

Faulty Point Unit: ABI Poisoning Attacks on Intel SGX

<u>Fritz Alder</u>¹, Jo Van Bulck¹, David Oswald², Frank Piessens¹ ¹imec-DistriNet, KU Leuven, Belgium ²The University of Birmingham, UK December 10, 2020

The promise of Trusted Execution Environments

The promise of Trusted Execution Environments

The promise of Trusted Execution Environments

3 Faulty Point Unit: ABI Poisoning Attacks on Intel SGX

Key insight: split sanitization responsibilities across the ABI and API tiers: machine state vs. higher-level programming language interface

x87 Floating Point Unit (FPU) and Streaming SIMD Extensions (SSE)

- Older x87 high-precision floating-point unit: FPU control word
- Newer SSE vector floating-point operations: MXCSR register

x87 Floating Point Unit (FPU) and Streaming SIMD Extensions (SSE)

- Older x87 high-precision floating-point unit: FPU control word
- Newer SSE vector floating-point operations: MXCSR register

The control bits of the MXCSR register are callee-saved (preserved across calls), while the status bits are caller-saved (not preserved). The x87 status word register is caller-saved, whereas the x87 control word is callee-saved.

FPU settings are preserved across calls

FPU settings are preserved across calls

Corrupt precision and rounding mode...

Corrupt precision and rounding mode...

	SGX-SDK*	OpenEnclave	Graphene	SGX-LKL	Rust-EDP	GO-TEE	Enarx
Exploit	★	⊖	⊖	*	★	★	⊖
Patch	xrstor	ldmxcsr/cw	fxrstor	-	ldmxcsr/cw	xrstor	xrstor

* Includes derived runtimes such as Baidu's Rust-SGX and Google's Asylo.

Mark data registers as in-use before entering the enclave

Mark data registers as in-use before entering the enclave

Summary: ABI-level FPU attack surface today

	SGX-SDK*	OpenEnclave	Graphene	5GX-LKL	Rust-EDP	GO-TEE	Enarx
Exploit	*		0	*	*	*	0
Patch 1	xrstor	ldmxcsr/cw	fxrstor	-	ldmxcsr/cw	xrstor	xrstor
Patch 2		xrstor			xrstor		

* Includes derived runtimes such as Baidu's Rust-SGX and Google's Asylo.

Case study 1: Floating-point exceptions as a side channel

 $\dot{\mathbf{Q}}$ Can we use overflows as a side channel to deduce secrets?

Case study 1: Floating-point exceptions as a side channel

 $\dot{\mathbf{Q}}$ Can we use overflows as a side channel to deduce secrets?

Case study 1: Floating-point exceptions as a side channel

 \rightleftharpoons Binary search with deterministic # of steps retrieves secret

Case study 2: MNIST – ML handwriting recognition

9 Faulty Point Unit: ABI Poisoning Attacks on Intel SGX

KU LEUVEN

Case study 2: MNIST – ML as an SGX Service

Case study 2: MNIST – ML as an SGX Service

Case study 2: MNIST – Predictions of 100 digits

Extended precision			Predicted digit count								
Rounding mode Correct		0	1	2	3	4	5	6	7	8	9
Any mode	100%	9	14	8	10	14	8	9	14	3	11
x87 Extended precision: Default predictions											

x87 Extended precision: Default predictions

Case study 2: MNIST – Predictions of 100 digits

Extended precision			Predicted digit count								
Rounding mode	Correct	0	1	2	3	4	5	6	7	8	9
Any mode 100		9	14	8	10	14	8	9	14	3	11
x87 Extended precision: Default predictions											

Single precision			Predicted digit count								
Rounding mode	Correct	0	1	2	3	4	5	6	7	8	9
Rounding down 8%		0	0	100	0	0	0	0	0	0	0
x87 Single precision: Attacked predictions											

Case study 3: SPEC 2017. Image difference in Blender

Washes away Bacteria Frequent hand washing helps keep your family healthy.

feauar

White with touch of Aloe

Conclusions and outlook

Secure enclave interactions require proper sanitizations!

Conclusions and outlook

Secure enclave interactions require proper sanitizations!

- Large attack surface, including subtle side-channel oversights...
- Defense: Most investigated shielding runtimes now apply a full XRSTOR sanitization strategy
- Modern x86 architectures are complex. Need to investigate alternative processor architectures such as RISC-V

https://github.com/fritzalder/faulty-point-unit

Faulty Point Unit: ABI Poisoning Attacks on Intel SGX

<u>Fritz Alder</u>¹, Jo Van Bulck¹, David Oswald², Frank Piessens¹ ¹imec-DistriNet, KU Leuven, Belgium ²The University of Birmingham, UK December 10, 2020