to be extensible to offer guarantees
similar to our approach, but with the inherent performance and
TCB implications of software-based cryptography.

Finally, Sancus has been used to develop a trust assessment sys-
tem for IoT applications [30], which allows a PM to securely inspect
and attest a host operating system on a lightweight computing node.
In an automotive context, this technology could be used to integrate
third-party hardware or software components into a vehicle while
allowing the manufacturer to securely monitor their behavior.

8 CONCLUSIONS AND FUTUREWORK
This paper introduced VulCAN, a trusted computing design for
message authentication plus software component attestation and
isolation in vehicular communication networks. We contributed en-
hanced security requirements for CAN, and evaluated our hardware-
assisted solution as compared to previous software-only authenti-
cation schemes. To the best of our knowledge, we are the first to
present such a comparison, and to consider attackers capable of
arbitrary (unprotected) code execution on participating ECUs. Our
results show that relatively inexpensive microcontrollers equipped
with lightweight embedded cryptography and software component
isolation enable strong security guarantees, while maintaining real-
time deadlines for safety-critical applications in benign conditions.

In future work, we will investigate real-time responsiveness
and availability guarantees on partially compromised ECUs [45].
We furthermore plan to implement a secure vehicular attestation
server [39], and investigate application scenarios in the context of
V2X communications [48]. More generally, we see compelling use
cases for our approach to authentic execution [32] for distributed
embedded control systems in IoT domains, or the Industry 4.0.

Acknowledgments. This research is partially funded by the Re-
search Fund KU Leuven. Jo Van Bulck is supported by a doctoral
grant of the Research Foundation – Flanders (FWO).

ACSAC’17, December 2017, San Juan, Puerto Rico, USA Jo Van Bulck, Jan Tobias Mühlberg, and Frank Piessens

REFERENCES
[1] AUTOSAR Specification 4.3. 2016. Specification of module secure onboard

communication. https://www.autosar.org/standards/classic-platform/release-43/
software-architecture/safety-and-security/. (2016).

[2] Morton Abramson and WOJ Moser. 1970. More birthday surprises. The American
Mathematical Monthly 77, 8 (1970), 856–858.

[3] Tiago Alves and Don Felton. 2004. TrustZone: Integrated hardware and software
security. ARM white paper 3, 4 (2004), 18–24.

[4] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. 2011. Du-
plexing the sponge: Single-pass authenticated encryption and other applications.
In Selected Areas in Cryptography. Springer, 320–337.

[5] Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem Varici,
and Ingrid Verbauwhede. 2012. SPONGENT: The design space of lightweight
cryptographic hashing. IEEE Trans. Comput. 99.

[6] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza Sadeghi, Christian Wachs-
mann, and Patrick Koeberl. 2015. TyTAN: Tiny trust anchor for tiny devices. In
Design Automation Conference (DAC ’15). IEEE, 1–6.

[7] Alessandro Bruni, Michal Sojka, Flemming Nielson, and Hanne Riis Nielson.
2014. Formal security analysis of the MaCAN protocol. Springer International
Publishing, Cham, 241–255.

[8] Madeline Cheah, Siraj A. Shaikh, Olivier Haas, and Alastair Ruddle. 2017. Towards
a systematic security evaluation of the automotive Bluetooth interface. Vehicular
Communications 9 (2017), 8–18.

[9] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. 2010. Return-oriented programming
without returns. In Proceedings of the 17th ACM Conference on Computer and
Communications Security (CCS ’10). ACM, New York, NY, USA, 559–572.

[10] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Ta-
dayoshi Kohno, et al. 2011. Comprehensive experimental analyses of automotive
attack surfaces. In USENIX Security Symposium. San Francisco.

[11] Karim Eldefrawy, Aurélien Francillon, Daniele Perito, and Gene Tsudik. 2012.
SMART: Secure and Minimal Architecture for (Establishing a Dynamic) Root of
Trust. In 19th Annual Network and Distributed System Security Symposium (NDSS
’12).

[12] Sibylle Fröschle and Alexander Stühring. 2017. Analyzing the capabilities of the
CAN attacker. In ESORICS ’17 (LNCS), Vol. 10492. Springer, Heidelberg, 464–482.

[13] Olivier Girard. 2009. openMSP430 – a synthesizable 16bit microcontroller core
written in Verilog. https://opencores.org/project,openmsp430. (2009).

[14] Vector Informatik GmbH. 2017. MICROSAR – AUTOSAR basic software and
RTE. https://vector.com/vi_microsar_en.html. (2017).

[15] Bogdan Groza, StefanMurvay, Anthony VanHerrewege, and Ingrid Verbauwhede.
2012. Libra-CAN: a lightweight broadcast authentication protocol for controller
area networks. In International Conference on Cryptology and Network Security.
Springer, 185–200.

[16] Oliver Hartkopp, C. Reuber, and R. Schilling. 2012. MaCAN: Message authenti-
cated CAN. In Escar Conference, Berlin, Germany.

[17] Ahmed Hazem and Hossam A.H. Fahmy. 2012. LCAP: A lightweight CAN
authentication protocol for securing in-vehicle networks. In 10th escar Embedded
Security in Cars Conference, Berlin, Germany, Vol. 6.

[18] O. Henniger, L. Apvrille, A. Fuchs, Y. Roudier, A. Ruddle, and B. Weyl. 2009.
Security requirements for automotive on-board networks. In 9th International
Conference on Intelligent Transport Systems Telecommunications, (ITST). 641–646.

[19] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. 2008. Security threats to auto-
motive CAN networks – practical examples and selected short-term counter-
measures. In Computer Safety, Reliability, and Security (SAFECOMP ’08). Springer
Berlin Heidelberg, Berlin, Heidelberg, 235–248.

[20] GlobalPlatform Inc. 2011. The trusted execution environment: Delivering en-
hanced security at a lower cost to the mobile market. https://www.globalplatform.
org/documents/GlobalPlatform_TEE_White_Paper_Feb2011.pdf. (2011).

[21] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan.
2014. TrustLite: A security architecture for tiny embedded devices. In EuroSys
’14. ACM, 14 pages.

[22] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, et al. 2010. Experimental security analysis of a modern automobile. In
Security and Privacy, 2010 IEEE Symposium on. IEEE, 447–462.

[23] R Kurachi, Y Matsubara, H Takada, N Adachi, Y Miyashita, and S Horihata.
2014. CaCAN – centralized authentication system in CAN. In 14th Int. Conf. on
Embedded Security in Cars (ESCAR ’14).

[24] P. Maene, J. Götzfried, R. de Clercq, T. Müller, F. Freiling, and I. Verbauwhede. 2017.
Hardware-based trusted computing architectures for isolation and attestation.
IEEE Trans. Comput. 99 (2017).

[25] FrankMcKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative instructions
and software model for isolated execution. In HASP ’13. ACM, 8 pages.

[26] Earl H McKinney. 1966. Generalized birthday problem. The American Mathemat-
ical Monthly 73, 4 (1966), 385–387.

[27] Charlie Miller and Chris Valasek. 2014. A survey of remote automotive attack
surfaces. Black Hat USA (2014).

[28] Charlie Miller and Chris Valasek. 2015. Remote exploitation of an unaltered
passenger vehicle. Black Hat USA (2015).

[29] Jan Tobias Mühlberg, Sara Cleemput, Mustafa A. Mustafa, Jo Van Bulck, Bart
Preneel, and Frank Piessens. 2016. An implementation of a high assurance smart
meter using protected module architectures. In WISTP ’16 (LNCS), Vol. 9895.
Springer, Heidelberg, 53–69.

[30] Jan Tobias Mühlberg, Job Noorman, and Frank Piessens. 2015. Lightweight and
flexible trust assessment modules for the Internet of Things. In ESORICS ’15
(LNCS), Vol. 9326. Springer, 503–520.

[31] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Her-
rewege, Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, and Frank
Piessens. 2013. Sancus: Low-cost trustworthy extensible networked devices with
a zero-software trusted computing base. In 22nd USENIX Security symposium.
USENIX Association, 479–494.

[32] Job Noorman, Jan Tobias Mühlberg, and Frank Piessens. 2017. Authentic exe-
cution of distributed event-driven applications with a small TCB. In STM ’17
(LNCS), Vol. 10547. Springer, Heidelberg, 55–71.

[33] Job Noorman, Jo Van Bulck, Jan Tobias Mühlberg, Frank Piessens, Pieter Maene,
Bart Preneel, Ingrid Verbauwhede, Johannes Götzfried, Tilo Müller, and Felix
Freiling. 2017. Sancus 2.0: A low-cost security architecture for IoT Devices. ACM
Transactions on Privacy and Security (TOPS) 20 (2017), 7:1–7:33. Issue 3.

[34] Stefan Nürnberger and Christian Rossow. 2016. – vatiCAN – Vetted, authen-
ticated CAN bus. In Cryptographic Hardware and Embedded Systems – CHES
’16: 18th International Conference, Santa Barbara, CA, USA, August 17-19, 2016,
Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, 106–124.

[35] H. Oguma, A. Yoshioka, M. Nishikawa, R. Shigetomi, A. Otsuka, and H. Imai.
2008. New attestation based security architecture for in-vehicle communication.
In IEEE GLOBECOM ’08 - 2008 IEEE Global Telecommunications Conference. 1–6.

[36] Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke, and
Frank Piessens. 2015. Secure compilation to protected module architectures.
ACM Trans. Program. Lang. Syst. 37, 2 (2015), 6:1–6:50.

[37] Pieter Philippaerts, Jan Tobias Mühlberg, Willem Penninckx, Jan Smans, Bart
Jacobs, and Frank Piessens. 2014. Software verification with VeriFast: Industrial
case studies. Science of Computer Programming (SCP) 82 (2014), 77–97.

[38] Andreea-Ina Radu and Flavio D. Garcia. 2016. LeiA: A lightweight authentication
protocol for CAN. In Computer Security – ESORICS ’16: 21st European Sympo-
sium on Research in Computer Security, Heraklion, Greece, September 26-30, 2016,
Proceedings, Part II. Springer International Publishing, Cham, 283–300.

[39] Vincent Raes and Vincent Naessens. 2017. Development of an embedded platform
for secure CPS services. In CyberICPS ’17 (LNCS). Springer, Heidelberg. In press.

[40] SAE International. 2016. J3061: Cybersecurity guidebook for cyber-physical
vehicle systems. (2016). http://standards.sae.org/j3061_201601/.

[41] Seeed Studio. 2017. CAN BUS shield driver for Arduino/Seeeduino. https:
//github.com/Seeed-Studio/CAN_BUS_Shield. (2017).

[42] Raoul Strackx, Job Noorman, Ingrid Verbauwhede, Bart Preneel, and Frank
Piessens. 2013. Protected software module architectures. In Securing Electronic
Business Processes. Springer, 241–251.

[43] Raoul Strackx, Frank Piessens, and Bart Preneel. 2010. Efficient isolation of trusted
subsystems in embedded systems. In Security and Privacy in Communication
Networks. Springer, 344–361.

[44] Jo Van Bulck, Job Noorman, Jan Tobias Mühlberg, and Frank Piessens. 2015.
Secure resource sharing for embedded protected module architectures. In WISTP
’15 (LNCS), Vol. 9311. Springer, 71–87.

[45] Jo Van Bulck, Job Noorman, Jan Tobias Mühlberg, and Frank Piessens. 2016.
Towards availability and real-time guarantees for protected module architectures.
In MASS ’16, MODULARITY Companion 2016. ACM, New York, 146–151.

[46] Anthony Van Herrewege, Dave Singelee, and Ingrid Verbauwhede. 2011. CA-
NAuth – a simple, backward compatible broadcast authentication protocol for
CAN bus. In ECRYPT Workshop on Lightweight Cryptography, Vol. 2011.

[47] David A Wheeler. 2004. SLOCCount. https://www.dwheeler.com/sloccount/.
(2004).

[48] JordenWhitefield, Liqun Chen, Frank Kargl, Andrew Paverd, Steve Schneider, He-
len Treharne, and Stephan Wesemeyer. 2017. Formal analysis of V2X revocation
protocols. In STM ’17 (LNCS), Vol. 10547. Springer, Heidelberg, 147–163.

[49] Marko Wolf and Timo Gendrullis. 2012. Design, implementation, and evaluation
of a vehicular hardware security module. In Information Security and Cryptology
(ICISC ’11) (LNCS), Vol. 7259. Springer, Berlin, 302–318.

[50] MarkoWolf, AndréWeimerskirch, and Christof Paar. 2004. Security in automotive
bus systems. In Workshop on Embedded Security in Cars.

[51] T. Ziermann, S. Wildermann, and J. Teich. 2009. CAN+: A new backward-
compatible Controller Area Network (CAN) protocol with up to 16x higher data
rates. In 2009 Design, Automation Test in Europe Conference Exhibition. 1088–1093.

https://www.autosar.org/standards/classic-platform/release-43/software-architecture/safety-and-security/
https://www.autosar.org/standards/classic-platform/release-43/software-architecture/safety-and-security/
https://opencores.org/project,openmsp430
https://vector.com/vi_microsar_en.html
https://www.globalplatform.org/documents/GlobalPlatform_TEE_White_Paper_Feb2011.pdf
https://www.globalplatform.org/documents/GlobalPlatform_TEE_White_Paper_Feb2011.pdf
http://standards.sae.org/j3061_201601/
https://github.com/Seeed-Studio/CAN_BUS_Shield
https://github.com/Seeed-Studio/CAN_BUS_Shield
https://www.dwheeler.com/sloccount/

VulCAN: Vehicular Component Authentication and Software Isolation ACSAC’17, December 2017, San Juan, Puerto Rico, USA

A NONCE GENERATOR BIRTHDAY ATTACK
In this appendix, we outline a replay attack against vatiCAN’s [34]
global Nonce Generator (NG) scheme. The vatiCAN protocol pre-
vents trivial replay attacks by including a monotonically increasing
32-bit nonce value ci in the MAC for each message with identifier
i . Receiver ECUs are expected to increment their shadow nonce
counter whenever a valid authenticated message was sent. To ac-
commodate for packet loss, however, vatiCAN relies on a trusted
NG component that periodically broadcasts a randomly chosen
global value д to be used by all participating ECUs as the new initial
value for all counters ci . Naturally, the NG broadcast frequency
should be sufficiently high, as it represents the worst-case time in-
terval in which an ECU may discard valid authenticated messages.
vatiCAN broadcasts a nonce renewal message every 50 ms. NG is
furthermore assumed to use a modified CAN transceiver, equipped
with hardware-assisted spoofing prevention, such that an attacker
cannot inject arbitrary nonce renewal requests.

We show, however, that vatiCAN’s frequent random nonce re-
newal approach is vulnerable to more advanced replay attacks that
rely on a moderate amount of previously recorded CAN broadcast
traffic. More specifically, we are interested in the probability that n
32-bit global nonce values randomly chosen by NG contain at least
one duplicate. In case such a nonce repetition occurs, an attacker
can successfully replay previously authenticated CAN messages for
the next 50 ms. Provided the nonce repetition probability is suffi-
ciently high, the adversary could for instance engage safety-critical
functionality such as brakes or steering systems, after collecting
only a reasonable amount of traffic.

The above problem is an instance of the well-known (general-
ized) “birthday problem” [26] that asks for the probability p that
a collision occurs in n randomly chosen samples out of a set of d
possibilities. The approximated probability is given by:

p (n,d) ≈ 1 − e
−n (n−1)

2d (2)

After filling in vatiCAN’s nonce size d = 232, Eq. (2) exhibits
a 90% nonce reuse probability after only n = 135, 000 NG nonce
renewals. Likewise, a 99% probability is reached within n = 199, 000.
In other words, at a nonce renewal interval of 50 ms, an adversary is
sure to expect a global nonce value д that was previously broadcast
by NGwithin 2 to 3 hours. Since all vatiCAN components reset their
internal nonce counters ci = д after receiving a valid NG message,
the attacker can now successfully replay previously recorded CAN
traffic for the next 50 ms (until the next NG broadcast). We also
note that, in case the attacker controls custom CAN transceiver
hardware, she might furthermore tear down future NG nonce re-
newal messages (by destroying the CRC checksum on the fly) so as
to extend her 50 ms replay attack window.

While the generalized birthday attack outlined above is already
quite practical, it can be significantly improved when also consider-
ing that NG should not necessarily produce two exact same nonce
values. Indeed, when NG broadcasts a value h = д+k that is within
a distance k to a previously used global nonce д, the attacker may
simply skip the first k messages when replaying traffic from the д
epoch. Likewise, should NG broadcast a value h = д − k , the adver-
sary may simply wait for k benign authenticated messages before
starting to replay traffic from the д epoch. Intuitively speaking, the

0 50000 100000 150000 200000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of nonce renewals

N
on

ce
 re

us
e

pr
ob

ab
ilit

y

k = 15
k = 10
k = 5
k = 1
k = 0

Figure 8: Nonce reuse probabilities in function of NG broad-
casts, as provided by Eq. (3) for 32-bit nonces, and for various
k-values (where k = 0 corresponds to Eq. (2)).

probability for a k-near nonce collision increases dramatically when
taking into account this novel insight. In fact, this modified attack
scenario is an instance of a “near birthday problem” [2], which is
approximated by the following equation:

p (n,k,d) ≈ 1 −
(d − nk − 1)!

dn−1 (d − n(k + 1))!
(3)

Figure 8 visualizes the nonce reuse probability distributions for
various values of k . The distributions distinctly approach the 100%
nonce collision probability more rapidly as the k parameter in-
creases. Note that k = 0 corresponds the conventional birthday
problem Eq. (2) that clearly achieves nonce reuse certainty within
n = 200, 000 (i.e., 167 minutes at a 50 ms NG nonce renewal inter-
val). When k = 1, however a 99% nonce reuse probability is already
reached within n = 115, 000 (96 minutes). Likewise, for k = 5/10/15,
a 99% certainty is reached within respectively n = 60, 000 (50 min-
utes), n = 44, 000 (37 minutes), and n = 36, 000 (30 minutes). This
means that, depending on the application under attack, as little as
30 minutes of recorded CAN traffic might suffice to successfully
replay a safety-critical authenticated message, effectively defeating
vatiCAN authentication.

It should be clear from the above explanation that randomization
is inherently insufficient to protect against advanced replay attacks.
Instead, the only way to properly prevent these attacks is to never
reuse the same nonce value under the same key. As explained above,
Sancus+vatiCAN therefore (re-)establishes fresh symmetric session
keys on platform boot and/or nonce counter overflow.

	Abstract
	1 Introduction
	2 Background
	2.1 Controller Area Network Authentication
	2.2 Embedded Protected Module Architectures

	3 Vulcanized CAN Components
	3.1 Attacker Model
	3.2 Problem Statement
	3.3 Authenticated CAN Bus
	3.4 Component Isolation and Authentication

	4 Security Analysis
	5 Experimental Evaluation
	5.1 TCB Size and Memory Footprint
	5.2 Performance Evaluation

	6 An Extended Application Scenario
	7 Related Work
	8 Conclusions and Future Work
	References
	A Nonce Generator Birthday Attack

