MWWWWMW

Privileged Side-Channel Attacks

for Enclave Software Adversaries

Jo Van Bulck
University of Birmingham seminar, February 20, 2020

A imec-DistriNet, KU Leuven &4 jo.vanbulck@cs.kuleuven.be ¥ jovanbulck


https://distrinet.cs.kuleuven.be/people/jo
mailto:jo.vanbulck@cs.kuleuven.be
https://twitter.com/jovanbulck

About imec-DistriNet enclave research https://distrinet.cs.kuleuven.be/

e Trusted computing across the system stack: hardware, compiler, OS, apps

e Integrated attack-defense perspective and open-source prototypes
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~40 years of computer security research in one picture
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A primer on software security

[ Secure program: convert all input to expected output ]
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INPUT ——> —> OUTPUT




A primer on software security

[ Buffer overflow vulnerabilities: trigger unexpected behavior ]

—> OUTPUT



A primer on software security

[ Safe languages & formal verification: preserve expected behavior ]

—>> OUTPUT
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A primer on software security

[ Side-channels: observe side-effects of the computation ]
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A primer on software security

[ Constant-time code: eliminate secret-dependent side-effects ]
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A vulnerable example program and its constant-time equivalent

1void check_pwd(char *input)

2{ x
3 for (int i=0; i < PWDLLEN; i++) ﬂ(\(\
e [olals[swio[r]d]
6 SN g\ Vg

;} return 1; M@@M@

Overall execution time reveals correctness of individual password bytes!

— reduce brute-force attack from an exponential to a linear effort. ..



A vulnerable example program and its constant-time equivalent

1void check_pwd(char *input)

:{
3 for (int i=0; i < PWDLLEN; i++)
4 if (input[i] !'= pwd[i])

5 return O;

6

7 return 1;

5}

1void check_pwd(char *input)

2{

3 int rv = 0x0;

4 for (int i=0; i < PWDLLEN; i++)
5 rv |= input[i] " pwd[i];

6

7 return (result = 0);

8}

Rewrite program such that execution time does not depend on secrets

— manual, error-prone solution; side channels are likely here to stay. ..
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What's inside the black box?
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Enclaved execution: Reducing attack surface

App App } App } App
S~/
OS kernel
Hypervi or@:{
TPM CPU Mem HDD

Traditional layered designs: large trusted computing base



Enclaved execution: Reducing attack surface
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Intel SGX promise: hardware-level isolation and attestation
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Enclaved execution: Privileged side-channel attacks

N

App ][ App Enclave app

OS kernel
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Hypervisor ‘S
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Game-changer: Untrusted OS — new class of powerful side channels!
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Enclaved execution

: Privileged side-channel attacks

App Enclave app

N

TPM

CPU &

Game-changer: Untrusted OS — new class of powerful side channels!

Xu et al. “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, IEEE S&P 2015
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Enclaved execution: Privileged side-channel attacks

N

App App Enclave app

0O 14 0 0 0 0000 OOO0OOOODO

IRQ latency

Instruction (interrupt number)

TPM CPUdﬁ Mem HDD

Game-changer: Untrusted OS — new class of powerful side channels!

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018
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Enclaved execution: Privileged side-channel attacks

N

App App Enclave app

0O 14 0 0 0 0000 OOO0OOOODO

IRQ latency

Instruction (interrupt number)

TPM CPUdﬁ Mem HDD

Game-changer: Untrusted OS — new class of powerful side channels!

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018
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KEEP CALM

IT IS

OUT OF SCOPE



A note on side-channel attacks (Intel)

Protection from Side-Channel Attacks

Intel® SGX does not provide explicit protection from side-channel attacks. It is the enclave developer's
responsibility to address side-channel attack concerns.

In general, enclave operations that require an OCall, such as thread synchronization, I/O, etc., are exposed to
the untrusted domain. If using an OCall would allow an attacker to gain insight into enclave secrets, then
there would be a security concern. This scenario would be classified as a side-channel attack, and it would be
up to the ISV to design the enclave in a way that prevents the leaking of side-channel information.

An attacker with access to the platform can see what pages are being executed or accessed. This side-
channel vulnerability can be mitigated by aligning specific code and data blocks to exist entirely within a single

page.

More important, the application enclave should use an appropriate crypto implementation that is side channel
attack resistant inside the enclave if side-channel attacks are a concern.

n https://software.intel.com/en-us/node/703016


https://software.intel.com/en-us/node/703016

A note on side-channel attacks (Intel)

Why doesn't Intel eliminate side-channel analysis methods? ~

Simply put, a side-channel is some observable aspect of a computer system’s physical operation, such as timing, power
consumption or even sound. As such, they can't be eliminated. However, Intel is committed to rapidly addressing issues such as
these as they arise, and providing recommendations through security advisories and security notices. The latest security

information on Intel® products can be found here.
j ‘@/

n https://intel.com/content/www/us/en/architecture-and-technology/side-channel-variants-1-2-3.html


https://intel.com/content/www/us/en/architecture-and-technology/side-channel-variants-1-2-3.html

A note on side-channel attacks (Intel)

Why doesn't Intel eliminate side-channel analysis methods? ~

Simply put, a side-channel is some observable aspect of a computer system’s physical operation, such as timing, power
consumption or even sound. As such, they can't be eliminated. However, Intel is committed to rapidly addressing issues such as
these as they arise, and providing recommendations through security advisories and security notices. The latest security

information on Intel® products can be found here.
j ‘@/

= Research agenda: systematic understanding of side-channel leakage in TEEs

n https://intel.com/content/www/us/en/architecture-and-technology/side-channel-variants-1-2-3.html
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Evolution of “side-channel attack” occurrences in Google Scholar
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github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

Side-channel attacks and trusted computing
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Side-channel attacks and trusted computing (focus of today)
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Privileged adversary idea #1

Page tables as a side channel?



The virtual memory abstraction

Virtual : Address i Physical
Address Space ! Translation i Address Space
Virtual l . ' | Physical
Address i Mapping | Address

| i I

| T | System bus
i Page E v

! Tables | DRAM

Costan et al. “Intel SGX explained”, IACR 2016



Page faults as a side channel

logical address 4>[ paglng unit ]—>[ SGX checks ]—»physical address

U

e SGX machinery protects against direct address remapping attacks




Page faults as a side channel

logical address»{ paging unit SGX checks }—»physical address

‘ page fam @

e SGX machinery protects against direct address remapping attacks

. but untrusted address translation may fault during enclaved execution (!)

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015



Page faults as a side channel

age fault sequence
Page fault sequence

X, Y

e SGX machinery protects against direct address remapping attacks
e ...but untrusted address translation may fault during enclaved execution (!)
e = Page fault traces leak private control/data flow

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015



#PF attacks: An end-to-end example

void inc_secret( void )
{
if (secret)
*a +=1;
else
*b +=1;




#PF attacks: An end-to-end example

1. Revoke access rights on unprotected )
enclave page table entry ‘{’°id inc_secret( void )
if (secret)
*a +=1;
else
*b +=1;
}
J
©  omeeeereemenananannseanaenananannanes
S : PTEa
IE ......................................
0 --------------------------------------
> PTED
- YRR A

B, unmar



#PF attacks: An end-to-end example

[ EENTER B>
\J

1. Revoke access rights on unprotected
void inc_secret( void )

enclave page table entry .

if (secret)
2. Enter victim enclave *a +=1;
else
*b +=1;

........................................

........................................



#PF attacks: An end-to-end example

1. Revoke access rights on unprotected

enclave page table entry

2. Enter victim enclave

3. Secret-dependent data memory access

~» Processor reads page table setup by untrusted OS

void inc_secret( void )

{
if (secret)
*a +=1; Address

else translation"‘.‘
*b +=1; .

.....

........................................



#PF attacks: An end-to-end example

1. Revoke access rights on unprotected )
enclave page table entry ‘{’°id inc_secret( void )
if (secret)
2. Enter victim enclave *a += 1; — Page fault
else (AEX)
*b +=1;
3. Secret-dependent data memory access } {%
J

~» Processor reads page table setup by untrusted OS

4. Virtual address not present — raise page fault

~ Processor exits enclave and vectors to untrusted OS




#PF attacks: An end-to-end example

A
[— ERESUME &8>

1. Revoke access rights on unprotected

* \
enclave page table entry void inc_secret( void )
{
2. Enter victim enclave if (secret)
*a +=1;
else
3. Secret-dependent data memory access b 4= 1;
}
~ Processor reads page table setup by untrusted OS J

4. Virtual address not present — raise page fault

~ Processor exits enclave and vectors to untrusted OS

5. Restore access rights and resume victim enclave




Page table-based attacks in practice

Original Recovered Original Recovered

‘i"i
i

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015

= Low-noise, single-run exploitation of legacy applications ]




Page table-based attacks in practice

Original Recovered Original Recovered

‘i"i
i

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015

... but at a relative coarse-grained 4 KiB granularity ]




Naive solutions: Hiding enclave page faults

logical address 4>[ paglng unit ]—)[ SGX checks ]—»physical address

v

x 0

Shih et al. “T-SGX: Eradicating controlled-channel attacks against enclave programs”, NDSS 2017

Shinde et al. “Preventing page faults from telling your secrets”, AsiaCCS 2016



Naive solutions: Hiding enclave page faults

logical address ~>[n paglng unit J—)[ SGX checks J—»physical address
8 Y
=

0

. But stealthy attacker can still learn page accesses without triggering faults!



Documented side-effects of address translation

4.8 ACCESSED AND DIRTY FLAGS

For any paging-structure entry that is used during linear-address translation, bit 5 is the accessed flag.2 For
paging-structure entries that map a page (as opposed to referencing another paging structure), bit 6 is the dirty
flag. These flags are provided for use by memory-management software to manage the transfer of pages and
paging structures into and out of physical memory.

Whenever there is a write to a linear address, the processor sets the dirty flag (if it is not already set) in the paging-
structure entry that identifies the final physical address for the linear address (either a PTE or a paging-structure
entry in which the PS flag is 1).



CANT;SEE PAGE FAULTS THEY SAID

BUT WE CAN SPY
- ONPAGE TRBLE MEMORY

imafil



Telling your secrets without page faults

void inc_secret( void )
1. Attack vector: PTE status flags: { o _
for (i=0; i < len; i++)
o A(ccessed) bit y i
. . i t[i
e D(irty) bit sl 1|; ........ [ )
_ IRQ/AEX else o
~ Also updated in enclave mode! @ *b +=1; ‘.

gg-g ACCESSED ?

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017



Telling your secrets without page faults

void inc_secret( void )
1. Attack vector: PTE status flags: { o _
for (i=0; i < len; i++)
o A(ccessed) bit { "y o
. . i t[i
e D(irty) bit sl 1|; ........ [ )
. IRQ/AEX else )@
~ Also updated in enclave mode! @ *b +=1; ‘.
} H
) ;
y,

2. Attack vector: Unprotected page table memory:

e Cached as regular data
e Accessed during address translation

~» Flush+Reload cache timing attack! gé ACCESSED ?

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017



Attacking Libgcrypt EADSA (simplified)

1 Memory layout

3

4 0x0F000
5 gcry_free

6

7

Z mpi_add 0xC0000
10 mpi_test_bit 0xC1000
11

12

13 for (j=nbits—1; j >= 0; j——) { 22 Code pages , 0xC9000
14 _gcry_mpi_ec_dup_point (result, result, ctx); per iteration mpi_ec_add_p

15 if (mpi_test_bit (scalar, j)) moi ec mul 0xCA000
16 _gcry_mpi_ec_add_points (result, result, point, ctx); plec_mulp
17 } \

18

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017



Attacking Libgcrypt EADSA (simplified)

1 Memory layout

3 .

. Monitor

: trigger page gcry_free 0x0F000
6

7

8 8 po—— 0xC0000
N >

10 O mpi_test_bit 0xC1000
12

13 for (j=nbits—1; j >=0; j——) { ACCESSED ? 0xC9000
14 _gcry_mpi_ec_dup_point (result, result, ctx); mpi_ec_add_p

15 if (mpi_test_bit (scalar, j)) moi ec mul 0xCA000
16 _gcry_mpi_ec_add_points (result, result, point, ctx); plec_mulp

17 }

18

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017



Attacking Libgcrypt EADSA (simplified)

1 Memory layout
3
4 0x0F000
5 gcry_free
6
7
z 8 mpi_add 0xC0000
10 O mpi_test_bit 0xC1000
11 s —

INTERRUPT
12
13 for (j=nbits—1; j >=0; j——) { 0xC9000
14 _gcry_mpi_ec_dup_point (result, result, ctx); mpi_ec_add_p
15 if (mpi_test_bit (scalar, j)) moi ec mul 0xCA000
16 _gcry_mpi_ec_add_points (result, result, point, ctx); plec_mulp
17 }
18

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017



Attacking Libgcrypt EADSA (simplified)

15
16
17
18

Memory layout

0x0F000
gcry_free

ACCESSED? _

O mpi_test_bit 0xC1000
Record page set [P
for (j=nbits—1; j >=0; j——) {

_gcry_mpi_ec_dup_point (result, result, ctx); mpi_ec_add_p
if (mpi_test_bit (scalar, j)) ACCESSED ?
_gcry_mpi_ec_add_points (result, result, point, ctx);

0xC0000

0xC9000

0xCA000

mpi_ec_mul_p

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017



Attacking Libgcrypt EADSA (simplified)

1 Memory layout

4 0x0F000
gcry_free

8 ‘ - 0xC0000
o g mpi_add
10 O mpi_test_bit 0xC1000
11 i e
12
13 for (j=nbits—1; j >=0; j——) { RESUME 0xC9000
14 _gery_mpi_ec_dup_point (result, result, ctx); mpi_ec_add_p

0xCA000

15 if (mpi_test_bit (scalar, j))
16 _gcry_mpi_ec_add_points (result, result, point, ctx);

17 }

Full 512-bit key recovery, single run

mpi_ec_mul_p

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017



Privileged adversary idea #2

Interrupts as a side channel?



Back to basics: Fetch-decode-execute

Elementary CPU behavior: stored program computer ]
Fet@ Decode Execute
PC++ no Jump?
yes




Back to basics: Fetch-decode-execute

[ Interrupts: asynchronous real-world events, handled on instruction retirement ]

Fethh Decode Execute
PCh [« Jump? no IRQ?
yes ‘ yes

PC = IVT]irq] Secure IRQ logic



Back to basics: Fetch-decode-execute

[ %\ Timing leak: IRQ response time depends on current instruction(!) ]

Variable instruction latency

Fetﬂ Decode Execute
PCo+ [« Jump? no IRQ?

yes ‘ yes

PC = IVT]irq] Secure IRQ logic




Wait a cycle: Interrupt latency as a side channel

CLK 4 A A A A
CMD 77X NOP X IRQ logic ISR

ra [\

CMD 77X ADD X IRQ logic ISR
RQ _ / \

if (secret){ ADD @R5+, R6;} // 2 cycles ‘) >
else { NOP; NOP; } // 2*%1 cycle

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018




Attacking a Sancus application with interrupt latency

Van Bulck et al. “VulCAN: Vehicular component authentication and software isolation”, ACSAC 2017



Attacking a Sancus application with interrupt latency

Driver enclave: 16-bit vector indicates which keys are down ]

PIN code enclave

IIII:> 0100000000000000

———> traverse bits

R

aogd

O
O
]



Attacking a Sancus application with interrupt latency

Attacker: Interrupt conditional control flow to infer secret PIN ]

PIN code enclave

Al
B ||||:> 0100000000000000

———> traverse bits

aogd

fi-e,

K \: Key 'B' was pressed’



Sancus IRQ timing attack: Inferring key strokes

A

Y

~ IRQ latency »

L

Instruction (interrupt number)

.“ Enclave x-ray: Start-to-end trace enclaved execution

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018



Sancus IRQ timing attack: Inferring key s

A

0O 1/0 0 0 00O OOOOOOODO

Y

~ IRQ latency »

L

Instruction (interrupt number)

.“ Enclave x-ray: Keymap bit traversal (ground truth)

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018



Sancus IRQ timing attack: Inferring key strokes

0O 1/, 0(0 000 0O0O0OOOOOOD O

~ IRQ latency »

4 1 ﬂb
_ 0 (no press) 1 (key pressed) 0 (no press)
3. f‘m
<
g
g
i,
o
&«
14 [

Instruction (interrupt number)

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018



Does this also work for Intel SGX enclaves?

I 131 M | 1§ tu 17 1%

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop


https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop

MORSE’S Gallery, 417 Montgomery St., San Francisco,

o [
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Building a precise single-stepping primitive

[ %\ SGX-Step goal: executing enclaves one instruction at a time ]

Challenge: we need a very precise timer interrupt:

® x86 hardware debug features disabled in enclave mode
® ...but we have root access!

Van Bulck et al. “SGX-Step: A practical attack framework for precise enclave execution control”, SysTEX 2017



Building a precise single-stepping primitive

[ %\ SGX-Step goal: executing enclaves one instruction at a time ]

Challenge: we need a very precise timer interrupt:

® x86 hardware debug features disabled in enclave mode
© ...but we have root access!

= Setup user-space virtual memory mappings for x86 APIC

jo@sgx-laptop:~$ cat /proc/iomem | grep "Local APIC"
feedD000-fee@Offf

jo@sgx-laptop:~$% sudo devmem2 OxFEEQRO30 h

/dev/mem opened.

Memory mapped at address 0x77T37dc187000.
Value at address OxFEEG0030 (0x7f37dcl87030): 0x15
jo@sgx-laptop:~$ []

Van Bulck et al. “SGX-Step: A practical attack framework for precise enclave execution control”, SysTEX 2017



SGX-Step: Executing enclaves one instruction at a time

[ User-space attack primitives: APIC timer + interrupt handling © ]

(2) AEX ,( (3) IRQ Handler

Enclave @ IRQ
if secret do é /g
instl o,
else () SGX-Step
inst2
endif @ ERESUMEJ
user space

O https://github.com/jovanbulck/sgx-step


https://github.com/jovanbulck/sgx-step

SGX-Step: Executing enclaves one instruction at a time

IRQ Handler IDT Lookup o carse @ IRQ Handler

mov %eax, (tsc2)
@ AEX é iretqg
Enclave IRQ ‘
@ Y | (@ et

if secret do e
instl ~movl $TMR, 0xfee00380
rdtsc

else
inst2 mov %eax, (tscl)

endif mov $ERESUME, Srax
enclu @ AEP

(EDBGRD) A

] (optional IOCTL) Kernel
)

<
<

[ /dev/sgx step

O https://github.com/jovanbulck/sgx-step


https://github.com/jovanbulck/sgx-step

Microbenchmarks: Measuring Intel x86 instruction latencies

[ Latency distribution: 10,000 samples from benchmark enclave ]
A
Ifence
g
c
3 nop
-3
£ AN
77I00 I 79I00 I IRQ Iatenlcy ((:y(:les)I 83I00 85I00 -




Microbenchmarks: Measuring Intel x86 instruction latencies

[ Timing leak: reconstruct instruction latency class ]
A
Ifence

>
£
S nop

-3
£ N

77I00 79I00 I IRQ Iatenlcy (z:ycles)I 83I00 85I00 g




Single-stepping Intel SGX enclaves in practice

‘;‘ Enclave x-ray: Start-to-end trace enclaved execution ]

IRQ latency (cycles)

W

Instruction (interrupt number)



Single-stepping Intel SGX enclaves in practice

‘5‘ Enclave x-ray: Spotting high-latency instructions ]

rdrand (generate stack canary on enclave entry)
/7

IRQ latency (cycles)

L

Instruction (interrupt number)



Single-stepping Intel SGX enclaves in practice

“‘ Enclave x-ray: Zooming in on bsearch function ]

IRQ latency (cycles)

LU

Instruction (interrupt number)



De-anonymizing enclave lookups with interrupt latency

[ Binary search: Find 40 in {20, 30, 40, 50, 80, 90, 100} ]




De-anonymizing enclave lookups with interrupt latency

[ Adversary: Infer secret lookup in known array ]




De-anonymizing enclave lookups with interrupt latency

[ Goal: Infer lookup — reconstruct bsearch control flow ]

7950 A

IRQ latency (cycles)

7800 A

Y

Interrupt (instruction number)



De-anonymizing enclave lookups with interrupt latency

[ Goal: Infer lookup — reconstruct bsearch control flow ]
“ . .

7950 1 ‘ K Left Right >> Hit ©
’IIT q

9

(4

3 i

g

c

A

)

o

«

7800 A

Interrupt (instruction number)



De-anonymizing enclave lookups with interrupt latency

[ = Sample instruction latencies in secret-dependent path ]
A
o & HLLL  LLHL » HHHH
m
9
[
a i
>
g
[]
E 4
o
«
7800

Interrupt (instruction number)



Privileged adversary idea #3

Page tables revisited: transient execution?



Enclaved execution: Side-channel attacks

-

N

App H App Enclave app

J

OS kernel

Hypervisor ‘e @

J

.

N

TPM } CPU&{ Mem H HDD J

Untrusted OS — new class of powerful side channels

Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018



Enclaved execution: Transient-execution attacks

’[ App
S OS kernel ]. .~7

I /

l @ = 0}\ Hypervisor /
@,_.E.z,? ﬁ:{cpu Mem ][ HDD

Trusted CPU — exploit microarchitectural bugs/design flaws

App Enclave app

J

Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018



THE MELTDOUN AND SPECTRE. EXPLOITS USE
"SPECULATIVE EXECUTION?" WHATS THAT?

YOU KNOW THE TROLLEY PROBLEM? LJELL,
FOR A WHILE NOU, CPUs HAVE BASICALLY
BEEN SENDING TROULEYS DOLN BOIH
PATHS, QUANTUMN-SIYLE, WHILE AWAITING
YOUR CHOICE. THEN THE UNNEEDED
“"PHANTOM" TROLLEY DISAPPEARS.

THE PHANTOM TROLLEY ISNT
SUPPOSED TO TOUCH ANYONE.
BUT IT TURNS OUT YOU CAN
anLL 'U6E IT TO DO STUFF.

AND IT CAN DRIVE
THROUGH WALLS.

\

https://xkcd.com/1938


https://xkcd.com/1938

Key finding of 2018

e CPU executes ahead of time in transient world

e Use side channels to reconstruct secrets!
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Meltdown: Transiently encoding unauthorized memory

== N\

=

Unauthorized access

Listing 1: x86 assembly Listing 2: C code.

1 meltdown: 1 void meltdown (

2 %rdi: oracle 2 uint8_t =xoracle,

3 %rsi: secret_ptr 3 uint8_t xsecret_ptr)
4 4 |

5 movb (%rsi), %al 5 uint8_t v = xsecret_ptr;
6 shl $0xc, %rax 6 v =v x 0x1000;

7 movq (%rdi, %rax), %rdi 7 uint64_t o = oracle[v];
8 retq 8}




Meltdown: Transiently encoding unauthorized memory

= N\
—_—
=
=
Unauthorized access Transient out-of-order window
Listing 1: x86 assembly. Listing 2: C code.
1 meltdown: 1 void meltdown (
2 %rdi: oracle 2 uint8_t =xoracle,
3 %rsi: secret_ptr 3 uint8_t s*secret_ptr)
4 - {
5 movb (%rsi), %al 5 uint8_t v = xsecret_ptr;
6 shl $0xc, %rax 6 v = v % 0x1000;
7 movq (%rdi, %rax), %rdi 7 uint64_t o = oracle[v];
retq 8 } T

oracle array

secret idx



Meltdown: Transiently encoding unauthorized memory

i S e
— —
0=
= F

Unauthorized access

Listing 1: x86 assembly.

Transient out-of-order window Exception

(discard architectural state)
Listing 2: C code.

I meltdown:

/ %rdi: oracle

'/ %rsi: secret_ptr

movb (%rsi), %al

shl $0xc, %rax

movq (%rdi, %rax), %rdi
retq

1 void meltdown (

2 uint8_t xoracle,

3 uint8_t #secret_ptr)
4 {

5 uint8_t v = xsecret_ptr;
6 v = v x 0x1000;

7 uint64_t o = oracle[v];
8 }




Meltdown: Transiently encoding unauthorized memory

SR g8 g
— —
=
= F

Unauthorized access Transient out-of-order window Exception handler
Listing 1: x86 assembly. Listing 2: C code.
1 meltdown: 1 void meltdown ( oracle array
2 %rdi: oracle 2 uint8_t xoracle, RS .
3 %rsi: secret_ptr 3 uint8_t ksecret_ptr) w—
4 4 { oammmmms | S,
5 movb (%rsi), %al 5 uint8_t v = xsecret_ptr; O Q
6 shl $0xc, %rax 6 v = v % 0x1000; .
7 movq (%rdi, %rax), %rdi 7 uint64_t o = oracle[v]; GEEEENS " cache hit
retq 8 } L
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Rumors: Meltdown immunity for SGX enclaves?

Meltdown melted down everything, except
for one thing
“[enclaves] remain protected and completely secure”

— International Business Times, February 2018

ANJUNA'S SECURE-RUNTIME CAN PROTECT CRITICAL APPLICATIONS
AGAINST THE MELTDOWN ATTACK USING ENCLAVES

“[enclave memory accesses]| redirected to an abort page, which has no value”

— Anjuna Security, Inc., March 2018


https://web.archive.org/web/20180617022540/https://www.ibtimes.co.uk/meltdown-melted-down-everything-except-one-thing-1663785
https://web.archive.org/web/20180720144203/https://www.anjuna.io/blog/2018/2/7/meltdown-spectre-sgx

SPECTRE-LIRE FLAW
UNDERMINES INTEL
PROCESSORS” MOST SECURE
ELEMENT

Intel’s SGX blown wide open by, you
guessed it, a speculative execution attack

Speculative execution attacks truly are the gift that keeps on giving.

https://wired.com and https://arstechnica.com


https://wired.com
https://arstechnica.com
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Building Foreshadow: Evade SGX abort page semantics

[ Note: SGX MMU sanitizes untrusted address translation ]

~

SGX? ok Allow
U

G J

Abort page semantics:

An attempt to read from a non-existent or disallowed resource returns all ones for data
(abort page). An attempt to write to a non-existent or disallowed physical resource is
dropped. This behavior is unrelated to exception type abort (the others being Fault and Trap).

Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018


https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-development-basics

Building Foreshadow: Evade SGX abort page semantics

[ Straw man: (Transient) accesses in non-enclave mode are dropped ]

N

~

| Allow

Abort page

Page fault

F

%)

Abort page semantics:

An attempt to read from a non-existent or disallowed resource returns all ones for data
(abort page). An attempt to write to a non-existent or disallowed physical resource is
dropped. This behavior is unrelated to exception type abort (the others being Fault and Trap).

https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-development-basics

Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018


https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-development-basics

Building Foreshadow: Evade SGX abort page semantics

[ Stone man: Bypass abort page via untrusted page table ]

SGX? ok Allow
o

- J

Xu et al. “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, IEEE S&P 2015

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017

Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018



Building Foreshadow: Evade SGX abort page semantics

[ Stone man: Bypass abort page via untrusted page table ]
( SGX? ok Allow
' [

@n( -

Unprivileged system call
mprotect( secret ptr & OxFFF, 0x1000, PROT_NONE );

\1-4/

Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018



Foreshadow-NG: Breaking the virtual memory abstraction

CPU micro-architecture

Page fault

L1 cache design: Virtually-indexed, physically-tagged ]




Foreshadow-NG: Breaking the virtual memory abstraction

CPU micro-architecture

Page fault

Page fault: Early-out address translation ]




Foreshadow-NG: Breaking the virtual memory abstraction

CPU micro-architecture

Sk

Page fault

L1-Terminal Fault: match unmapped physical address (!) ]




Foreshadow-NG: Breaking the virtual memory abstraction

CPU micro-architecture

M
Pass to out-of-order l %ﬁ

Page fault Abort page

Foreshadow-SGX: bypass enclave isolation ]




Foreshadow-NG: Breaking the virtual memory abstraction

CPU micro-architecture

JLYS
Pass to out-of-order 1 %ﬁ,

fail

[Page fault] [Page fault]

Foreshadow-VMM: bypass virtual machine isolation ]




Research challenges: Universal classification and understanding https://transient.fail
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Canella et al. “A systematic evaluation of transient execution attacks and defenses”, USENIX Security 2019


https://transient.fail

Conclusions and take-away https://foreshadowattack.eu/

= Trusted execution environments are not perfect(!)
= New emerging and powerful class of transient-execution attacks

= |Importance of fundamental side-channel research; no silver-bullet defenses

¢ e


https://foreshadowattack.eu/
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Mitigating Foreshadow

4 N
[
1. Cache secrets in L1 2. Unmap page table entry 3. Execute Meltdown
- J

Future CPUs
(silicon-based changes)

https://newsroom.intel.com/editorials/advancing-security-silicon-level/


https://newsroom.intel.com/editorials/advancing-security-silicon-level/

Mitigating Foreshadow
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1. Cache secrets in L1 2. Unmap page table entry 3. Execute Meltdown
\. J
OS kernel updates
(sanitize page frame bits)




Mitigating Foreshadow

Vs

.

1. Cache secrets in L1

J

Intel microcode updates

2. Unmap page table entry

3. Execute Meltdown

= Flush L1 cache on enclave/VMM exit + disable HyperThreading

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault


https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault

Spectre vl: Speculative buffer over-read

LEN e Programmer intention: never access out-of-bounds

»
»
user buffer memory

if (idx < LEN)
{

s = buffer[idx];
lookup[s];

A

o
I




Spectre vl: Speculative buffer over-read

LEN e Programmer intention: never access out-of-bounds

»
user buffer memory
e Branch can be mistrained to speculatively (i.e., ahead

if (id . o . .
T (e < LB of time) execute with idx = LEN in the transient world

A

= buffer[idx];
= lookup[s];

+
[




Spectre vl: Speculative buffer over-read

LEN e Programmer intention: never access out-of-bounds

>
user buffer memory
e Branch can be mistrained to speculatively (i.e., ahead

if (id . o . .
T (b < LB of time) execute with idx = LEN in the transient world

A

asm("1fence\n\t?); e Insert explicit speculation barriers to tell the CPU to
s = buffer[idx];

t = lookup[s]; halt the transient world...




Spectre vl: Speculative buffer over-read

<&
Y

LEN e Programmer intention: never access out-of-bounds

user buffer memory
e Branch can be mistrained to speculatively (i.e., ahead
of time) execute with idx = LEN in the transient world

if (idx < LEN)

{
asm("lfence\n\t");
s = buffer[idx];
t = lookup[s]; halt the transient world...

e Insert explicit speculation barriers to tell the CPU to

_— e Huge manual, error-prone effort. ..
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