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From Horses to Enclaves: Reducing Attack Surface

~N

~

App M Enclave app

OS kernel @:"
CPU d‘ @ [Mem ﬁ

Intel SGX promise: Hardware-level isolation and attestation
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From Horses to Enclaves: Reducing Attack Surface
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Game changer: Untrusted OS — new class of powerful side channels!




Challenge: Side-channel Sampling Rate
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SGX-Step: Executing Enclaves one Instruction at a Time
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D Van Bulck et al., “SGX-Step: A Practical Attack Framework for Precise Enclave Execution Control”, SysTEX 2017.



SGX-Step: Executing Enclaves one Instruction at a Time

o~
«Q)» Interrupt handler

4 Enclave N\

if secret do
—— instl <€«—

else A
inst2 .
endif E ERESUME J :
_ e ‘user space
______________________________________ S oS kernel

\\ [ /dev/sygx—step ]

O Van Bulck et al., “SGX-Step: A Practical Attack Framework for Precise Enclave Execution Control”, SysTEX 2017. 5



A Retrospective of 5 Years of SGX-Step Development

Became de-facto standard for

interrupt-driven attacks

Actively maintained & supported

Widely recognized:
SGX—Step e > 400 GitHub stars

e > 215 academic citations

) https://github.com/jovanbulck/sgx-step Marked influence on both attacks

® Unwatch 27 ~ % Fork 82 - Y7 Star 402 - & defenses on SGX and beyond


https://github.com/jovanbulck/sgx-step

Highlight #1: Impact on Attacks




SGX-Step: Enabling a New Line of High-Resolution Attacks

Yr Venue Paper Step Use Case Drv Yr Venue Paper Step Use Case Drv
'15 S&P Ctrl channel [XCP15] Page  Probe (page fault) '20 CHES A to Z [AGB20] ~ Page Probe (page fault) v -
'16 ESORICS AsyncShock [WKPK16] Page  Exploit (mem safety) — & '20 CCS Déja Vu NSS [uUHGDL*20]  ~ Page  Probe (page fault) v -+
‘17 CHES  CacheZoom [MIEL7] X>1 Probe (L1 cache) v B '20 MICRO  PTHammer [ZCL*20] = Probe (page walk) v -
17 ATC Hahnel et al. [HCP17] X0->1  Probe (L1 cache) v | 21 USENIX Frontal [PSHC21 71 Probe (IRQ latency) v -
'17 USENIX  BranchShadow [LSG*ljl X5-50  Probe (BPU) x ‘2 21 S&P CrossTaI[k [RMR*]21] /1 Probe Etranﬁent exic) v -
1; Biiz:i ;:ejk';'gpp[TleVEIWK 17] Ezzz Zizfzt(T;iemtzsziy) f 3 21 CHES  Online template [AB21] /1 Probe (IRQ count) v -
, 21 NDSS  SpeechMiner [XZT20] - Framework v -
117 SysTEX SGX.—St.ep [VBPS17] v0-1 Framework ) v - 21 S&P Platypus [LKO*21] /0-1 Probe (voltage) -
18 ESSoS  Offiimits [GVBPS1s] /0-1  Probe (segmentation) v s 21 DIMVA  Aion [HXCL21] o Probe (cache) i
18 AsiaCCS  Single-trace RSA [WSB18] Page Probe (page fault) v - 21 CCS SmashEx [CYS 21 1 Exploi f -
'18 USENIX Foreshadow [VBMW 18] v0-1 Probe (transient exec) v - ) "_135 I I ’ sqplef (em =) 7

'18 EuroS&P SgxPectre [CCX"19] Page Exploit (transient) v 8 Al @c3 Utllb:LOOKUP [S_BWE21] 71 (e (13 @i -
'18 CHES CacheQuote [DDME" 18] X1 Probe (L1 cache) B '22 USENIX Rapid prototyping [ESSG22] v 1 Framework v -
18 1CCD SGXlinger [HZDL18] X1 Probe (IRQ latency) X & '22 CT-RSA Kalyna expansion [CGYZ22] v 1 Probe (L3 cache) v oo
'18 CCS Nemesis [VBPS18] v1 Probe (IRQ latency) v - 22 SEED  Enclyzer [ZXTZ22] - Framework %
'19 USENIX  Spoiler [IMB*19] /1 Probe (IRQ latency) v - '22 NordSec Self-monitoring [LBA22] ~ Page Defense (detect) v
19 CCS ZombieLoad [SLM*19] /0-1 Probe (transient exec) v - '22 AutoSec Robotic vehicles [LS22] v/ 1->1 Exploit (timestamp) v -
19 CCS Fallout [CGG*19] - Probe (transient exec) v -#¥ 22 ACSAC  MOoLE [LWM*22] v1 Defense (randomize) v -+
19 CCS Tale of 2 worlds [VBOM*19] v 1 Exploit (mem safety) v - '22 USENIX AEPIC [BKS"22] v1 Probe (1/O device) v &
19 ISCA MicroScope [SYG*19] ~ 0 - Page Framework x & '22 arXiv Confidential code [PSL™22] v 1 Probe (IRQ latency) v -+
20 CHES Bluethunder [HMW*20] /1 Probe (BPU) v - '23 ComSec FaultMorse [HZL"23] - Page  Probe (page fault) v -
20 USENIX  Big troubles [WSBS19)] ~Page  Probe (page fault) v 23 CHES  HQC timing [HSC*23] /1 Probe (L3 cache) s
20 S&P Plundervolt [MOG*20] - Exploit (undervolt) v - '23 ISCA Belong to us [YJF23] v1 Probe (BPU) v -
'20 CHES Viral primitive [AB20] v1 Probe (IRQ count) v '23 USENIX BunnyHop [z*ro*zg] s 1 Probe (BPU) . a
'20 USENIX  CopyCat [MVBH"20] v1 Probe (IRQ count) v - '23 USENIX DownFall [Mog23] v 0-1 Probe (transient exec) v -
'20 S&P LVI [VBMS *20] /1 Exploit (transient) v - '23 USENIX AEX-Notify [CVBC*23] /1 Defense (prefetch) v -




A Versatile Open-Source Attack Toolkit

void inc_secret( void )

if (secret)
*a +=1;

else

*+=1;

Interrupt latency

X [CCS'18, USENIX'21]

o \wr:mr-r

it

Page-table manipulation
[AsiaCCS'18, USENIX'18-23, CCS20, CHES'20, NDSS'21]

0

High-resolution probing

[CCS'19/21, CHES'20, S&P'20-21, USENIX'17/18/22]

SGX-Step
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SGX-Step demo: Building a memcmp () Password Oracle

[idt.c] DTR.base=0xfffffe0000000000/size=4095 (256 entries)

[idt.c] established user space IDT mapping at 0x7f7ff8e9a000

[idt.c] installed asm IRQ handler at 10:0x56312d19b000

[idt.c] IDT[ 45] @Ox7f7ff8e9%9a2dd = 0x56312d19b00O (seg sel 0x10); p=1; dpl=3; type=14; ist=0
[file.c] reading buffer from '/dev/cpu/1l/msr' (size=8)

[apic.c] established local memory mapping for APIC BASE=0xfee00000 at 0x7f7ff8e99000
[apic.c] APIC ID=2000000; LVTT=400ec; TDCR=0

[apic.c] APIC timer one-shot mode with division 2 (lvtt=2d/tdcr=0)

[attacker] steps=15; guess='X*¥¥¥¥k!
[attacker] found pwd len = 6

[attacker] steps=35; guess='SECRET' --> SUCCESS

[apic.c] Restored APIC LVTT=400ec/TDCR=0)

[file.c] writing buffer to '/dev/cpu/l/msr' (size=8)
[main.c] all done; counted 2260/2183 IRQs (AEP/IDT)
jo@breuer:~/sgx-step-demo$ i
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Hardening Enclaves against Single-Stepping

D
k\ SGX-Step sets the bar for adequate side-channel defenses!

— (e.g., LVI, compiler, static analysis, constant-time, etc.)

“ineffective if the attacker can single-step through the enclave using the recent
SGX-Step framework. Taking into account these stronger attacker capabili-
ties, we propose a new defense...” [HLLP18]

:@§ SGX-Step inspired several dedicated hardware-software mitigations

— Collaboration with Intel on AEX-Notify: Innovative hardware-software
co-design included in recent processors
— Probabilistic: SGX-Step remains relevant!

10



]
ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION I n tel
®

CHAPTER 8

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER
LEAF FUNCTION

8.1 INTRODUCTION

Asynchronous Enclave Exit Notify (AEX-Notify) is an extension to Intel® SGX that allows Intel SGX enclaves to be
notified after an asynchronous enclave exit (AEX) has occurred. EQECCSSA is a new Intel SGX user leaf function
(ENC EDE =CA that fa tate AEY +if 4 } ' -

Nwell as

ot i\ OCGX-Step led to new x86 processor instructions!

- — shipped in millions of devices > 4th Gen Xeon [CVBC' 23]




pPhoronix

ARTICLES & REVIEWS NEWS ARCHIVE FORUMS PREMIUM CONTACT © CATEGORIES

Intel AEX Notify Support Prepped For Linux To Help
Enhance SGX Enclave Security

Written by Michael Larabel in Intel on 6 November 2022 at 06:01 AM EST. 5 Comments

Future Intel CPUs and some existing processors via a microcode update will
support a new feature called the Asynchronous EXit (AEX) notification
mechanism to help with Software Guard Extensions (SGX) enclave security.
Patches for the Linux kernel are pending for implementing this Intel AEX
Notify support with capable processors.

Intel's Asynchronous EXit (AEX) notification mechanism lets SGX enclaves run a handler
after an AEX event. Those handlers can be used for things like mitigating SGX-Step as an
attack framework for precise enclave execution control.

=0 a (e @

Code 1 V | in{ intel/linux-sgx X = Filter  eee

v el sdk/trts/linux/trts_mitigation.S

48 * pescription:

a9 * The file provides mitigations for SGX-Step
50 */

71 * Function

constant_time_apply_sgxstep_mitigation_and_continue_execution

72 ¢ Mitigate SGX-Step and return to the point at which the
most recent
73 N interrupt/exception occurred.

A\

SGX-Step led to changes in
major OSs and enclave SDKs

SGX-Step



Beyond SGX-Step: Derived Frameworks for Emerging TEEs

SGX-Step has inspired similar single-stepping frameworks for alternative TEEs

- e.g., AMDZ1SEV, @ TDX, arm TrustZone

Independent testimonies on SGX-Step’s impact

e “In the hope that the framework inspires a similar community as SGX-Step, we

dubbed it SEV-Step.” [WWRE23]

“Leveraging SGX-Step type attack to compromise Intel TDX, which is coined as
TDX-Step [...] Working exploit well within the timeline but also collaborated
closely with the Intel TDX architecture team to review and refine the mitigation

for the vulnerability.” [Int23]
13



Conclusions and Outlook

% Paradigm shift: Extremely high-resolution enclave attacks /g

SGX-Step

@
h Open-source attack framework sets the bar for defenses!

m Thank you! Questions?

Hardware-software mitigations for new and emerging TEEs

14
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Interrupting and Resuming SGX Enclaves

IRQ Handler IDT Lookup atee @ IRQ Handler

§
(2) AEX

Enclave

mov %eax, (tsc2)

iretqg
(4) IRET
\4

T movl $TMR,0xfee00380

if secret do

instl
else rdtsc
inst2 mov %eax, (tscl)

endif mov $ERESUME, $rax
enclu <:>AEP

S,




Root-causing SGX-Step: Aiming the timer interrupt

APIC timer oneshot TSC distributi

1600

1400 1
h 1
1200 i
2 1000 |
g 800
600 I 1 I
400 il
200
0

10800 10850 10800 10950 11000 11050
cccccc

[ArmtimerI ERESUME S g g g ¢

& 9 -




Root-causing SGX-Step: Microcode assists to the rescue!

ol

PTE A-bit Mean (cycles)

Stddev (cycles)

A=1
A=0

27
666

E d® 7

\

UAssisted PT walk

I& ‘ page walk (SRIP) ’ exec ‘
1. Clear PTE A-bit 2. TLB flush ’ '
[Arm timerI ERESUME NOP,

a,

jC)

.
=)
L




Root-causing SGX-Step: Microcode assists to the rescue!

ol

\ d® 7

1. Clear PTE A-bit 2. TLB flush 3. Assisted PT walk
- - - é 4. Filter zero-step (PTE A-bit)
o= Bro—= BJ:Bb O\
i A S
[Arm timerI ERESUME : NOP,

7]

:
<] o-@



Ideas that were rejected (2)

What if...?

i}":-D:’_- Bro— M

[Arm timerI ERESUME

h
NOP; :'—‘ég ?

NOP,
NOP.
NOP,
NOP

Highly complex



Ideas that were rejected (3)

Memory

/ Enclave \ Virtual Machine

Monitor (VMM)
' Enclave’s Page \‘. ! Extended Page |
: Tables = 1 ! Tables i
1 Bl...1 —
1 E : ! l :
i ' Guest i ' Host
leoe gl physical | eee l l i physical
i i address | | address
1 1 1
a ! \ L §

Virtual Machine




AEX-Notify solution overview

/ ERESUME Q N
Ve N\ -Noti \l./
Enclave AEX-Notify P N/ ~

behavior AEX Handler Enclave App
Interruptor 1. Call a C3 byte -pagel:
Enclave App [~ .. Exception on .pagel _/9
2. Load all cache NOP,
Attacker lines in .pagel
EDECCSSA S 3. JMP [&NOP,] —/ RET # (C3 byte)
page walk (.pagel) exec
AEX Handler ERESUME |
A
R ERESUME I AEX Handler } ?;
i AEX-Notify ISA =
Legend:




AEX-Notify solution overview

We implemented a fast, constant-time decoder (CTD) . /_/ ERESUME é N\
é v N\

CTD Instruction Coverage for popular SGX runtimes

100.0% 98.6% 97.5% 98.1% 98.0% <o Total Coverage AEX Handler [ Enclave App

1. Decode the .pagel: .
80.0% saved [RIP] ﬁ %
| 2-Read and write /-) INC [RAX]
e L 65.9% u Covered w/o CTD back to [RAX] .
3. ... ~— ) (_RET # (C3 byte) |

Intel SGX SDK (18) ~ Gramine (53) Occlum (35)

~

Total (106)
SGX Runtime (# of binaries analyzed)

page walk ([RAX]) page walk (.pagel) exec

W\ e
D™ A A

ERESUME J AEX Handler }

INC




US 2022/0012369 Al

TECHNIQUES AND TECHNOLOGIES TO
ADDRESS MALICTIOUS SINGLE-STEPPING
AND ZERO-STEPPING OF TRUSTED
EXECUTION ENVIRONMENTS

TECHNICAL FIELD

[0001] The disclosure relates generally to electronics, and,
more specifically, an embodiment of the disclosure relates to
techniques and technologies to address malicious single-
stepping and zero-stepping of trusted execution environ-
ments (TEEs).

BACKGROUND

[0002] Trusted Execution Environments (TEEs), such as
Intel® Software Guard Extensions (Intel® SGX), are sus-
ceptible to methods that induce interrupts or exceptions to
maliciously single-step (e.g. SGX-Step) or zero-step instruc-
tion processing in the TEE (e.g. Microscope replay attack,
PLATYPUS power side-channel attack). During single-
stepping or zero-stepping, a malicious hypervisor or oper-
ating system (OS) may be able to increase the granularity of
side channel information which can be collected during the
TEE processing. Analyzing side channel information is a
method that can be used to infer information, such as
instruction flows and data, about the TEE. Thus, there is
value in techniques that can mitigate these attack techniques,
specifically single-stepping and zero-stepping of TEEs.

Jan. 13, 2022

side-channel] attack) and then resumes execution of the code
from the enclave according to embodiments of the disclo-
sure.

[0011] FIG. 8 illustrates a method of handling an asyn-
chronous exit of the execution of code from an enclave that
utilizes an enclave enter instruction, an enclave exit instruc-
tion, and an enclave resume instruction that invokes a
handler to handle an operating system signal caused by the
asynchronous exit and then resumes execution of the code
from the enclave according to embodiments of the disclo-
sure.

[0012] FIG. 9 illustrates a method of handling an excep-
tion with an enclave that comprises a field to indicate a set
of one or more exceptions to suppress, and when execution
of the code in the enclave encounters the exception, a
handler is invoked without delivering the exception to an
operating system according to embodiments of the disclo-
sure.

[0013] FIG. 10 illustrates a hardware processor coupled to
storage that includes one or more enclave instructions (e.g.,
an enclave resume (ERESUME) instruction) according to
embodiments of the disclosure.

[0014] FIG. 11 is a flow diagram illustrating operations of
a method for processing an “ERESUME” instruction
according to embodiments of the disclosure.

[0015] FIG. 12 is a flow diagram illustrating operations of
another method for processing an “ERESUME” instruction
according to embodiments of the disclosure.

[0016] FIG. 13A is a block diagram illustrating a generic



Configuring the Timer Interrupt

%\ SGX-Step goal: Executing enclaves one instruction at a time ]

Challenge: we need a very precise timer interrupt:

© x86 hardware debug features disabled in enclave mode
© ...but we have root access!

= Setup user-space virtual memory mappings for x86 APIC (+ PTEs)

jo@sgx-laptop:~$ cat /proc/iomem | grep "Local APIC"
TeecO00OO - feelOfff :

jo@sgx-laptop:~$% sudo devmem2 OxFEEGOO30 h

/dev/mem opened.

Memory mapped at address 0x7f37dc187000.
Value at address OxFEEROG30 (0x7f37dc187030): 0x15
jo@sgx-laptop:~$ []




Building the strlen() side-channel oracle with execution timing?

=\ ) Too noisy: modern x86 processors are lightning fast. . .

30000

[Z1 100,000 runs, strlen=1
25000 EEm 100,000 runs, strlen=2

20000

15000

Frequency

10000

5000

J A A /] J A
% 90 120
Execution time (cycles)



Counting strlen() loop iterations with SGX-Step

%\ Page table accessed bit set? — strlen++ — resume
3\
Page Table .text é
. .func strlen = o/
strlen: - ()
§ - for (s=str; *s; s++); INTERRUPT  SGX-Step
! PTE data T \
A ACCESSED ? data
,O secret:
.byte Oxaa, 0x00




Demo: Breaking AES-NI with the strlen() null byte oracle

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 18 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 26 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useless leakage 48 for

Useful leak at 520 for key byte 15 = c5-> already known

Current rk1@ = 13 11 1d 7f e3 94 00 17 3 07 a7 8b 4d 2b 30 c5

Useful leak at 521 for key byte 6 = 4a-> NEW!

A1l round key bytes found after 522 plaintexts

Current rk10 = 13 11 1d 7f e3 94 4a 17 f3 67 a7 8b 4d 2b 30 c5
sgx-dsn:~/0xbadcde-poc/intel-sgx-sdk-strien-ssa$ |

D (w/mm
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