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• Trusted computing across the system stack: hardware, compiler, OS, apps

• Integrated attack-defense perspective and open-source prototypes

Transient execution

[VBMW
+
18, SLM

+
19, CVBS

+
18]

Side-channel attacks

[VBPS17, VBWK
+
17, VBPS18]

Sancus TEE processor

[NVBM
+
17, VBMP17]

1

https://distrinet.cs.kuleuven.be/


˜40 years of computer security research in one picture



A primer on software security

Secure program: convert all input to expected output

INPUT OUTPUT
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A primer on software security

Buffer overflow vulnerabilities: trigger unexpected behavior

INPUT OUTPUT
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A primer on software security

Safe languages & formal verification: preserve expected behavior

INPUT OUTPUT
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A primer on software security

Side-channels: observe side-effects of the computation

INPUT OUTPUT
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A primer on software security

Constant-time code: eliminate secret-dependent side-effects

INPUT OUTPUT
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A vulnerable example program and its constant-time equivalent

1 vo i d check pwd ( cha r ∗ i n pu t )

2 {
3 f o r ( i n t i =0; i < PWD LEN; i++)

4 i f ( i n pu t [ i ] != pwd [ i ] )

5 r e t u r n 0 ;

6

7 r e t u r n 1 ;

8 }

Overall execution time reveals correctness of individual password bytes!

→ reduce brute-force attack from an exponential to a linear effort. . .
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A vulnerable example program and its constant-time equivalent

1 vo i d check pwd ( cha r ∗ i n pu t )

2 {
3 f o r ( i n t i =0; i < PWD LEN; i++)

4 i f ( i n pu t [ i ] != pwd [ i ] )

5 r e t u r n 0 ;

6

7 r e t u r n 1 ;

8 }

1 vo i d check pwd ( char ∗ i n pu t )

2 {
3 i n t r v = 0x0 ;

4 f o r ( i n t i =0; i < PWD LEN; i++)

5 r v |= inpu t [ i ] ˆ pwd [ i ] ;

6

7 r e t u r n ( r e s u l t == 0) ;

8 }

Rewrite program such that execution time does not depend on secrets

→ manual, error-prone solution; side channels are likely here to stay. . .
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What’s inside the black box?
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https://informationisbeautiful.net/visualizations/million-lines-of-code/

https://informationisbeautiful.net/visualizations/million-lines-of-code/


Enclaved execution: Reducing attack surface

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 AppApp

Traditional layered designs: large trusted computing base
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Enclaved execution: Reducing attack surface

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Intel SGX promise: hardware-level isolation and attestation
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Enclaved execution: Privileged side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Game-changer: Untrusted OS → new class of powerful side channels!
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Enclaved execution: Privileged side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Game-changer: Untrusted OS → new class of powerful side channels!

5 Xu et al. “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, IEEE S&P 2015



Enclaved execution: Privileged side-channel attacks

Mem HDD

OS kernel
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 Enclave app
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Instruction (interrupt number)

Game-changer: Untrusted OS → new class of powerful side channels!

5 Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018



Enclaved execution: Privileged side-channel attacks
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Game-changer: Untrusted OS → new class of powerful side channels!
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A note on side-channel attacks (Intel) 2016

⇒ Research agenda: systematic understanding of side-channel leakage in TEEs

6 https://software.intel.com/en-us/node/703016

https://software.intel.com/en-us/node/703016


A note on side-channel attacks (Intel) 2018

⇒ Research agenda: systematic understanding of side-channel leakage in TEEs

6 https://intel.com/content/www/us/en/architecture-and-technology/side-channel-variants-1-2-3.html

https://intel.com/content/www/us/en/architecture-and-technology/side-channel-variants-1-2-3.html


A note on side-channel attacks (Intel) 2018

⇒ Research agenda: systematic understanding of side-channel leakage in TEEs
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Evolution of “side-channel attack” occurrences in Google Scholar
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DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/7

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/


Side-channel attacks and trusted computing
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DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/
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Side-channel attacks and trusted computing (focus of today)
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DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/
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Privileged adversary idea #1

Page tables as a side channel?
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The virtual memory abstraction

Costan et al. “Intel SGX explained”, IACR 2016
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Page faults as a side channel

paging unit SGX checkslogical address physical address

• SGX machinery protects against direct address remapping attacks

• . . . but untrusted address translation may fault during enclaved execution (!)

• ⇒ Page fault traces leak private control/data flow

10



Page faults as a side channel

paging unit SGX checks

page fault (#PF)

logical address physical address

• SGX machinery protects against direct address remapping attacks

• . . . but untrusted address translation may fault during enclaved execution (!)

• ⇒ Page fault traces leak private control/data flow

10 Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015



Page faults as a side channel

• SGX machinery protects against direct address remapping attacks

• . . . but untrusted address translation may fault during enclaved execution (!)

• ⇒ Page fault traces leak private control/data flow
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#PF attacks: An end-to-end example

1. Revoke access rights on unprotected

enclave page table entry

2. Enter victim enclave

3. Secret-dependent data memory access

↝ Processor reads page table setup by untrusted OS

4. Virtual address not present → raise page fault

↝ Processor exits enclave and vectors to untrusted OS

5. Restore access rights and resume victim enclave

void inc_secret( void )
{
    if (secret)
        *a += 1;
    else
        *b += 1;
}
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#PF attacks: An end-to-end example
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↝ Processor exits enclave and vectors to untrusted OS
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#PF attacks: An end-to-end example

1. Revoke access rights on unprotected

enclave page table entry

2. Enter victim enclave

3. Secret-dependent data memory access

↝ Processor reads page table setup by untrusted OS

4. Virtual address not present → raise page fault

↝ Processor exits enclave and vectors to untrusted OS

5. Restore access rights and resume victim enclave
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#PF attacks: An end-to-end example

1. Revoke access rights on unprotected

enclave page table entry

2. Enter victim enclave

3. Secret-dependent data memory access

↝ Processor reads page table setup by untrusted OS

4. Virtual address not present → raise page fault

↝ Processor exits enclave and vectors to untrusted OS

5. Restore access rights and resume victim enclave
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#PF attacks: An end-to-end example

1. Revoke access rights on unprotected

enclave page table entry

2. Enter victim enclave

3. Secret-dependent data memory access

↝ Processor reads page table setup by untrusted OS

4. Virtual address not present → raise page fault

↝ Processor exits enclave and vectors to untrusted OS

5. Restore access rights and resume victim enclave
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#PF attacks: An end-to-end example

1. Revoke access rights on unprotected

enclave page table entry

2. Enter victim enclave

3. Secret-dependent data memory access

↝ Processor reads page table setup by untrusted OS

4. Virtual address not present → raise page fault

↝ Processor exits enclave and vectors to untrusted OS

5. Restore access rights and resume victim enclave

void inc_secret( void )
{
    if (secret)
        *a += 1;
    else
        *b += 1;
}
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Page table-based attacks in practice

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015

⇒ Low-noise, single-run exploitation of legacy applications
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Page table-based attacks in practice

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015

. . . but at a relative coarse-grained 4 KiB granularity
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Naive solutions: Hiding enclave page faults

paging unit SGX checks

page fault (#PF)

logical address physical address

Shih et al. “T-SGX: Eradicating controlled-channel attacks against enclave programs”, NDSS 2017

Shinde et al. “Preventing page faults from telling your secrets”, AsiaCCS 2016
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Naive solutions: Hiding enclave page faults

paging unit SGX checks

page fault (#PF)

logical address physical address

. . . But stealthy attacker can still learn page accesses without triggering faults!
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Documented side-effects of address translation

14





Telling your secrets without page faults

1. Attack vector: PTE status flags:

• A(ccessed) bit

• D(irty) bit

↝ Also updated in enclave mode!

2. Attack vector: Unprotected page table memory:

• Cached as regular data

• Accessed during address translation

↝ Flush+Reload cache timing attack!

void inc_secret( void )
{
    for (i=0; i < len; i++)
    {    
        if (secret[i])
            *a += 1;
        else
            *b += 1;
    }
}
 

PTE a

PTE b

P
a
g

e
 T

a
b

le

 ACCESSED ?

IRQ/AEX

15 Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017
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Attacking Libgcrypt EdDSA (simplified)

gcry_free

...

mpi_test_bit

mpi_ec_add_p

mpi_ec_mul_p

0x0F000

0xC0000

0xC1000

mpi_add

0xC9000

0xCA000

...

...

...

22 Code pages
per iteration

Memory layout

16 Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017
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Attacking Libgcrypt EdDSA (simplified)

gcry_free

...

mpi_test_bit

mpi_ec_add_p

mpi_ec_mul_p
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0xC0000
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Memory layout
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Attacking Libgcrypt EdDSA (simplified)

gcry_free
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mpi_test_bit

mpi_ec_add_p

mpi_ec_mul_p

0x0F000

0xC0000
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Attacking Libgcrypt EdDSA (simplified)

gcry_free

...

mpi_test_bit

mpi_ec_add_p

mpi_ec_mul_p

0x0F000

0xC0000

0xC1000

mpi_add

0xC9000

0xCA000

...

...

...

RESUME

Full 512-bit key recovery, single run

Memory layout

16 Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017



Privileged adversary idea #2

Interrupts as a side channel?

17



Back to basics: Fetch-decode-execute

Elementary CPU behavior: stored program computer

Fetch Decode Execute

Jump?PC++

yes

no

Variable instruction latency

18



Back to basics: Fetch-decode-execute

Interrupts: asynchronous real-world events, handled on instruction retirement

Fetch Decode Execute

IRQ?Jump?PC++

Secure IRQ logicPC = IVT[irq]

no

yesyes

no

Variable instruction latency

18



Back to basics: Fetch-decode-execute

Timing leak: IRQ response time depends on current instruction(!)

Fetch Decode Execute

IRQ?Jump?PC++

Secure IRQ logicPC = IVT[irq]

no

yesyes

no

Variable instruction latency

18



Wait a cycle: Interrupt latency as a side channel

CLK

CMD NOP IRQ logic ISR

IRQ

CMD ADD IRQ logic ISR

IRQ

 
if (secret){ ADD @R5+, R6;} // 2 cycles
else       { NOP; NOP;    } // 2*1 cycle
 

19 Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018



Attacking a Sancus application with interrupt latency

20 Van Bulck et al. “VulCAN: Vehicular component authentication and software isolation”, ACSAC 2017



Attacking a Sancus application with interrupt latency

Driver enclave: 16-bit vector indicates which keys are down

0100000000000000
traverse bits

PIN code enclave

20



Attacking a Sancus application with interrupt latency

Attacker: Interrupt conditional control flow to infer secret PIN

Key 'B' was pressed!

0100000000000000
traverse bits

IRQ

PIN code enclave

20



Sancus IRQ timing attack: Inferring key strokes
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Enclave x-ray: Start-to-end trace enclaved execution

21 Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018



Sancus IRQ timing attack: Inferring key strokes
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Enclave x-ray: Keymap bit traversal (ground truth)

21 Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018



Sancus IRQ timing attack: Inferring key strokes
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Does this also work for Intel SGX enclaves?

22 https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop




Building a precise single-stepping primitive

SGX-Step goal: executing enclaves one instruction at a time

Challenge: we need a very precise timer interrupt:

/ x86 hardware debug features disabled in enclave mode

, . . . but we have root access!

⇒ Setup user-space virtual memory mappings for x86 APIC

23 Van Bulck et al. “SGX-Step: A practical attack framework for precise enclave execution control”, SysTEX 2017
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SGX-Step: Executing enclaves one instruction at a time

User-space attack primitives: APIC timer + interrupt handling ,

SGX-Step

user space

4 ERESUME

24 https://github.com/jovanbulck/sgx-step

https://github.com/jovanbulck/sgx-step


SGX-Step: Executing enclaves one instruction at a time

24 https://github.com/jovanbulck/sgx-step

https://github.com/jovanbulck/sgx-step


Microbenchmarks: Measuring Intel x86 instruction latencies

Latency distribution: 10,000 samples from benchmark enclave

IRQ latency (cycles)
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Microbenchmarks: Measuring Intel x86 instruction latencies

Timing leak: reconstruct instruction latency class

IRQ latency (cycles)
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Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Start-to-end trace enclaved execution

Instruction (interrupt number)
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Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Spotting high-latency instructions

Instruction (interrupt number)
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rdrand (generate stack canary on enclave entry)
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Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Zooming in on bsearch function
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De-anonymizing enclave lookups with interrupt latency

Binary search: Find 40 in {20, 30, 40, 50, 80, 90, 100}

27



De-anonymizing enclave lookups with interrupt latency

Adversary: Infer secret lookup in known array

left

right

hit

27



De-anonymizing enclave lookups with interrupt latency

Goal: Infer lookup → reconstruct bsearch control flow
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De-anonymizing enclave lookups with interrupt latency

Goal: Infer lookup → reconstruct bsearch control flow
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De-anonymizing enclave lookups with interrupt latency

⇒ Sample instruction latencies in secret-dependent path
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Privileged adversary idea #3

Page tables revisited: transient execution?

28



Enclaved execution: Side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Untrusted OS → new class of powerful side channels

29 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018



Enclaved execution: Transient-execution attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Trusted CPU → exploit microarchitectural bugs/design flaws

29 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018



https://xkcd.com/1938
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Key finding of 2018

• CPU executes ahead of time in transient world

• Use side channels to reconstruct secrets!





Meltdown: Transiently encoding unauthorized memory

Unauthorized access

31



Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array
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Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window Exception

(discard architectural state)
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Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

cache hit

Exception handler
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Rumors: Meltdown immunity for SGX enclaves?

“[enclaves] remain protected and completely secure”

— International Business Times, February 2018

“[enclave memory accesses] redirected to an abort page, which has no value”

— Anjuna Security, Inc., March 2018

32

https://web.archive.org/web/20180617022540/https://www.ibtimes.co.uk/meltdown-melted-down-everything-except-one-thing-1663785
https://web.archive.org/web/20180720144203/https://www.anjuna.io/blog/2018/2/7/meltdown-spectre-sgx


Rumors: Meltdown immunity for SGX enclaves?

https://wired.com and https://arstechnica.com

32
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Building Foreshadow: Evade SGX abort page semantics

Note: SGX MMU sanitizes untrusted address translation

SGX?

Abort page semantics:
An attempt to read from a non-existent or disallowed resource returns all ones for data
(abort page). An attempt to write to a non-existent or disallowed physical resource is
dropped. This behavior is unrelated to exception type abort (the others being Fault and Trap).

https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-development-basics
35 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018

https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-development-basics


Building Foreshadow: Evade SGX abort page semantics

Straw man: (Transient) accesses in non-enclave mode are dropped

SGX?

Abort page semantics:
An attempt to read from a non-existent or disallowed resource returns all ones for data
(abort page). An attempt to write to a non-existent or disallowed physical resource is
dropped. This behavior is unrelated to exception type abort (the others being Fault and Trap).
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Building Foreshadow: Evade SGX abort page semantics

Stone man: Bypass abort page via untrusted page table

SGX?

Xu et al. “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, IEEE S&P 2015

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017

35 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018



Building Foreshadow: Evade SGX abort page semantics

Stone man: Bypass abort page via untrusted page table

SGX?

mprotect( secret_ptr & 0xFFF, 0x1000, PROT_NONE );

Unprivileged system call

35 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018
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Foreshadow-NG: Breaking the virtual memory abstraction

PT
walk?

L1D

vadrs

CPU micro-architecture

 

Tag? Pass to out-of-order

SGX?
EPT

walk?

host
padrs

guest
padrs

Foreshadow-VMM: bypass virtual machine isolation
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Research challenges: Universal classification and understanding https://transient.fail

Transient cause

Spectre-type

Meltdown-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Meltdown-NM-REG

Meltdown-PF

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK-L1

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

Meltdown-CPL-REG

Meltdown-NC-SB

Meltdown-AD

Meltdown-AVX-LP

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-AD-LFB

Meltdown-AD-SB

37 Canella et al. “A systematic evaluation of transient execution attacks and defenses”, USENIX Security 2019

https://transient.fail


Conclusions and take-away https://foreshadowattack.eu/

⇒ Trusted execution environments are not perfect(!)

⇒ New emerging and powerful class of transient-execution attacks

⇒ Importance of fundamental side-channel research; no silver-bullet defenses

38
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Mitigating Foreshadow



Mitigating Foreshadow

Future CPUs

(silicon-based changes)

https://newsroom.intel.com/editorials/advancing-security-silicon-level/

https://newsroom.intel.com/editorials/advancing-security-silicon-level/


Mitigating Foreshadow

OS kernel updates

(sanitize page frame bits)



Mitigating Foreshadow

Intel microcode updates
 

⇒ Flush L1 cache on enclave/VMM exit + disable HyperThreading

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault


Spectre v1: Speculative buffer over-read

secretuser buffer

• Programmer intention: never access out-of-bounds

memory

• Branch can be mistrained to speculatively (i.e., ahead

of time) execute with idx ≥ LEN in the transient world

• Insert explicit speculation barriers to tell the CPU to

halt the transient world...

• Huge manual, error-prone effort. . .
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