
Privileged Side-Channel Attacks

for Enclave Software Adversaries

Jo Van Bulck

University of Birmingham seminar, February 20, 2020

� imec-DistriNet, KU Leuven Q jo.vanbulck@cs.kuleuven.be 7 jovanbulck

https://distrinet.cs.kuleuven.be/people/jo
mailto:jo.vanbulck@cs.kuleuven.be
https://twitter.com/jovanbulck

About imec-DistriNet enclave research https://distrinet.cs.kuleuven.be/

• Trusted computing across the system stack: hardware, compiler, OS, apps

• Integrated attack-defense perspective and open-source prototypes

Transient execution

[VBMW
+
18, SLM

+
19, CVBS

+
18]

Side-channel attacks

[VBPS17, VBWK
+
17, VBPS18]

Sancus TEE processor

[NVBM
+
17, VBMP17]

1

https://distrinet.cs.kuleuven.be/

˜40 years of computer security research in one picture

A primer on software security

Secure program: convert all input to expected output

INPUT OUTPUT

2

A primer on software security

Buffer overflow vulnerabilities: trigger unexpected behavior

INPUT OUTPUT

2

A primer on software security

Safe languages & formal verification: preserve expected behavior

INPUT OUTPUT

2

A primer on software security

Side-channels: observe side-effects of the computation

INPUT OUTPUT

2

A primer on software security

Constant-time code: eliminate secret-dependent side-effects

INPUT OUTPUT

2

A vulnerable example program and its constant-time equivalent

1 vo i d check pwd (cha r ∗ i n pu t)

2 {
3 f o r (i n t i =0; i < PWD LEN; i++)

4 i f (i n pu t [i] != pwd [i])

5 r e t u r n 0 ;

6

7 r e t u r n 1 ;

8 }

Overall execution time reveals correctness of individual password bytes!

→ reduce brute-force attack from an exponential to a linear effort. . .

3

A vulnerable example program and its constant-time equivalent

1 vo i d check pwd (cha r ∗ i n pu t)

2 {
3 f o r (i n t i =0; i < PWD LEN; i++)

4 i f (i n pu t [i] != pwd [i])

5 r e t u r n 0 ;

6

7 r e t u r n 1 ;

8 }

1 vo i d check pwd (char ∗ i n pu t)

2 {
3 i n t r v = 0x0 ;

4 f o r (i n t i =0; i < PWD LEN; i++)

5 r v |= inpu t [i] ˆ pwd [i] ;

6

7 r e t u r n (r e s u l t == 0) ;

8 }

Rewrite program such that execution time does not depend on secrets

→ manual, error-prone solution; side channels are likely here to stay. . .

3

What’s inside the black box?

4

https://informationisbeautiful.net/visualizations/million-lines-of-code/

https://informationisbeautiful.net/visualizations/million-lines-of-code/

Enclaved execution: Reducing attack surface

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 AppApp

Traditional layered designs: large trusted computing base

5

Enclaved execution: Reducing attack surface

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Intel SGX promise: hardware-level isolation and attestation

5

Enclaved execution: Privileged side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Game-changer: Untrusted OS → new class of powerful side channels!

5

Enclaved execution: Privileged side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Game-changer: Untrusted OS → new class of powerful side channels!

5 Xu et al. “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, IEEE S&P 2015

Enclaved execution: Privileged side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app
IR

Q
 l
a
te

n
c
y 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Instruction (interrupt number)

Game-changer: Untrusted OS → new class of powerful side channels!

5 Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018

Enclaved execution: Privileged side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app
IR

Q
 l
a
te

n
c
y 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Instruction (interrupt number)

Game-changer: Untrusted OS → new class of powerful side channels!

5 Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018

A note on side-channel attacks (Intel) 2016

⇒ Research agenda: systematic understanding of side-channel leakage in TEEs

6 https://software.intel.com/en-us/node/703016

https://software.intel.com/en-us/node/703016

A note on side-channel attacks (Intel) 2018

⇒ Research agenda: systematic understanding of side-channel leakage in TEEs

6 https://intel.com/content/www/us/en/architecture-and-technology/side-channel-variants-1-2-3.html

https://intel.com/content/www/us/en/architecture-and-technology/side-channel-variants-1-2-3.html

A note on side-channel attacks (Intel) 2018

⇒ Research agenda: systematic understanding of side-channel leakage in TEEs

6 https://intel.com/content/www/us/en/architecture-and-technology/side-channel-variants-1-2-3.html

https://intel.com/content/www/us/en/architecture-and-technology/side-channel-variants-1-2-3.html

Evolution of “side-channel attack” occurrences in Google Scholar

1990 1994 1998 2002 2006 2010 2014 2018

3000

4000

2000

1000

DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/7

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

Side-channel attacks and trusted computing

1990 1994 1998 2002 2006 2010 2014 2018

3000

4000

2000

1000

SGX

ARM TrustZone

Sancus

TPM

SMART

Flicker

DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/

7

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

Side-channel attacks and trusted computing (focus of today)

1990 1994 1998 2002 2006 2010 2014 2018

3000

4000

2000

1000

SGX

ARM TrustZone

Sancus

TPM

SMART

Flicker

DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/

7

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

Privileged adversary idea #1

Page tables as a side channel?

8

The virtual memory abstraction

Costan et al. “Intel SGX explained”, IACR 2016

9

Page faults as a side channel

paging unit SGX checkslogical address physical address

• SGX machinery protects against direct address remapping attacks

• . . . but untrusted address translation may fault during enclaved execution (!)

• ⇒ Page fault traces leak private control/data flow

10

Page faults as a side channel

paging unit SGX checks

page fault (#PF)

logical address physical address

• SGX machinery protects against direct address remapping attacks

• . . . but untrusted address translation may fault during enclaved execution (!)

• ⇒ Page fault traces leak private control/data flow

10 Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015

Page faults as a side channel

• SGX machinery protects against direct address remapping attacks

• . . . but untrusted address translation may fault during enclaved execution (!)

• ⇒ Page fault traces leak private control/data flow

10 Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015

#PF attacks: An end-to-end example

1. Revoke access rights on unprotected

enclave page table entry

2. Enter victim enclave

3. Secret-dependent data memory access

↝ Processor reads page table setup by untrusted OS

4. Virtual address not present → raise page fault

↝ Processor exits enclave and vectors to untrusted OS

5. Restore access rights and resume victim enclave

void inc_secret(void)
{
 if (secret)
 *a += 1;
 else
 *b += 1;
}

PTE a

PTE b

P
a
g

e
 T

a
b

le

11

#PF attacks: An end-to-end example

1. Revoke access rights on unprotected

enclave page table entry

2. Enter victim enclave

3. Secret-dependent data memory access

↝ Processor reads page table setup by untrusted OS

4. Virtual address not present → raise page fault

↝ Processor exits enclave and vectors to untrusted OS

5. Restore access rights and resume victim enclave

void inc_secret(void)
{
 if (secret)
 *a += 1;
 else
 *b += 1;
}

PTE a

PTE b

P
a
g

e
 T

a
b

le

UNMAP

11

#PF attacks: An end-to-end example

1. Revoke access rights on unprotected

enclave page table entry

2. Enter victim enclave

3. Secret-dependent data memory access

↝ Processor reads page table setup by untrusted OS

4. Virtual address not present → raise page fault

↝ Processor exits enclave and vectors to untrusted OS

5. Restore access rights and resume victim enclave

void inc_secret(void)
{
 if (secret)
 *a += 1;
 else
 *b += 1;
}

PTE a

PTE b

P
a
g

e
 T

a
b

le

EENTER

11

#PF attacks: An end-to-end example

1. Revoke access rights on unprotected

enclave page table entry

2. Enter victim enclave

3. Secret-dependent data memory access

↝ Processor reads page table setup by untrusted OS

4. Virtual address not present → raise page fault

↝ Processor exits enclave and vectors to untrusted OS

5. Restore access rights and resume victim enclave

void inc_secret(void)
{
 if (secret)
 *a += 1;
 else
 *b += 1;
}

PTE a

PTE b

P
a
g

e
 T

a
b

le

Address

translation

11

#PF attacks: An end-to-end example

1. Revoke access rights on unprotected

enclave page table entry

2. Enter victim enclave

3. Secret-dependent data memory access

↝ Processor reads page table setup by untrusted OS

4. Virtual address not present → raise page fault

↝ Processor exits enclave and vectors to untrusted OS

5. Restore access rights and resume victim enclave

void inc_secret(void)
{
 if (secret)
 *a += 1;
 else
 *b += 1;
}

PTE a

PTE b

P
a
g

e
 T

a
b

le

Page fault

(AEX)

11

#PF attacks: An end-to-end example

1. Revoke access rights on unprotected

enclave page table entry

2. Enter victim enclave

3. Secret-dependent data memory access

↝ Processor reads page table setup by untrusted OS

4. Virtual address not present → raise page fault

↝ Processor exits enclave and vectors to untrusted OS

5. Restore access rights and resume victim enclave

void inc_secret(void)
{
 if (secret)
 *a += 1;
 else
 *b += 1;
}

PTE a

PTE b

P
a
g

e
 T

a
b

le

REMAP

ERESUME

11

Page table-based attacks in practice

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015

⇒ Low-noise, single-run exploitation of legacy applications

12

Page table-based attacks in practice

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015

. . . but at a relative coarse-grained 4 KiB granularity

12

Naive solutions: Hiding enclave page faults

paging unit SGX checks

page fault (#PF)

logical address physical address

Shih et al. “T-SGX: Eradicating controlled-channel attacks against enclave programs”, NDSS 2017

Shinde et al. “Preventing page faults from telling your secrets”, AsiaCCS 2016

13

Naive solutions: Hiding enclave page faults

paging unit SGX checks

page fault (#PF)

logical address physical address

. . . But stealthy attacker can still learn page accesses without triggering faults!

13

Documented side-effects of address translation

14

Telling your secrets without page faults

1. Attack vector: PTE status flags:

• A(ccessed) bit

• D(irty) bit

↝ Also updated in enclave mode!

2. Attack vector: Unprotected page table memory:

• Cached as regular data

• Accessed during address translation

↝ Flush+Reload cache timing attack!

void inc_secret(void)
{
 for (i=0; i < len; i++)
 {
 if (secret[i])
 *a += 1;
 else
 *b += 1;
 }
}

PTE a

PTE b

P
a
g

e
 T

a
b

le

 ACCESSED ?

IRQ/AEX

15 Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017

Telling your secrets without page faults

1. Attack vector: PTE status flags:

• A(ccessed) bit

• D(irty) bit

↝ Also updated in enclave mode!

2. Attack vector: Unprotected page table memory:

• Cached as regular data

• Accessed during address translation

↝ Flush+Reload cache timing attack!

void inc_secret(void)
{
 for (i=0; i < len; i++)
 {
 if (secret[i])
 *a += 1;
 else
 *b += 1;
 }
}

PTE a

PTE b

P
a
g

e
 T

a
b

le

 ACCESSED ?

IRQ/AEX

15 Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017

Attacking Libgcrypt EdDSA (simplified)

gcry_free

...

mpi_test_bit

mpi_ec_add_p

mpi_ec_mul_p

0x0F000

0xC0000

0xC1000

mpi_add

0xC9000

0xCA000

...

...

...

22 Code pages
per iteration

Memory layout

16 Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017

Attacking Libgcrypt EdDSA (simplified)

gcry_free

...

mpi_test_bit

mpi_ec_add_p

mpi_ec_mul_p

0x0F000

0xC0000

0xC1000

mpi_add

0xC9000

0xCA000

...

...

...

 ACCESSED ?

Memory layout

Monitor
trigger page

16 Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017

Attacking Libgcrypt EdDSA (simplified)

gcry_free

...

mpi_test_bit

mpi_ec_add_p

mpi_ec_mul_p

0x0F000

0xC0000

0xC1000

mpi_add

0xC9000

0xCA000

...

...

...

INTERRUPT

Memory layout

16 Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017

Attacking Libgcrypt EdDSA (simplified)

gcry_free

...

mpi_test_bit

mpi_ec_add_p

mpi_ec_mul_p

0x0F000

0xC0000

0xC1000

mpi_add

0xC9000

0xCA000

...

...

...

 ACCESSED ?

 ACCESSED ?

Record page set
0011

Memory layout

16 Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017

Attacking Libgcrypt EdDSA (simplified)

gcry_free

...

mpi_test_bit

mpi_ec_add_p

mpi_ec_mul_p

0x0F000

0xC0000

0xC1000

mpi_add

0xC9000

0xCA000

...

...

...

RESUME

Full 512-bit key recovery, single run

Memory layout

16 Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017

Privileged adversary idea #2

Interrupts as a side channel?

17

Back to basics: Fetch-decode-execute

Elementary CPU behavior: stored program computer

Fetch Decode Execute

Jump?PC++

yes

no

Variable instruction latency

18

Back to basics: Fetch-decode-execute

Interrupts: asynchronous real-world events, handled on instruction retirement

Fetch Decode Execute

IRQ?Jump?PC++

Secure IRQ logicPC = IVT[irq]

no

yesyes

no

Variable instruction latency

18

Back to basics: Fetch-decode-execute

Timing leak: IRQ response time depends on current instruction(!)

Fetch Decode Execute

IRQ?Jump?PC++

Secure IRQ logicPC = IVT[irq]

no

yesyes

no

Variable instruction latency

18

Wait a cycle: Interrupt latency as a side channel

CLK

CMD NOP IRQ logic ISR

IRQ

CMD ADD IRQ logic ISR

IRQ

if (secret){ ADD @R5+, R6;} // 2 cycles
else { NOP; NOP; } // 2*1 cycle

19 Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018

Attacking a Sancus application with interrupt latency

20 Van Bulck et al. “VulCAN: Vehicular component authentication and software isolation”, ACSAC 2017

Attacking a Sancus application with interrupt latency

Driver enclave: 16-bit vector indicates which keys are down

0100000000000000
traverse bits

PIN code enclave

20

Attacking a Sancus application with interrupt latency

Attacker: Interrupt conditional control flow to infer secret PIN

Key 'B' was pressed!

0100000000000000
traverse bits

IRQ

PIN code enclave

20

Sancus IRQ timing attack: Inferring key strokes

1

4

IR
Q

 l
a
te

n
c
y

Instruction (interrupt number)

Enclave x-ray: Start-to-end trace enclaved execution

21 Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018

Sancus IRQ timing attack: Inferring key strokes

1

4

IR
Q

 l
a
te

n
c
y 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Instruction (interrupt number)

Enclave x-ray: Keymap bit traversal (ground truth)

21 Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018

Sancus IRQ timing attack: Inferring key strokes

1

4

IR
Q

 l
a
te

n
c
y 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

2

3

4
IR

Q
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Instruction (interrupt number)

0 (no press) 1 (key pressed) 0 (no press)

21 Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018

Does this also work for Intel SGX enclaves?

22 https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop

Building a precise single-stepping primitive

SGX-Step goal: executing enclaves one instruction at a time

Challenge: we need a very precise timer interrupt:

/ x86 hardware debug features disabled in enclave mode

, . . . but we have root access!

⇒ Setup user-space virtual memory mappings for x86 APIC

23 Van Bulck et al. “SGX-Step: A practical attack framework for precise enclave execution control”, SysTEX 2017

Building a precise single-stepping primitive

SGX-Step goal: executing enclaves one instruction at a time

Challenge: we need a very precise timer interrupt:

/ x86 hardware debug features disabled in enclave mode

, . . . but we have root access!

⇒ Setup user-space virtual memory mappings for x86 APIC

23 Van Bulck et al. “SGX-Step: A practical attack framework for precise enclave execution control”, SysTEX 2017

SGX-Step: Executing enclaves one instruction at a time

User-space attack primitives: APIC timer + interrupt handling ,

SGX-Step

user space

4 ERESUME

24 https://github.com/jovanbulck/sgx-step

https://github.com/jovanbulck/sgx-step

SGX-Step: Executing enclaves one instruction at a time

24 https://github.com/jovanbulck/sgx-step

https://github.com/jovanbulck/sgx-step

Microbenchmarks: Measuring Intel x86 instruction latencies

Latency distribution: 10,000 samples from benchmark enclave

IRQ latency (cycles)

F
re

q
u

e
n

c
y

nop

add rdrandfscalelfence

25

Microbenchmarks: Measuring Intel x86 instruction latencies

Timing leak: reconstruct instruction latency class

IRQ latency (cycles)

F
re

q
u

e
n

c
y

nop

add rdrandfscalelfence

25

Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Start-to-end trace enclaved execution

Instruction (interrupt number)

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

26

Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Spotting high-latency instructions

Instruction (interrupt number)

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

rdrand (generate stack canary on enclave entry)

26

Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Zooming in on bsearch function

Instruction (interrupt number)

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

26

De-anonymizing enclave lookups with interrupt latency

Binary search: Find 40 in {20, 30, 40, 50, 80, 90, 100}

27

De-anonymizing enclave lookups with interrupt latency

Adversary: Infer secret lookup in known array

left

right

hit

27

De-anonymizing enclave lookups with interrupt latency

Goal: Infer lookup → reconstruct bsearch control flow

7800

7950

Interrupt (instruction number)

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

27

De-anonymizing enclave lookups with interrupt latency

Goal: Infer lookup → reconstruct bsearch control flow

7800

7950

Interrupt (instruction number)

Left Right Hit

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

27

De-anonymizing enclave lookups with interrupt latency

⇒ Sample instruction latencies in secret-dependent path

7800

7950

Interrupt (instruction number)

HLLL LLHL HHHH

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

27

Privileged adversary idea #3

Page tables revisited: transient execution?

28

Enclaved execution: Side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Untrusted OS → new class of powerful side channels

29 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018

Enclaved execution: Transient-execution attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Trusted CPU → exploit microarchitectural bugs/design flaws

29 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018

https://xkcd.com/1938

https://xkcd.com/1938

Key finding of 2018

• CPU executes ahead of time in transient world

• Use side channels to reconstruct secrets!

Meltdown: Transiently encoding unauthorized memory

Unauthorized access

31

Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

s
e
c
re

t
id

x

31

Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window Exception

(discard architectural state)

31

Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

cache hit

Exception handler

31

Rumors: Meltdown immunity for SGX enclaves?

“[enclaves] remain protected and completely secure”

— International Business Times, February 2018

“[enclave memory accesses] redirected to an abort page, which has no value”

— Anjuna Security, Inc., March 2018

32

https://web.archive.org/web/20180617022540/https://www.ibtimes.co.uk/meltdown-melted-down-everything-except-one-thing-1663785
https://web.archive.org/web/20180720144203/https://www.anjuna.io/blog/2018/2/7/meltdown-spectre-sgx

Rumors: Meltdown immunity for SGX enclaves?

https://wired.com and https://arstechnica.com

32

https://wired.com
https://arstechnica.com

Building Foreshadow: Evade SGX abort page semantics

Note: SGX MMU sanitizes untrusted address translation

SGX?

Abort page semantics:
An attempt to read from a non-existent or disallowed resource returns all ones for data
(abort page). An attempt to write to a non-existent or disallowed physical resource is
dropped. This behavior is unrelated to exception type abort (the others being Fault and Trap).

https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-development-basics
35 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018

https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-development-basics

Building Foreshadow: Evade SGX abort page semantics

Straw man: (Transient) accesses in non-enclave mode are dropped

SGX?

Abort page semantics:
An attempt to read from a non-existent or disallowed resource returns all ones for data
(abort page). An attempt to write to a non-existent or disallowed physical resource is
dropped. This behavior is unrelated to exception type abort (the others being Fault and Trap).

https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-development-basics

35 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018

https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-development-basics

Building Foreshadow: Evade SGX abort page semantics

Stone man: Bypass abort page via untrusted page table

SGX?

Xu et al. “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, IEEE S&P 2015

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017

35 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018

Building Foreshadow: Evade SGX abort page semantics

Stone man: Bypass abort page via untrusted page table

SGX?

mprotect(secret_ptr & 0xFFF, 0x1000, PROT_NONE);

Unprivileged system call

35 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018

Foreshadow-NG: Breaking the virtual memory abstraction

PT
walk?

L1D

vadrs

padrs

Tag?

CPU micro-architecture

L1 cache design: Virtually-indexed, physically-tagged

36

Foreshadow-NG: Breaking the virtual memory abstraction

PT
walk?

L1D

vadrs

padrs

Tag?

CPU micro-architecture

Page fault: Early-out address translation

36

Foreshadow-NG: Breaking the virtual memory abstraction

PT
walk?

L1D

vadrs

CPU micro-architecture

padrs

Tag? Pass to out-of-order

L1-Terminal Fault: match unmapped physical address (!)

36

Foreshadow-NG: Breaking the virtual memory abstraction

PT
walk?

L1D

vadrs

CPU micro-architecture

padrs

Tag? Pass to out-of-order

SGX?

Foreshadow-SGX: bypass enclave isolation

36

Foreshadow-NG: Breaking the virtual memory abstraction

PT
walk?

L1D

vadrs

CPU micro-architecture

Tag? Pass to out-of-order

SGX?
EPT

walk?

host
padrs

guest
padrs

Foreshadow-VMM: bypass virtual machine isolation

36

Research challenges: Universal classification and understanding https://transient.fail

Transient cause

Spectre-type

Meltdown-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Meltdown-NM-REG

Meltdown-PF

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK-L1

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

Meltdown-CPL-REG

Meltdown-NC-SB

Meltdown-AD

Meltdown-AVX-LP

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-AD-LFB

Meltdown-AD-SB

37 Canella et al. “A systematic evaluation of transient execution attacks and defenses”, USENIX Security 2019

https://transient.fail

Conclusions and take-away https://foreshadowattack.eu/

⇒ Trusted execution environments are not perfect(!)

⇒ New emerging and powerful class of transient-execution attacks

⇒ Importance of fundamental side-channel research; no silver-bullet defenses

38

https://foreshadowattack.eu/

Appendix

References i

C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,

F. Piessens, D. Evtyushkin, and D. Gruss.

A systematic evaluation of transient execution attacks and defenses.

arXiv preprint arXiv:1811.05441, 2018.

J. Noorman, J. Van Bulck, J. T. Mühlberg, F. Piessens, P. Maene, B. Preneel,

I. Verbauwhede, J. Götzfried, T. Müller, and F. Freiling.

Sancus 2.0: A low-cost security architecture for IoT devices.

ACM Transactions on Privacy and Security (TOPS), 20(3):7:1–7:33, 2017.

References ii

M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher, and

D. Gruss.

ZombieLoad: Cross-privilege-boundary data sampling.

In CCS, 2019.

J. Van Bulck, J. T. Mühlberg, and F. Piessens.

VulCAN: Efficient component authentication and software isolation for

automotive control networks.

In Annual Computer Security Applications Conference (ACSAC), 2017.

References iii

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,

M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx.

Foreshadow: Extracting the keys to the Intel SGX kingdom with transient

out-of-order execution.

In Proceedings of the 27th USENIX Security Symposium, 2018.

J. Van Bulck, F. Piessens, and R. Strackx.

SGX-Step: A practical attack framework for precise enclave execution

control.

In SysTEX, pp. 4:1–4:6, 2017.

References iv

J. Van Bulck, F. Piessens, and R. Strackx.

Nemesis: Studying microarchitectural timing leaks in rudimentary cpu

interrupt logic.

In ACM CCS 2018, 2018.

J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx.

Telling your secrets without page faults: Stealthy page table-based attacks

on enclaved execution.

In Proceedings of the 26th USENIX Security Symposium, pp. 1041–1056, 2017.

Mitigating Foreshadow

Mitigating Foreshadow

Future CPUs

(silicon-based changes)

https://newsroom.intel.com/editorials/advancing-security-silicon-level/

https://newsroom.intel.com/editorials/advancing-security-silicon-level/

Mitigating Foreshadow

OS kernel updates

(sanitize page frame bits)

Mitigating Foreshadow

Intel microcode updates

⇒ Flush L1 cache on enclave/VMM exit + disable HyperThreading

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault

Spectre v1: Speculative buffer over-read

secretuser buffer

• Programmer intention: never access out-of-bounds

memory

• Branch can be mistrained to speculatively (i.e., ahead

of time) execute with idx ≥ LEN in the transient world

• Insert explicit speculation barriers to tell the CPU to

halt the transient world...

• Huge manual, error-prone effort. . .

Spectre v1: Speculative buffer over-read

secretuser buffer

• Programmer intention: never access out-of-bounds

memory

• Branch can be mistrained to speculatively (i.e., ahead

of time) execute with idx ≥ LEN in the transient world

• Insert explicit speculation barriers to tell the CPU to

halt the transient world...

• Huge manual, error-prone effort. . .

Spectre v1: Speculative buffer over-read

secretuser buffer

• Programmer intention: never access out-of-bounds

memory

• Branch can be mistrained to speculatively (i.e., ahead

of time) execute with idx ≥ LEN in the transient world

• Insert explicit speculation barriers to tell the CPU to

halt the transient world...

• Huge manual, error-prone effort. . .

Spectre v1: Speculative buffer over-read

secretuser buffer

• Programmer intention: never access out-of-bounds

memory

• Branch can be mistrained to speculatively (i.e., ahead

of time) execute with idx ≥ LEN in the transient world

• Insert explicit speculation barriers to tell the CPU to

halt the transient world...

• Huge manual, error-prone effort. . .

	Appendix
	Appendix

