
Nemesis: Studying Microarchitectural Timing Leaks in
Rudimentary CPU Interrupt Logic

Jo Van Bulck

imec-DistriNet, KU Leuven

jo.vanbulck@cs.kuleuven.be

Frank Piessens

imec-DistriNet, KU Leuven

frank.piessens@cs.kuleuven.be

Raoul Strackx

imec-DistriNet, KU Leuven

raoul.strackx@cs.kuleuven.be

ABSTRACT

Recent research on transient execution vulnerabilities shows that

current processors exceed our levels of understanding. The promi-

nent Meltdown and Spectre attacks abruptly revealed fundamental

design flaws in CPU pipeline behavior and exception handling logic,

urging the research community to systematically study attack sur-

face from microarchitectural interactions.

We present Nemesis, a previously overlooked side-channel at-

tack vector that abuses the CPU’s interrupt mechanism to leak

microarchitectural instruction timings from enclaved execution

environments such as Intel SGX, Sancus, and TrustLite. At its core,

Nemesis abuses the same subtle microarchitectural behavior that

enables Meltdown, i.e., exceptions and interrupts are delayed until

instruction retirement. We show that by measuring the latency

of a carefully timed interrupt, an attacker controlling the system

software is able to infer instruction-granular execution state from

hardware-enforced enclaves. In contrast to speculative execution

vulnerabilities, our novel attack vector is applicable to the whole

computing spectrum, from small embedded sensor nodes to high-

end commodity x86 hardware.We present practical interrupt timing

attacks against the open-source Sancus embedded research proces-

sor, and we show that interrupt latency reveals microarchitectural

instruction timings from off-the-shelf Intel SGX enclaves. Finally,

we discuss challenges for mitigating Nemesis-type attacks at the

hardware and software levels.

CCS CONCEPTS

• Security and privacy→ Side-channel analysis and counter-

measures;

KEYWORDS

Controlled-channel; microarchitecture; enclave; SGX; Meltdown

ACM Reference Format:

Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Nemesis: Studying

Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic. In

CCS ’18: 2018 ACM SIGSAC Conference on Computer & Communications
Security, Oct. 15–19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA,

18 pages. https://doi.org/10.1145/3243734.3243822

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00

https://doi.org/10.1145/3243734.3243822

1 INTRODUCTION

Information security is essential in a world with a growing num-

ber of ever-connected embedded sensor nodes, mixed-criticality

systems, and remote cloud computing services. Today’s computing

platforms isolate software components belonging to different stake-

holders with the help of a sizeable privileged software layer, which

in turn may be vulnerable to both logical bugs and low-level vulner-

abilities. In response to these concerns, recent research and industry

efforts developed Protected Module Architectures (PMAs) [45, 66]

to safeguard security-sensitive application components or enclaves
from an untrusted operating system. PMAs enforce isolation and

attestation primitives directly in hardware, or in a small hypervisor,

so as to ensure protected execution with a minimal Trusted Comput-

ing Base (TCB). The untrusted operating system is prevented from

accessing enclaved code or data directly, but continues to manage

shared platform resources such as system memory or CPU time.

Enclaved execution is a particularly promising security paradigm in

that it has been explicitly applied to establish trust in both low-end

embedded microcontrollers [7, 15, 16, 41, 53, 68] as well as in higher-

end desktop and server processors [14, 17, 33, 46, 47, 65]. With the

arrival of the Software Guard eXtensions (SGX) [3, 48] in recent

Intel x86 processors, strong hardware-enforced PMA guarantees

are now available on mainstream consumer hardware.

PMAs pursue a black box view on protected modules. That is, a

kernel-level attacker should only be able to observe input-output

behavior, and is prevented from accessing a module’s private mem-

ory directly. While such interactions are generally well-understood

at the architectural level, including successful TCB verification ef-

forts [19, 39], enclave-internal behavior may still leak through the

CPU’s underlying microarchitectural state. Over the past decade,

microarchitectural side-channels have received considerable atten-

tion from academics [2, 23, 58, 80], but their disruptive real-world

impact only recently became clear with the Meltdown [44], Spec-

tre [40], and Foreshadow [71] attacks that rely on side-channels

to steal secrets from the microarchitectural transient execution

domain. We therefore argue that it is essential for the research

community to deepen its understanding in microarchitectural CPU

behavior and to identify potential side-channel attack vectors. In

this respect, recent research on controlled-channels [79] has shown
that conventional side-channel analysis changes drastically when

PMAs are targeted, for the operating system itself has become an

untrusted agent. The increased attacker capabilities bring about

two major consequences.

First, with an untrusted operating system, an adversary gains

full control over the unprotected part of the application, and over

system events such as interrupts, page faults, cache flushes, sched-

uling decisions, etc. These types of events introduce considerable

noise in traditional cross-application, or even cross-virtual machine

https://doi.org/10.1145/3243734.3243822
https://doi.org/10.1145/3243734.3243822

side-channels. Noise is traditionally compensated for with statis-

tical analysis over data acquired from multiple runs of the victim

program. In a controlled-channel setting on the other hand, one

prevailing research line is exploring the possibility of amplifying
conventional side-channels so as to extract sensitive information

in a single run, with limited noise. Recent work on Intel SGX plat-

forms has practically demonstrated such side-channel amplification

for the usual suspects: CPU caches [8, 25, 31, 51, 62] and branch

prediction machinery [18, 42]. These results have prompted Intel to

release an official statement, arguing that “in general, these research

papers do not demonstrate anything new or unexpected” [38].

A second, more profound consequence of the PMA attacker

model, however, is the emergence of an entirely new class of side-

channels that were never considered relevant before. To date only

page table-based attacks [64, 75, 77, 79] have been identified as one

such innovative controlled-channel for high-end MMU-based archi-

tectures. By carefully revoking access rights on protected memory

pages and observing the associated page accesses, an adversar-

ial operating system is able to extract large amounts of sensitive

data (cryptographic keys, full text, and images) from SGX enclaves.

Several authors [13, 20, 43, 67, 70, 74] have since expressed their

concerns on controlled-channel vulnerabilities in a PMA setting.

An important research question therefore is to determine which

novel controlled-channels exist, and to what extent they endanger

the PMA protection model.

This paper contributes to answering this question. We present an

innovative class of Nemesis
1
controlled-channel attacks that exploit

subtle timing differences in the rudimentary fetch-decode-execute

operation of programmable instruction set processors. We abuse

the key microarchitectural property that hardware interrupts/faults

are only served upon instruction retirement, after the currently
executing instruction has completed, which can take a variable

amount of CPU cycles depending on the instruction type and the

microarchitectural state of the processor. Where Meltdown-type

“fault latency” attacks [44, 71] exploit this time window in modern

out-of-order processors to transiently leak unauthorized memory

through a microarchitectural covert channel, Nemesis-type inter-

rupt latency attacks abuse a more fundamental observation that

equally affects non-pipelined processors. Namely, that delaying

interrupt handling until instruction retirement introduces a subtle

timing difference that by itself reveals side-channel information

about the interrupted instruction and the microarchitectural state

when the interrupt request arrived. Intuitively, an untrusted operat-

ing system can exploit this timing measurement when interrupting

enclaved instructions to differentiate between secret-dependent pro-

gram branches, or to extract information for different side-channel

analyses (e.g., trace-driven cache [1], address translation [75], or

false dependency [50] timing attacks).

We are the first to recognize the threat caused by instruction

set architectures with variable interrupt latency. Previous PMA

research has overlooked this subtle attack vector, claiming for in-

stance that “timing of external interrupts does not depend on se-

crets within compartments, and does not leak confidential infor-

mation” [20]. We show that Nemesis attacks affect a wide range of

1
From the ancient Greek goddess of retribution who inevitably intervenes to balance

out good and evil; an inescapable agent much like a pending interrupt request.

security architectures, covering the whole computing spectrum. In

this, we are the first to identify a remotely exploitable microarchitec-

tural side-channel vulnerability that is both applicable to embedded,

as well as higher-end enclaved execution environments.

Summarized, the main contributions of this paper are:

• We leverage interrupt latency as a novel, non-conventional

side-channel to extract information from enclaved applica-

tions, thereby advancing microarchitectural understanding.

• We present the first controlled-channel attack vector for

embedded enclaved execution processors, and extract full

application secrets in practical Sancus attack scenarios.

• We provide clear evidence that interrupt latency reveals

microarchitectural instruction timings on modern Intel SGX

processors, and illustrate Nemesis’s increased instruction-

granular potential in macrobenchmark evaluation scenarios.

• We explain how naive hardware-level defense strategies can-

not defend against advanced Nemesis-style interrupt attack

variants, demonstrating the consequential impact of our find-

ings for provably side-channel resistant processors.

Our attack framework and evaluation scenarios are available as

free software at https://github.com/jovanbulck/nemesis.

2 BACKGROUND AND BASIC ATTACK

We first refine the threat model and the class of security architec-

tures affected by our side-channel. Next, we explain how interrupt

latency can be leveraged in ideal conditions to extract sensitive

data from secure enclaves.

2.1 Attacker Model and Assumptions

The adversary’s goal is to derive information regarding the internal

state of an enclaved application. In this respect, trusted computing

solutions including Intel SGX have been explicitly put forward to

protect sensitive computations on an untrusted attacker-owned

platform, both in an untrustworthy cloud environment [6, 61],

as well as to enforce enterprise right management on consumer

hardware [32, 56]. Analogous to previous enclaved execution at-

tacks [30, 42, 75, 79], we therefore consider an adversary with

(i) access to the (compiled) source code of the victim application,

and (ii) full control over the Operating System (OS) and unpro-

tected application parts. This means she can modify BIOS options,

load kernel drivers, configure hardware devices such as timers,

and control scheduling decisions. Note that although PMAs can be

leveraged [26, 61] to protect the confidentiality of sensitive code,

this is not the default case in the security architectures analyzed in

this work and for many of the PMA use cases [6, 32, 66].

At the architectural level, we assume the untrusted OS can se-

curely interrupt and resume enclaves. Such interruptible isolated ex-

ecution is supported by a wide range of mature embedded [7, 15, 41]

as well as higher-end [14, 17, 33, 48, 65] PMAs that employ a trusted

security monitor to preserve the confidentiality and integrity of

a module’s internal state in the presence of asynchronous inter-

rupt events. In this paper we focus exclusively on hardware-level

security monitors, but our timing channel may also be relevant

for architectures where enclave interruption proceeds through a

small trusted software layer [7, 14, 19, 33]. We assume that enclaves

can be interrupted repeatedly within the same run, and for the

https://github.com/jovanbulck/nemesis

Fetch Decode Execute

IRQ?Jump?PC++

Secure IRQ logicPC = IDT[irq]

no

yes

yes

no

Figure 1: A processor fetches, decodes, and executes the in-

struction referred by the Program Counter (PC) register.

Intel SGX application scenarios, can be made to process the same

secret-dependent input repeatedly over multiple invocations.

Importantly, in contrast to previous controlled-channel attacks

referenced above, our attack vector does not necessarily require

advanced microarchitectural CPU features, such as paging, caching,

branch prediction, or out-of-order execution. Instead, Nemesis-

type interrupt timing attacks only assume a generic stored program

computer with a multi-cycle instruction set, where each individual

instruction is uninterruptible (i.e., executes to completion). This

is the most widespread case for major embedded (e.g., TI MSP430,

Atmel AVR) as well as higher-end (e.g., x86, openRISC, RISC-V)

instruction set architectures.

2.2 Fetch-Decode-Execute Operation

Figure 1 summarizes the basic operational process of a CPU, tradi-

tionally referred to as the fetch-decode-execute operation. A dedi-

cated Program Counter (PC) register holds the address of the next

instruction to fetch from memory. PC is automatically incremented

after every instruction in the program, and can be explicitly changed

by means of jump instructions. Hardware devices furthermore have

the ability to halt execution of the current program by means of

Interrupt Requests (IRQs) that notify the processor of some asyn-

chronous external event that requires immediate attention. When-

ever the current instruction has completed, before fetching the next

one, the processor checks if there are IRQs pending. If so, the PC is

loaded from a predetermined location in the Interrupt Descriptor

Table (IDT) that holds the address of the corresponding Interrupt

Service Routine (ISR). Typical processor architectures only take

care of storing the minimal execution context (e.g., PC and sta-

tus register) before vectoring to the ISR. The trusted OS interrupt

handling code then stores any remaining CPU registers as needed.

However, when interrupting a protected module, the PMA hard-

ware is responsible to securely store and clear all CPU registers,

which is abstracted in the “secure IRQ logic” block of Fig. 1.

While the simplified fetch-decode-execute description above is

representative for a class of low-end CPUs such as the TI MSP430

[69], optimizations found in modern higher-end processors consid-

erably increase the complexity. A pipelined architecture improves

throughput by parallelizing the fetch-decode-execute stages of sub-

sequent instructions. In case of a complex instruction set such as

Intel x86 [13, 36], individual instructions are first split into smaller

micro-ops during the decode stage. Thereafter, an out-of-order en-

gine schedules the micro-ops to available execution units, which

may be duplicated to further increase parallelism. To minimize

pipeline stalls from program branches, the processor will try to pre-

dict the outcome of conditional jumps. Simultaneousmultithreading

CLK

2 execute cycles hardware latency ∆TSC

INS JZ INST1 IRQ logic ISR

IRQ
TSC x x+1 x+2 x+2+1 . . . x+y+2 x+y+3

3 execute cycles hardware latency

INS JZ INST2 IRQ logic ISR

IRQ
TSC x x+1 x+2 x+3 x+3+1 . . . x+y+3 x+y+4

Figure 2: Interrupt latency leaks information about the in-

struction that was executing at the time of IRQ arrival.

technology can interleave the execution of multiple independent

instruction streams on the same physical CPU core to maximize

the use of available execution units. Repeated memory accesses are

furthermore sped up by means of an intricate cache hierarchy for

among others micro-ops, instructions, data, and address transla-

tion. However, despite all these optimizations, Intel [36] confirms

that the basic property remains that “all interrupts are guaranteed

to be taken on an instruction boundary [. . .] located during the

retirement phase of instruction execution”.

2.3 Basic Nemesis Attack

We consider processors that serve interrupts after the execute stage

has completed,
2
which can take multiple clock cycles depending

on the microarchitectural behavior of the instruction. Our attacks

are based on the key observation that an IRQ during a multi-cycle
instruction increases the interrupt latency with the number of cycles
left to execute – where interrupt latency is defined as the number of

clock cycles between arrival of the hardware IRQ and execution of

the first instruction in the software ISR. When interrupt arrival time

is known (e.g., generated by a timer), untrusted system software can

infer the duration of the interrupted instruction from a timestamp

obtained on ISR entry.

Figure 2 illustrates our basic attack for an enclaved execution

that branches on a secret. After the conditional jump jz in the victim
enclave, either the two-cycle instruction inst1 or the three-cycle
instruction inst2 is executed. In an ideal environment, a kernel-

level attacker proceeds as follows to determine private control

flow. First, before executing the enclave, a cycle-accurate timer is

configured to schedule an IRQ at the beginning of the first clock

cycle x + 1 after the conditional jump instruction. Next, the enclave

is entered and the timer fires, interrupting either inst1 or inst2.
After instruction completion, the secure hardware stores and clears

protected execution state, and hands over control to the untrusted

interrupt handler code. Here, the adversary compares the value

of a timestamp counter with the known IRQ arrival time to yield

a timing difference of one clock cycle, depending on whether the

conditional jump in the enclaved execution was taken or not.

The above scenario is a clear example of how an untrusted OS

can leverage interrupt latency to break the black box view on

2
While not the focus of this paper, there are also issues with cancelling the currently

executing instruction upon IRQ arrival, as outlined in Section 6.

protected modules. In line with previous enclaved execution at-

tacks [8, 42, 75, 79], Nemesis-type interrupt timing attacks exploit

secret-dependent control flow. Specifically, we require a different

execution time for at least one instruction in the if/else branch. The

adversary furthermore relies on (i) a timer device capable of gen-

erating cycle-accurate IRQs, and (ii) a Time Stamp Counter (TSC)

peripheral that is incremented every CPU cycle. The main difficulty

for a successful attack lies in determining a suitable timer value

so as to interrupt the instruction of interest. This is non-trivial in

that it requires one to predict the duration between the moment

the timer is configured and the desired interruption point. For rea-

sons pointed out above, it is challenging to precisely predict the

execution time of an instruction stream on modern processors. We

present our approach to configuring the timer and dealing with

noise in Section 4.

Note that IRQ latency measurements capture an instruction-

granular measurement of the CPU’s microarchitectural state, such

that the instruction opcode (inst1 vs. inst2) is only one of many

properties that influence latency on modern processors. We will

show in Section 5 that Nemesis adversaries can also distinguish

instructions based on for instance CPU caching behavior, address

translation, or data operand dependencies.

3 CASE STUDY PLATFORMS AND ATTACKS

We implemented and evaluated Nemesis-type interrupt timing at-

tacks for both a representative embedded, as well as for an off-the-

shelf higher-end enclaved execution processor. To illustrate the

wide applicability of conditional control flow side-channel attacks,

beyond common cryptographic key extraction [25, 51, 62, 64, 75],

we follow a line of enclaved execution attacks [8, 31, 42, 74, 79] that

target non-cryptographic case study applications. Such applications

cannot be hardened straightforwardly using vetted crypto libraries,

as secrets are generally non-trivial to identify and conditional con-

trol flow is more prevalent plus harder to eliminate.

3.1 Sancus and Embedded PMAs

Given the rise of tiny embedded devices in recent years, a new

line of research [7, 16, 41, 53, 68] employs a lightweight program

counter based memory isolation technique to secure small micro-

controllers that lack hardware support for established security mea-

sures, such as virtual memory and processor privilege levels. The

Sancus [53, 55] research prototype extends the memory access logic

and instruction set of a low-end TI MSP430 microcontroller to allow

the creation, authentication, and destruction of enclaved software

modules with a hardware-only TCB. Furthermore, enclaves resid-

ing on the same device can securely link to each other using caller

and callee authentication primitives. A dedicated LLVM-based C

compiler hides low-level concerns such as secure linking, inter-

module calling conventions, and private call stack switching by

inserting short assembly code stubs to be executed whenever an

enclave is entered or exited. Finally, recent research [54, 72] has

shown that, in contrast to Intel SGX platforms, Sancus’ memory

isolation primitive can also be used to provide software enclaves

with exclusive access to Memory-Mapped I/O (MMIO) hardware

peripheral devices. However, since Sancus enclaves only feature

a single contiguous private data section, secure I/O on Sancus re-

quires the use of a small driver module entirely written in assembly

code, using only registers for data storage.

The original Sancus architecture presumes uninterruptible iso-

lated execution. Secure interruption of hardware-enforced embed-

ded software modules was pioneered by the TrustLite [41] PMA.

More specifically, TrustLite modifies the processor to push all CPU

registers onto the private call stack of the interrupted module, be-

fore clearing them and vectoring to the untrusted ISR. Subsequent

research [15] has since implemented a comparable hardware-level

interrupt mechanism for a prototypic Sancus-like PMA with a sin-

gle secure domain, and recent work-in-progress [73] reports on

hardware and compiler support for fully interruptible and reentrant

Sancus enclaves. For the work presented in this paper, we have im-

plemented TrustLite’s secure interrupt mechanism as an extension

to the original Sancus architecture. Furthermore, we extended the

compiler-generated entry stubs to restore private execution context

on the next invocation of a previously interrupted enclave.

We selected Sancus as the case study architecture representative

for the lowest end of the computing spectrumwith strict security re-

quirements for mutually distrusting stakeholders. A recent exhaus-

tive PMA overview [45] indicates that Sancus is the only embedded

architecture with a fully open-source
3
hardware design and tool

chain, which allowed us to develop the secure interrupt extensions.

In contrast to modern SGX processors, Sancus’ openMSP430-based

implementation embodies an elementary programmable micro-

controller without advanced architectural features such as paging,

caches, or out-of-order instruction pipelining. Given the simplis-

tic design of the security extensions, as well as the underlying

processor, the existence of remotely exploitable side-channels was

considered rather unlikely by the original designers [52, §7.5.3]. To

the best of our knowledge, we present the first controlled-channel

attack vector for embedded enclaved execution processors.

3.1.1 Bootstrap Loader. We illustrate the applicability of our basic

attack with a code snippet from an actual password comparison

routine in Texas Instruments’ MSP430 serial Bootstrap Loader (BSL)

implementation. The BSL software is executed on platform reset,

and enables remote, in-field firmware updates. To enforce that

only legitimate device owners can reprogram the microcontroller,

sensitive BSL commands are protected with a 32-byte password.

Our first Sancus application scenario employs hardware-enforced

isolation to shield critical BSL password-protected functionality

from untrusted embedded firmware.

cmp.b @r6+, r12
jz 1f
bis #0x40 , r11

1: ...

cmp.b @r6+, r12
jz 1f
bis #0x40 , r11
jmp 2f

1: nop nop nop nop 2: ...

Listing 1: (Un)balanced BSL password comparison.

However, the password comparison routine in some BSL ver-

sions is known to be vulnerable to an execution timing attack [24].

The left hand side of Listing 1 provides the original, actually used

3
https://distrinet.cs.kuleuven.be/software/sancus and https://github.com/sancus-pma

https://distrinet.cs.kuleuven.be/software/sancus
https://github.com/sancus-pma

Figure 3: Secure keypad Sancus application scenario.

assembly code.
4
For clarity we only show the body of the password

comparison loop, where the byte pointed to by r6 is compared with

the value in r12, and a bit in r11 is set to invalidate access when

the comparison fails. Observe that the code is unbalanced in that

the two-cycle bis (bit-set) instruction is only executed for incorrect

password bytes. Hence, an adversary can determine the correctness

of individual bytes by observing the program’s overall execution

time. We close this vulnerability in the hardened version on the

right by balancing the else branch with no-op compensation code,

as previously suggested in literature [11, 60].

We show that, even when executing the balanced password com-

parison routine in a Sancus enclave, untrusted system software

can still learn the correctness of individual password bytes by care-

fully timing interrupts. More specifically, an IRQ arriving in the

first clock cycle after the conditional jump instruction, will either

interrupt the two-cycle bis instruction or the single-cycle nop in-
struction. Hence, depending on the secret password byte, an IRQ

latency difference of one clock cycle will be observed. The hard-

ened routine thus properly closes the timing side-channel at the

architectural assembly code level, but unknowingly introduces a

new one at the microarchitectural level. As such, our elementary

BSL case study serves as a clear demonstration of the additional

attack surface induced by secure interrupts, where adversaries are

no longer restricted to start-to-end timing measurements of the

enclaved computation.

3.1.2 Secure Keypad. Various authors [16, 41, 53, 54, 72] have sug-
gested the use of small PMAs to securely interface embedded plat-

forms with peripheral I/O devices. Our second Sancus application

scenario leverages secure I/O to guarantee the secrecy of a 4-digit

PIN code towards an untrusted embedded operating system.

Figure 3 summarizes the core idea, where the security-sensitive

application logic is implemented in a protected SMsec enclave that

securely links to a dedicated SMdrv assembly enclave to gain ex-

clusive access to the MMIO region of the keypad peripheral, as

explained above. The untrusted OS can only interact with the key-

pad indirectly, through the public interface offered by SMsec . A

single entry point poll_keypad fetches the current key state from

the driver enclave, and processes each bit sequentially. The 16-bit

key state indicates which keys are down, and a static lookup table

is used to translate key numbers to the corresponding characters.

This is similar to a reference implementation for an unprotected

4
Assembly code snippet from BSL v2.12, as published by [24].

MSP430 keypad application by Texas Instruments [49]. To increase

readability, the pseudo code in Fig. 3 omits practical concerns such

as detecting key releases and limiting the length of the PIN code.

We refer the interested reader to Appendix B for the full imple-

mentation, derived from a recently published open-source Sancus

automotive application case study [72].

The keypad has to be polled regularly to detect key presses. For

this, our application scenario relies on the untrusted operating sys-

tem for availability of the CPU time resource. Since the OS is in

control of scheduling decisions, it is allowed to interrupt SMsec at

all times.
5
Our attack exploits key state dependent control flow in

the poll_keypad function. Appendix B provides the full compiler-

generated assembly code, but it suffices to say that the conditional

code path consists of two single-cycle instructions followed by ei-

ther a single-cycle tst or a two-cycle cmp instruction. If we succeed
in timing an IRQ two cycles after the conditional jump, we will

thus observe a difference in interrupt latency of one clock cycle,

depending on whether the private key state bit was set or not. Re-

configuring the timer to repeat the attack in each loop iteration

allows an untrusted ISR to unambiguously determine which keys

were pressed in a single run of SMsec .

3.2 Intel Software Guard eXtensions

Recent Intel x86 processors include Software Guard eXtensions

(SGX) [3, 48] that enable isolated execution of security-critical code

in hardware-enforced enclaves, embedded in the virtual address

space of a conventional OS process. SGX reduces the TCB to the

point where a remote software provider solely has to trust the im-

plementation of her own enclave, plus the underlying processor.

Enclave code is restricted to user space (ring 3), and has access to

all its protected pages, as well as to the unprotected part of the host

application’s address space. Dedicated CPU instructions switch the

processor in and out of enclave mode, where hardware-level access
control logic verifies the output of the untrusted address translation

process to safeguard enclaved pages from outside accesses. The

eenter instruction transfers control from the unprotected appli-

cation context to a predetermined location inside the enclave, and

eexit leaves an enclave programmatically. Alternatively, in case

of a fault or external interrupt, the processor executes an Asyn-

chronous Enclave Exit (AEX) procedure that saves the execution

context securely in a preallocated state save area inside the enclave,

and replaces the CPU registers with a synthetic state to avoid di-

rect information leakage to the untrusted ISR. The AEX procedure

also takes care of pushing a predetermined Asynchronous Exit

Pointer (AEP) on the unprotected call stack, so as to allow the OS

interrupt handler to return transparently to unprotected trampoline

code outside the enclave. From this point, a previously interrupted

enclave can be continued by means of the eresume instruction.

Intel SGX serves as our case study architecture for higher-end

enclaved execution platforms. A modern SGX-enabled CPU imple-

ments the complex x86 instruction set architecture, and includes all

advanced microarchitectural features found in modern processors.

5
Note that Sancus’ secure IRQ logic stores execution state in the protected data section

of the interrupted enclave. For MMIO driver enclaves without general purpose private

data region, our hardware mechanism clears registers without saving them.

Figure 4: Zigzagger branch obfuscation example (from [42]).

3.2.1 Zigzagger Branch Obfuscation. Recent research on branch

shadowing attacks [42] showed that enclaved control flow can be in-

ferred by probing the CPU-internal Branch Target Buffer (BTB) after

interrupting a victim enclave. Given the prevalence of conditional

control flow in existing non-cryptographic applications, this work

also includes a practical compile-time hardening scheme called

Zigzagger. Figure 4 shows how secret-dependent program branches

are translated into an oblivious cmov instruction, followed by a

tight trampoline sequence of unconditional jumps that ends with a

single indirect branch instruction. The key idea behind Zigzagger

is to prohibit probing the BTB for the current branch instruction by

rapidly jumping back and forth between the instrumented code and

the trampoline such that recognizing the current instruction pointer

becomes difficult. It has since been shown, however, that Zigzagger-

instrumented code can be reliably interrupted one instruction at a

time [74], and concurrent research defeated Zigzagger in restricted

circumstances through a segmentation-based side-channel [30].

We will show that even the contained conditional control flow

in Zigzagger-hardened code exhibits definite instruction timing

differences that can be recognized to extract application secrets

from IRQ latency traces. Particularly, to emphasize Nemesis’s in-

creased precision over state-of-the-art SGX attacks, we aligned the

assembly code of Fig. 4 to fit entirely within one cache line, such

that execution paths cannot be distinguished by their correspond-

ing code cache or page access profiles [64]. Our Zigzagger attack

scenario thus illustrates that Nemesis-type interrupt latency attacks

leak microarchitectural timing information at the granularity of

individual instructions, whereas previous controlled-channels only
expose enclaved memory accesses at a relatively coarse-grained

4 KiB page [75, 79] or 64-byte cache line [31, 62] granularity.

3.2.2 Binary Search. Intel SGX technology has been explicitly put

forward for securely offloading privacy-sensitive data analytics to

an untrusted cloud environment [61]. Our second SGX application

scenario considers enclaves that look up secret values in a known

dataset, as it occurs for instance in privacy-friendly contact dis-

covery [57] or DNA sequence processing [8, 76]. In case of the

former, the enclave is provided with a known large list of users,

plus an encrypted smaller list of secret contacts, and is requested to

return only those contacts that occur in the known user list. In case

of the latter, the enclave may lookup values in a public reference

human genome dataset, based on an encrypted secret input tied

to an individual. In both scenarios, adversaries may track control

flow decisions made for instance by the widely used binary search

algorithm to learn (parts of) the secret input. In this respect, binary

search serves as a particularly relevant example for the difficulty

of eliminating conditional control flow in general-purpose enclave

programs. The obvious alternative at the application level, an ex-

haustive scan of the public data, would increase the time complexity

from a logarithmic to a linear effort.

f o r (l im = nmemb ; l im ! = 0 ; l im >>= 1) {
p = base + (l im >> 1) ∗ s i z e ;
cmp = (∗ compare) (key , p) ;
i f (cmp == 0) r e t u r n p ;
i f (cmp > 0) { / ∗ key > p : move r i g h t ∗ /

base = p + s i z e ; l im −−;
} / ∗ e l s e move l e f t ∗ /

}

Listing 2: Binary search routine in Intel SGX Linux SDK.

Listing 2 shows the relevant part of the actual binary search

routine provided by the official Intel SGX Linux SDK. We refer

to Appendix C for the complete unmodified source code, plus a

disassembly of the compiled version. The implementation looks

up a provided key in the sorted array between base and lim by

repeatedly comparing it to the middle value. If the provided key

was found, the function returns. Otherwise, the values of base and

limit are adjusted according to whether the provided key was

greater or smaller than the middle value. We will show that the as-

sembly code paths corresponding to whether the algorithm took the

left, right, or equal branch, manifest subtle yet distinct instruction

latency patterns which are revealed in the extracted IRQ latency

traces. As with the Zigzagger example above, the secret lookup

key is learned even when the array fits entirely within a single

cache line. For larger arrays, motivated adversaries can develop

highly practical hybrid approaches that start with tracking array

indices at a 4-KiB page-level granularity, over to a finer-grained 64-

byte cache line granularity within a page, before finally leveraging

Nemesis’s instruction-granular interrupt timing differences to infer

comparisons within a cache line.

4 IMPLEMENTATION ASPECTS

4.1 Implementation on Sancus Platforms

Our Sancus case study attacks exploit timing differences as subtle

as a single CPU cycle. In order to do so, the timer interrupt has

to arrive at exactly the right time, within the first clock cycle of

the enclaved instruction of interest. There is no room for deviation

here, as a shift of a single cycle may miss the instruction we are

aiming for and corrupt the latency timing difference.

Conveniently, the standard TI MSP430 architecture [69] comes

with a Timer_A peripheral capable of generating cycle-accurate

interrupts. The timer features an internal Timer_A Register (TAR)

that is incremented every clock cycle, and can be configured to

generate an IRQ upon reaching a certain value. After generation

of the interrupt request, Timer_A immediately restarts counting

from zero. Hence, interrupt latency on MSP430 microcontrollers

can be measured trivially by reading TAR as the first instruction

in the ISR. The key to a successful exploit thus comes down to

determining the amount of clock cycles between configuring the

timer, and execution of the instruction of interest in the protected

module. Again, this is relatively straightforward on an MSP430

microcontroller where – in the absence of pipelining and caching

– execution timing is completely deterministic. More specifically,

instruction execution takes between one and six clock cycles, de-

pending on the addressing modes of the source and destination

operands. An MSP430 CPU [69] features seven different addressing

modes, yielding a large variation in possible execution cycles. We

refer to Appendix A for a full instruction timing table.

Careful analysis of the compiled source code thus suffices to es-

tablish appropriate timer configurations for the Sancus application

scenarios. To make our exploits more robust against changes in

the application’s source code, however, we opted for a different

approach where the attacker first deploys a near-exact copy of

the victim module, adjusted to copy the value of TAR in a global

variable directly after execution of the conditional jump of inter-

est. Our practical attack combines the execution timings retrieved

from this “spy” module with predetermined constant parameters

to dynamically configure the timer at runtime.

4.2 IRQ Latency Traces on SGX Platforms

SGX enclave programs are explicitly left interrupt-unaware by de-

sign. While an x86 processor [36] in enclave mode ignores obvious

hardware debug assistance features such as the single-step trap flag

(rflags.tf) or hardware breakpoints, recent research on interrupt-

driven SGX attacks [31, 42, 51, 74] has shown that untrusted OSs

can accurately emulate this behavior by leveraging first-rate control

over timer devices. So far, these attacks have focussed on collecting

side-channel information from frequent enclave preemptions via

the page tables, CPU caches, or the branch prediction unit. We are

the first to recognize, however, that the act of interrupting a victim
enclave in itself leaks microarchitectural instruction timings.

We explain below how we extended and improved a state-of-

the-art enclave single-stepping framework to collect precise in-

terrupt latency measurements from SGX enclaves. The resulting

IRQ latency traces describe the execution time for each subsequent

instruction in the enclaved computation, and can thus be thought

of as an “x-ray” of the microarchitectural processor state and the

code executing in the enclave.

Single-Stepping Enclaved Execution. We based our implementa-

tion on the recently published open-source SGX-Step [74] frame-

work that allows a privileged adversary to precisely “single-step”

enclaves at most one instruction at a time. SGX-Step comes with

a Linux kernel driver to establish convenient user space virtual

memory mappings for enclave Page Table Entries (PTEs) and the

local Advanced Programmable Interrupt Controller (APIC) device.

A very precise single-stepping technique is achieved by writing

to the APIC timer register directly from user space, eliminating

any jitter from kernel context switches in the timer configuration

path [31, 42, 51]. Carefully selecting a platform-specific timer inter-

val ensures that interrupts reliably arrive with a very high probabil-

ity (> 97%) within the first enclaved instruction after eresume [74].

Figure 5: Enhanced SGX-Step framework for precise IRQ la-

tency measurements (blue path) on Intel x86 platforms.

While SGX-Step allows APIC interrupts to be sent from a ring 3

user space process, the original framework still vectors to a conven-

tional ring 0 kernel space interrupt handler. Execution will eventu-

ally return to the user space AEP stub where the single-stepping

adversary collects side-channel information, and configures the

local APIC timer for the next interrupt before resuming the enclave.

This approach suffices to amplify conventional side-channels, but

subtle microarchitectural timing differences can be affected by noise

from kernel space interrupt handling code, privilege level switches,

and cache pollution [31, 51]. As such, precisely measuring inter-

rupt latency on Intel x86 platforms presents a substantial challenge

over state-of-the-art enclave execution control approaches. As an

important contribution, we therefore extended SGX-Step to handle

interrupts completely within user space, without ever having to

vector to the kernel.

Figure 5 summarizes our improved approach to interrupt and

resume enclaves. In an initial preparatory phase, the privileged

adversary queries the /dev/sgx-step Linux kernel driver to estab-
lish user space virtual memory mappings for the local APIC MMIO

range plus the IA-64 Interrupt Descriptor Table (IDT) [36, 74]. Cus-

tom user space ISRs can now be registered directly by writing to

the relevant IDT entry, taking care to specify the handler address

relative to the user code segment and with descriptor privilege

level 3 [36].
6
When the local APIC timer interrupt 1 arrives within

an enclaved instruction, SGX’s secure AEX microcode procedure

stores and clears CPU registers inside the enclave. Next, the con-

ventional interrupt logic takes over and 2 vectors to the user space

interrupt handler. At this point, 3 we immediately grab a timestamp

as the very first ISR instruction before 4 returning to the afore-

mentioned AEP stub. 5 Here, we log the extracted latency timing

measurements, optionally annotating them for benchmark debug

enclaves with the stored in-enclave program counter that can be re-

trieved via the privileged edbgrd instruction in the /dev/sgx-step
driver. Thereafter, we configure the local APIC timer for the next

interrupt by writing into the initial-count MMIO register, and grab

another timestamp to mark the start of the interrupt latency mea-

surement.We take care to 6 execute the eresume instruction imme-

diately after storing the timestamp to memory. This ensures that the

interrupt latency measurement path between the two timestamps

6
We register our user space handlers as an x86 trap gate, since otherwise the interrupt-

enable flag (rflags.if) does not get restored upon interrupt return.

(visualized in blue in Fig. 5) only includes (i) three unprotected in-

structions to store the first timestamp and resume the enclave, plus

(ii) the enclaved instruction of interest, plus (iii) the AEXmicrocode

procedure to vector to the untrusted interrupt handler.

Handling Noise. In contrast to an embedded Sancus-enabled

MSP430 CPU, microarchitectural optimizations found in modern

x86 processors are known to cause non-constant instruction execu-

tion times [11, 12]. Conformant to our attacker model, and closely

following previous SGX attacks [8, 25, 31, 42, 51, 75] our experimen-

tal setup attempts to reduce measurement noise to a minimum by

leveraging some of the unique untrusted operating system adver-

sary capabilities to increase execution time predictability: disable

HyperThreading and dynamic frequency scaling (C-states, Speed-

Step, TurboBoost), and affinitize the enclave process to a dedicated

CPU with Linux’s isolcpus kernel parameter.

To compensate for the remaining measurement noise, we corre-

late IRQ latency observations from repeated enclaved executions

over the same input, as is not uncommon practice in (SGX) side-

channel research [8, 25, 42, 51, 62]. Specifically, we will show in

Section 5 that the IRQ latencymeasurements extracted by our frame-

work exhibit a normally distributed variance. As such, adversaries

can rely on basic statistical analysis techniques (e.g., mean, median,

standard deviation) to combine multiple IRQ latency observations

into a representative overall trace of enclaved instruction timings.

Our practical implementation uses a Python post-processing script

to parse the raw measurements extracted by our framework for

repeated enclaved executions. The resulting traces plot the median

execution time (plus optionally a box plot describing the distribu-

tion) for each subsequent instruction in the enclaved execution.

Accurately aggregating IRQ latencymeasurements from repeated

enclaved executions also presents another substantial challenge,

however. That is, while SGX-Step guarantees that a victim enclave

executes at most one instruction at a time, a relatively low fraction

of the timer IRQs (< 3%) still arrives within eresume – before an

enclaved instruction is ever executed [74]. Such “zero-step” events

are harmless in themselves, but should be filtered out in order to

correctly associate repeated measurements for the same step (i.e., in-

struction) in different enclave invocations. We therefore contribute

a novel technique to deterministically recognize false zero-step

interrupts by probing the “accessed” bit [36] in the unprotected

page table entry mapping the enclaved code page. Specifically, we

experimentally verified that the CPU only sets the code PTE ac-

cessed bit when the enclave did indeed execute an instruction (i.e.,

timer interrupt arrived after eresume). Merely clearing the PTE

accessed bit for the relevant enclaved code page before sending the

interrupt, and querying it afterwards thus suffices to filter out false

zero-step observations and achieve noiseless single-stepping.

5 EVALUATION

Our embedded scenarios were evaluated on a development version

of Sancus, extended with the hardware-level secure interrupt mech-

anism described in Section 3.1. We interfaced the Sancus core with

a Diligent PmodKYPD peripheral for the secure I/O application. All

SGX experiments were conducted on an off-the-shelf Dell Inspiron

13 7359 laptop with a generic Linux v4.13.0 kernel on a Skylake

dual-core Intel i7-6500U CPU running at 2.5 GHz. Custom BIOS

and kernel parameters were described in the previous section.

5.1 Effectiveness on Sancus

To evaluate our attack against the MSP430 bootstrap loader soft-

ware, we encapsulated the relevant password comparison routine

BSL430_unlock_BSL in a protected Sancus enclave. Texas Instru-

ments eliminated secret-dependent control flow entirely from BSL

v3 onwards (with a bitwise or of the xor of each pair of bytes). To

the best of our knowledge, vulnerable BSL versions are no longer

distributed. We therefore based our implementation on the latest

BSL v9, where we replaced the invulnerable, xor-based password

comparison with the hardened assembly code from Listing 1. The

untrusted application context succeeds in recovering the full BSL

password by iterating over all possible values for each input byte

sequentially. A single interrupt per guess suffices to determine the

correctness of the password byte under consideration. As such,

our interrupt timing attack reduces an exhaustive search for the

password from an exponential to a linear effort.

We provide the full source code of the poll_keypad function in

Appendix B. The programwas compiled with the Sancus C compiler

based on LLVM/Clang v3.7.0. Our exploit recognizes all key presses

without noise, in a single run of the victim enclave. This is an

important property for I/O scenarios where, unlike cryptographic

algorithms, a victim cannot be forced to execute the same code over

the same secret data multiple times. Instead, key strokes should

be recognized in real-time, while they are being entered by the

human actor. Moreover, our secure keypad attack only requires a

single IRQ per loop iteration, totaling no more than 16 interrupts

to recover the full key mask from a single enclaved execution.

5.2 SGX Microbenchmarks

We first present microbenchmark experiments in order to quantify

the effect of microarchitectural execution state and instruction type

on the latency of individual x86 instructions. The microbenchmarks

were obtained by single-stepping a benchmark SGX enclave that

executes a slide of 10,000 identical assembly instructions. We refer

to the original SGX-Step paper [74] for a thorough evaluation of

its APIC timer-based single-stepping mechanism which guarantees

that at most one enclaved instruction is executed per interrupt.

Additionally, we used the code PTE “accessed” bit technique de-

scribed in Section 4.2 to deterministically filter out false zero-step

observations, resulting in perfect single-stepping capabilities.

Differentiating Instruction Types. Figure 6a provides the IRQ la-

tency distributions for selected processor instructions. The horizon-

tal axis lists the observed latency timings in CPU cycles, whereas

the number of corresponding interrupts in this latency class is de-

picted on the vertical axis. Note that the horizontal axis does not

start from zero, as our interrupt latency measurement path (Fig. 5)

includes the execution times of the eresume and AEX microcode.

As a first important result, we can decisively distinguish certain

low-latency enclaved operations such as nop or add from higher-

latency ones such as secure random number generation (rdrand)

or certain floating point operations (fscale), solely by observing

the latency they induce on interrupt. This confirms our hypothesis

that IRQ latency on x86 platforms depends on the execution time

(a) IRQ latency distributions for selected x86 instructions. (b) Data-dependent IRQ latencies for the x86 div instruction.

(c) Increased IRQ latencies from enclaved data cache misses. (d) Increased IRQ latencies from unprotected PTE data cache misses.

Figure 6: SGX microbenchmarks: IRQ latency distribution timing variability based on (a) enclaved instruction type, (b) secret

input operands, (c) enclave private memory caching conditions, and (d) untrusted address translation data cache misses.

of the interrupted instruction. Hence, these benchmarks can be

considered clear evidence for the existence of a timing-based side-

channel in SGX’s secure AEX procedure.

We can furthermore conclude that differentiating a nop instruc-

tion from an add with immediate and register operands is much

less obvious, however. These instructions are indeed very similar

at the microarchitectural level, both requiring only a single micro-

op [22]. As an interesting special case, we investigated the IRQ

latency behavior of the lfence instruction, which serializes all

prior load-from-memory operations. This instruction has recently

become particularly relevant, for Intel officially recommends [37]

to insert lfence instructions after sensitive conditional branches to

protect SGX enclaves against Spectre v1 speculative bounds check

bypasses [40]. While the microarchitectural timing differences are

more subtle, Fig. 6a still shows that one can on average plainly

separate lfence from ordinary nop or add instructions.

Measuring Data Timing Channels. Variable latency arithmetic

instructions are known to be an exploitable side-channel, even in

code without secret-dependent control flow [4, 11, 12]. Previous

research onmicroarchitectural data timing channels has established

that the execution time of some commonly used x86 arithmetic

instructions such as (floating point) multiplication or division de-

pends on the operands they are being applied upon. Our second

set of microbenchmark experiments therefore explore leakage of

enclaved operand values through interrupt latency for the widely

studied [4, 11, 12] unsigned integer division x86 div instruction.

Figure 6b shows the IRQ latency distributions for 10,000 enclaved

executions of the div instruction applied on different 128-bit div-

idend operands and a fixed 64-bit divisor (0xffffffffffffffff).
The average interrupt latency clearly increases as the dividend

becomes larger, which confirms that “the throughput of div/idiv

varieswith the number of significant digits in the input rdx:rax” [35]

As such, we conclude that IRQ latency leaks operand values for

variable latency instructions. Importantly, in contrast to classical

start-to-end timing measurements, Nemesis-style interrupt tim-

ing attacks leak this information at an instruction-level granularity,
which allows to precisely isolate (successive) data-dependent in-

struction timing measurements in a larger enclaved computation.

Influence of Data Caching. Figure 6c investigates the IRQ latency

distributions for selected mov instructions to/from enclave memory.

The store distribution is characterized by two prominent normally

distributed peaks. Our hypothesis is that the right peak, represent-

ing measurements with a larger IRQ latency, is caused by a write

miss in the data cache.
7
A write miss indeed forces the CPU to

7
Intel SGX always uses a write-back caching policy for enclave memory [34]. This

means that a write hit on enclave memory initially only updates the cache, unblocking

the processor immediately, while writing to main memory is postponed until eviction

of the dirty cache line. When the data was not yet in the cache (i.e., write miss),

wait for completion of the memory transaction before finishing the

instruction. It appears that in this particular experimental setup, the

processor’s cache replacement policy rather frequently evicts the

data accessed by the benchmark enclave. To support this hypothe-

sis, we examined IRQ latency behavior for the x86 movnti store

operation with a non-temporal hint that forces the CPU to write

the data directly into memory, without updating or fetching the

corresponding cache line. movnti clearly manifests an increased

latency that overlaps with the right peak of the store distribution.

To investigate the impact of data cache misses on enclaved load

operations, we instrumented the instruction slide in our bench-

mark enclave to explicitly invalidate the corresponding cache line

by executing clflush before each mov instruction. Our noiseless

single-stepping techniques allows to afterwards filter out latency

measurements for the interleaved clflush instructions, such that

the resulting IRQ latency distributions are solely characterized by

the execution times of the mov instruction under consideration.

Figure 6c shows a prominently increased latency for intra-enclave

memory load operations that miss the data cache hierarchy. We

suspect that the sparser distribution for load cache misses is caused

by noise from the DRAM controller.

These experiments thus provide clear evidence for the fact that

IRQ latency reveals cache misses. This finding may be particularly

relevant for state-of-the-art fortified PMA designs like Sanctum [14]

that include all known architectural countermeasures to prevent

adversaries from gaining insight into enclave caching behavior.

Influence of Address Translation. SGX was explicitly designed

to traverse untrusted page tables during enclaved execution, and

verifies address translation metadata via an independent additional

protection mechanism. Recent research on address translation side-

channel attacks [27, 75], however, exploits the microarchitectural

property that x86 page table entries are cached as with normal data.

By spying on unprotected cache lines, adversaries can gain insight

into enclaved memory page accesses.

Our last set of microbenchmark experiments explores the impact

of untrusted address translation data cache misses on the latency of

the interrupted instruction. We used clflush before resuming the

benchmark enclave to invalidate the cache line for the unprotected
PTE entry that stores the physical address of the code page contain-

ing the microbenchmark instruction slide. Figure 6d demonstrates

that we can distinctly increase the latency of even ordinary nop in-

structions in this way. Furthermore, for instructions with a memory

operand, kernel-level adversaries can choose to flush the PTE entry

for the data operand, and/or the enclaved code page to be executed.

Figure 6d indeed shows a clear increase in IRQ latency for mov

instructions that need an additional memory access to retrieve the

physical address of the private data operand. Likewise, latency even

further increases when also flushing the PTE entry of the enclaved

code page containing the load instruction.

We conclude that IRQ latency reveals data cache misses in the

page table walk at instruction-level granularity. While SGX page

tables reside in unprotected memory, this finding may once more

impact fortified PMA designs [14, 17] that move page tables inside

however, any dirty line about to be replaced has to be written back, and the new line

has to be fetched from main memory.

Figure 7: IRQ latency distributions for 100 runs of Zigzagger

branch taken (blue) vs. not-taken (red) execution paths.

enclave memory, out of reach of the attacker, to protect against

address translation side-channel attacks.

5.3 SGX Macrobenchmark Attack Scenarios

To demonstrate information leakage in larger enclave programs,

we extracted full IRQ latency traces from the SGX case study ap-

plications introduced in Section 3.2. In contrast to the isolated mi-

crobenchmark experiments described above, our macrobenchmark

results illustrate interrupt latency behavior in typical, compiler-

generated mixed instruction streams.

Defeating Zigzagger. Since the Zigzagger compiler pass was not

made publicly available, we copied the exemplary assembly code

(Fig. 4) from the corresponding paper [42] in an SGX enclave. As

explained in Section 3.2.1, we made sure to manually align secret-

dependent code to fit entirely within one 64-byte cache line. Figure 7

shows the IRQ latency distributions extracted by our framework

for 100 repeated runs of a victim enclave that either takes the first

Zigzagger-obfuscated branch (a=1; blue) or not (a=0; red). The left-

most box plots visualize IRQ latency measurements for the indirect

branch instruction zz4 at the end of the Zigzagger trampoline,

whereas the following grouped box plots represent instruction

latencies in the the conditional control flow path from either b1
(blue) or b2 (red) to the next secret-dependent jump at zz4. Note
that both execution paths in the assembly code snippet of Fig. 4

already merge at b2.j, such that IRQ latency traces extracted from

Zigzagger-hardened code only feature an extremely short secret-

dependent sequence of 4 instructions, marked in Fig. 7.

A first important observation, in line with the microbenchmark

results above, is that IRQ latency measurements are normally dis-

tributed such that we need to perform multiple observations before

making decisive conclusions on the timing characteristics of the

instruction under consideration. In this respect, the first two instruc-

tions in the secret-dependent execution paths exhibit similar and

fairly indistinguishable IRQ latency distributions, which is indeed

to be expected given that nop and lea instructions behave identi-

cal (micro-op count, latencies) at the microarchitectural level [22]

The third secret-dependent instruction, either jmp (blue) or cmp

(red), however, manifests a sharply visible (median) IRQ latency

difference that can be exploited to unambiguously distinguish both

Figure 8: IRQ latency distributions for 100 runs of bsearch
left (blue) vs. right (green) vs. equal (red) execution paths.

branches. Specifically, by relying on the noiseless single-stepping

technique from Section 4.2, adversaries can collect IRQ latencies

from repeated enclaved executions, and afterwards categorize the

samples for the third secret-dependent instruction as either a jmp or

cmp. To compensate for outliers, we use the median IRQ latency in-

stead of the mean. Note that Fig. 7 was generated from 100 repeated

enclave invocations to yield a representative overall plot, but we

found that in practice secret-dependent Zigzagger branches can

already be reliably identified after as little as 10 enclave invocations.

Finally, also note that there exists a subtle yet potentially exploitable

IRQ latency distribution difference for the last secret-dependent

instruction jmp (blue) vs. register cmov (red).

Inferring Binary Search Indices. To evaluate our binary search

attack, we constructed an enclave that calls the Intel SGX SDK

bsearch trusted library function to look up a value in a fixed integer
array. We carefully selected the exemplary lookup value to ensure

that bsearch first looks left, then right, and finally returns the

requested address. Our practical exploit faults on the code page

containing the bsearch function to enter single-stepping mode

and then starts collecting IRQ latency measurements. Figure 9 plots

the median IRQ latencies obtained from 100 enclaved bsearch
executions, where each individual data point reveals the execution

time of the corresponding assembly instruction in Appendix C. We

annotated the trace to mark the three consecutive execution paths

(left, right, equal) after comparing the value for that loop iteration.

As with the Zigzagger benchmark, Fig. 8 furthermore compares

relative IRQ latency distributions by means of box plots for each

assembly instruction in the secret-dependent execution paths.

As a first important result, one can easily identify the relatively

high-latency peaks from the 6 subsequent pop stack accessing in-

structions in the return path of the equal case (red; instructions

4-10 in Fig. 8). Furthermore, while distinguishing the left (blue) and

right (green) cases is more subtle, the source code in Listing 2 indi-

cates that the right case has to perform slightly more work before

continuing to the next loop iteration. This is indeed reflected at the

assembly code level by two more low-latency register instructions

(sub and lea) before the right branch continues along the common

execution path. Again, we found this extremely subtle difference to

be sufficient to distinguish both branches via the relative position

Figure 9:Median IRQ latencies over 100 bsearch invocations.

of a higher-latency mov instruction at the start of the for loop. It

is apparent from Fig. 9 that the IRQ latency patterns for the right

branch are slightly shifted with respect to those of the left one.

Particularly, the first high-latency peak in the left branch occurs 4

interrupts (instruction 6 in Fig. 8) after cmp, whereas for the right

branch this peak only occurs after 6 interrupts (instruction 8 in

Fig. 8). As with the Zigzagger benchmark, comparing median IRQ

latency samples for specific instructions (identified by their single-

stepping interrupt number) thus suffices to reliably infer control

flow decisions in the binary search algorithm and establish the

secret lookup key.

6 DISCUSSION AND MITIGATIONS

Interrupt Timing Leaks. While generally well-understood at the

architectural level, asynchronous CPU events like faults and in-

terrupts have not been studied extensively at the microarchitec-

tural level. Recent developments on Meltdown-type “fault latency”

attacks [44, 71] exposed fundamental flaws in the way modern

out-of-order processors enforce software isolation, whereas Neme-

sis reveals a more intrinsic and subtle timing side-channel in the

CPU’s interrupt mechanism. We showed that the act of interrupting

enclaved execution leaks microarchitectural timing information

at an instruction-level granularity, even on the most rudimentary

of microcontrollers. In this, we have presented the first remotely

exploitable controlled-channel for embedded enclave processors,

and we contribute to the understanding of SGX side-channel infor-

mation leakage beyond the usual suspects.

IRQ latency traces (e.g., Fig. 9) can be regarded as an instruction-

granular “x-ray” for enclaved execution. Our microbenchmark SGX

experiments show that interrupt latency directly reveals certain

high-latency enclaved operations, and can furthermore reliably

quantify other microarchitectural properties that affect execution

time on modern x86 processors [23], e.g., data-dependent instruc-

tion latencies, and data or page table cache misses. In this respect,

we expect that Nemesis’s ability to extract fine-grained microar-

chitectural instruction timings from SGX enclaves will enable new

and improved side-channels such as MemJam-type [50] false de-

pendency attacks. As a particularly relevant finding for fortified

PMAs like Sanctum [14] that aim to eradicate known cache timing

attacks, we identified what might well be one of the last remaining

side-channels that provide insight into enclave caching behavior.

Specifically, since we have shown that interrupt latency reveals

cache misses, we can see IRQ latency traces being leveraged in a

trace-driven cache attack [1] for instance to reduce the key space

of cryptographic algorithms.

We have demonstrated that interrupt latency timing attacks pose

a direct and serious threat to the protection model pursued by em-

bedded PMAs such as Sancus, though further research is needed

to investigate the bandwidth of practical Nemesis side-channel

attacks on SGX platforms. A particularly promising future work

avenue in this respect would be to supersede reverse engineer-

ing and statistical analysis efforts by applying automated machine

learning techniques on IRQ latency traces extracted from multiple

invocations of the victim enclave.

Why Constant-Time IRQ Defenses are Insufficient. We have shown

how interrupt-capable adversaries can dissolve black box-style start-

to-end protected execution times into (a sequence of) execution

timing measurements for individual enclaved instructions. This pa-

per has focussed on exploring “interrupt latency timing” channels

on multi-cycle instruction set processors, but we want to stress that

attack surface from secure interrupts is not limited to timing side-

channels only. Another potentially dangerous “interrupt counting”

channel for instance would measure the total number of times the

enclaved execution can be interrupted before it finally completes.

For example, in the balanced BSL password comparison scenario of

Listing 1, adversaries can interrupt the if branch twice (2 instruc-

tions), whereas the else branch featuring nop compensation code

can be interrupted four times (4 instructions). As such, while the

total enclaved execution time remains constant, interrupt-capable

single-stepping adversaries will still notice a decrease in the total

IRQ count for each correct password byte.

The above interrupt counting channel seems particularly inter-

esting, for it only assumes a multi-cycle instruction set architecture,

and thus continues to persist on processors with constant-time

IRQ latency. We for instance considered a hardware patch for San-

cus that always enforces the worst-case interrupt response time

by inserting dummy execution cycles depending on the enclaved

instruction being interrupted. Alternatively, ARM Cortex M0 pro-

cessors [5] abandon multi-cycle instructions to handle any pending

interrupt immediately. While such processors are immune to the

IRQ latency timing attacks described in this paper, they remain

vulnerable to interrupt counting attacks and may additionally be

exposed to advanced Nemesis-type interrupt timing attack variants.

We conclude that constant-time interrupt logic is a necessary but

not sufficient condition to eradicate Nemesis-style interrupt attacks

at the hardware level. In general processor-level solutions alone

seem not to be able to completely prevent information leakage from

secure interrupts in enclaved execution. This finding may have a

consequential impact for fully abstract compilation schemes [59]

and provably side-channel resistant processor designs [20, 21] that

have so far not considered secure interrupt timing channels. We en-

courage further research and formal analysis to adequately address

interrupt-based side-channels via hardware-software co-design.

Application Hardening. Considering that our attacks exploit secret-
dependent control flow, an application-level solution should strive

to eliminate conditional program branches and variable latency in-

structions completely. This can be realized by rewriting the enclave

code manually (e.g., xor-based password comparison of Section 5.1),

or by automated if-conversion in a compiler backend [12]. Such

solutions remain compatible with existing PMA hardware, but also

assume that sensitive information can be easily identified. Previous

research [8, 79] in this area has shown that sensitive application

data may be more ill-defined than the typical cryptographic keys

of side-channel analysis. Moreover, if-conversion comes with a sig-

nificant performance overhead [12] that somewhat invalidates the

PMA promise of native code execution in a protected environment.

Alternatively, compilers could focus on detecting, rather than

eliminating, IRQ timing attacks. Our interrupt extensions for San-

cus indeed follow PMA designs [7, 14, 41] that explicitly call into

an enclave to request resumption of internal execution. As such,

Sancus enclaves are interrupt-aware and they could use excessive

interrupt rates as an indicator to trigger some security policy that

terminates the module and/or destroys secrets. Interrupts also oc-

cur in benign conditions, however, and a single interrupt already

suffices to leak confidential information, as evident from our Sancus

attack scenarios. Adversaries could thus adapt their attacks to the

entry policy of a victim enclave.

Intel SGX on the other hand leaves enclave programs explicitly

interrupt-unaware through the use of a dedicated eresume hardware
instruction. However, a contemporary line of research [10, 28, 63]

leverages hardware support for Transactional Synchronization eX-

tensions (TSX) in recent x86 processors to detect interrupts or page

faults in enclave mode. More specifically, these proposals rely on

the property that code executing in a TSX transaction is aborted

and automatically rolled back when an external interrupt request

arrives. TSX furthermore modifies the stored in-enclave instruction

pointer upon AEX, such that a preregistered transaction abort han-

dler is called on the next eresume invocation. Whereas TSX-based

defenses would likely recognize suspicious interrupt rates when

single-stepping enclaved execution, advanced Nemesis adversaries

could construct stealthy Sancus-like IRQ timing attacks that only

interrupt the victim enclave minimally and stay under under the

radar of the transaction abort handler’s probabilistic security policy.

Moreover, TSX-based defenses also suffer from some important lim-

itations [67, 74], ranging from the absence of TSX features in some

processors to severe runtime performance impact and the false pos-

itive/negative rates inherent to heuristic defenses. In conclusion,

we do not regard current ad-hoc TSX approaches as a solution,

even apart from compatibility and performance issues, since they

cannot prevent the root information leakage cause. Our attacks

against Sancus show that a single interrupt can deterministically

leak sensitive information, and we expect further development of

the attacks against SGX to increase stealthiness, as has been shown

for instance for page-table based attacks [75, 77].

7 RELATEDWORK

We have discussed PMAs security architectures throughout the

paper. In this section we focus on relating our work to existing

side-channel analysis research. There exists a vast body of work on

microarchitectural timing channels [23], but side-channel attacks

in a PMA context are only being explored very recently. To the

best of our knowledge, we have presented the first remotely ex-

ploitable controlled-channel for low-end embedded PMAs. Various

authors [13, 20, 43] have explicitly expressed their concerns on

software side-channel vulnerabilities in higher-end PMAs such as

Intel SGX. This paper argues, however, that current attack research

efforts focus too narrowly on the “usual suspects” that are relatively

well-known, and do not reveal anything really unexpected. Apart

from our work, only page table-based attacks [30, 64, 75, 77, 79]

have to date been identified as a novel controlled-channel. Com-

pared to IRQ latency, the page fault channel has a coarser-grained

granularity (instruction vs. page-level), but does not suffer from

the noise inherent to microarchitectural channels.

Our attack vector is closely related to cache timing side-channels

in that IRQ latency traces reveal cache misses. A powerful class

of access-driven cache attacks based on the Prime+Probe tech-

nique [58] first primes the cache by loading congruent addresses,

and thereafter measures the time to reload these addresses so as to

establish memory access patterns by the victim. Such Prime+Probe

cache timing attacks have been successfully applied against SGX

enclaves [8, 25, 31, 51, 62]. When memory is shared between the

attacker and the victim, Flush+Reload [80] and Flush+Flush [29]

techniques improve the efficiency of cache timing attacks. In the

context of Intel SGX, these techniques have recently been leveraged

to spy on unprotected page table memory [75].

It has furthermore been shown that enclave-private control flow

leaks via the CPU’s branch prediction machinery [18, 42], which

recently became particularly relevant for Spectre-type speculative

execution attacks [9, 40]. Recent Intel microcode patches address

Spectre attacks against SGX enclaves by clearing the BTB upon en-

clave entry/exit [9]. At the microarchitectural level, Nemesis-style

interrupt latency timing attacks are more closely related to Melt-

down [44] in that both abuse the property that asynchronous CPU

events like faults and interrupts are only handled upon instruction

retirement. While Intel SGX was initially considered to be resis-

tant to Meltdown-type transient execution vulnerabilities, recent

work presented Foreshadow [71, 78], which allows for arbitrary

in-enclave reads and completely collapses isolation and attestation

guarantees in the SGX ecosystem. To allow for TCB recovery, In-

tel has revoked the compromised attestation keys, and released

microcode patches to address Foreshadow at the hardware level.

8 CONCLUSION

The security aspects of asynchronous CPU events like interrupts

and faults have not been amply studied from a microarchitectural

perspective. We contributed Nemesis, a subtle timing channel in

the CPU’s rudimentary interrupt logic. Our work represents the

first controlled-channel attack against embedded enclaved execu-

tion processors, and we demonstrated Nemesis’s applicability on

modern Intel SGX x86 platforms.

ACKNOWLEDGMENTS

We thank Job Noorman for guidance on the Sancus secure interrupt

extensions, and Pieter Maene for valuable feedback on early ver-

sions of this text. The research presented in this paper was partially

supported by the Research Fund KU Leuven, and by a gift from

Intel Corporation. Jo Van Bulck and Raoul Strackx are supported

by a grant of the Research Foundation – Flanders (FWO).

REFERENCES

[1] Onur Acıiçmez and Çetin Kaya Koç. 2006. Trace-driven cache attacks on AES.

Cryptology ePrint Archive, Report 2006/138. http://eprint.iacr.org/2006/138.

[2] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. On the power of

simple branch prediction analysis. In Proceedings of the 2nd ACM symposium on
Information, computer and communications security. ACM, 312–320.

[3] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative

technology for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy, Vol. 13.

[4] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner,

and Hovav Shacham. 2015. On subnormal floating point and abnormal timing.

In Security and Privacy (SP), 2015 IEEE Symposium on. IEEE, 623–639.
[5] ARM. 2009. Cortex-M0 technical reference manual r0p0. http://infocenter.arm.

com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf.

[6] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2014. Shielding applications

from an untrusted cloud with Haven. In 11th USENIX Symposium on Operating
Systems Design and Implementation. USENIX Association, 267–283.

[7] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza Sadeghi, Christian Wachs-

mann, and Patrick Koeberl. 2015. TyTAN: Tiny trust anchor for tiny devices. In

Design Automation Conference (DAC 2015). IEEE, 1–6.
[8] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan

Capkun, and Ahmad-Reza Sadeghi. 2017. Software grand exposure: SGX cache

attacks are practical. In 11th USENIX Workshop on Offensive Technologies (WOOT
’17). USENIX Association.

[9] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and

Ten H Lai. 2018. SGXPECTRE attacks: Leaking enclave secrets via speculative

execution. arXiv preprint arXiv:1802.09085 (2018).
[10] Sanchuan Chen, Xiaokuan Zhang, Michael K Reiter, and Yinqian Zhang. 2017.

Detecting privileged side-channel attacks in shielded execution with Déjà Vu. In

Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security. ACM, 7–18.

[11] Jeroen V Cleemput, Bart Coppens, and Bjorn De Sutter. 2012. Compiler mitiga-

tions for time attacks onmodern x86 processors. ACMTransactions on Architecture
and Code Optimization (TACO) 8, 4 (2012), 23.

[12] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter.

2009. Practical mitigations for timing-based side-channel attacks on modern x86

processors. In 2009 IEEE Symposium on Security and Privacy. IEEE, 45–60.
[13] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Technical

Report. Computer Science and Artificial Intelligence Laboratory MIT. https:

//eprint.iacr.org/2016/086.pdf.

[14] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal hard-

ware extensions for strong software isolation. In 25th USENIX Security Symposium.

USENIX Association, 857–874.

[15] Ruan De Clercq, Frank Piessens, Dries Schellekens, and Ingrid Verbauwhede. 2014.

Secure interrupts on low-end microcontrollers. In Application-specific Systems,
Architectures and Processors (ASAP), 2014 IEEE 25th International Conference on.
IEEE, 147–152.

[16] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Perito. 2012.

SMART: Secure and minimal architecture for (establishing a dynamic) root of

trust.. In NDSS, Vol. 12. Internet Society, 1–15.
[17] Dmitry Evtyushkin, Jesse Elwell, Meltem Ozsoy, Dmitry Ponomarev, Nael Abu

Ghazaleh, and Ryan Riley. 2014. Iso-x: A flexible architecture for hardware-

managed isolated execution. In 2014 47th Annual IEEE/ACM International Sympo-
sium on Microarchitecture. IEEE, 190–202.

[18] Dmitry Evtyushkin, Ryan Riley, Nael CSEAbu-Ghazaleh, Dmitry Ponomarev, et al.

2018. BranchScope: A new side-channel attack on directional branch predictor. In

Proceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, 693–707.

[19] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. 2017.

Komodo: Using verification to disentangle secure-enclave hardware from soft-

ware. In Proceedings of the 26th Symposium on Operating Systems Principles. ACM,

287–305.

[20] Andrew Ferraiuolo, Yao Wang, Rui Xu, Danfeng Zhang, Andrew Myers, and

Edward Suh. 2015. Full-processor timing channel protection with applications to
secure hardware compartments. Computing and Information Science Technical

Report. Cornell University. http://hdl.handle.net/1813/41218.1.

[21] Andrew Ferraiuolo, Rui Xu, Danfeng Zhang, Andrew C Myers, and G Edward

Suh. 2017. Verification of a practical hardware security architecture through

static information flow analysis. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 555–568.

[22] Agner Fog. 2018. Instruction tables. Lists of instruction latencies, throughputs and
micro-operation breakdowns for Intel, AMD and VIA CPUs. Technical Report.

Technical University of Denmark. http://www.agner.org/optimize/instruction_

tables.pdf.

[23] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A survey of mi-

croarchitectural timing attacks and countermeasures on contemporary hardware.

Journal of Cryptographic Engineering 8, 1 (2018), 1–27.

[24] Travis Goodspeed. 2008. Practical attacks against the MSP430 BSL. In Twenty-
Fifth Chaos Communications Congress.

http://eprint.iacr.org/2006/138
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf
https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2016/086.pdf
http://hdl.handle.net/1813/41218.1
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf

[25] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.

Cache Attacks on Intel SGX. In Proceedings of the 10th European Workshop on
Systems Security (EuroSec’17).

[26] Johannes Götzfried, Tilo Müller, Ruan de Clercq, Pieter Maene, Felix Freiling,

and Ingrid Verbauwhede. 2015. Soteria: Offline software protection within low-

cost embedded devices. In Proceedings of the 31st Annual Computer Security
Applications Conference. ACM, 241–250.

[27] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Christiano Giuffrida.

2017. ASLR on the line: practical cache attacks on the MMU. NDSS (Feb. 2017)
(2017).

[28] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and

Manuel Costa. 2017. Strong and efficient cache side-channel protection using

hardware transactional memory. In USENIX Security Symposium.

[29] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.

Flush+Flush: A fast and stealthy cache attack. In Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA). Springer.

[30] Jago Gyselinck, Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Off-limits:

Abusing legacy x86 memory segmentation to spy on enclaved execution. In

International Symposium on Engineering Secure Software and Systems (ESSoS ’18).
Springer, 44–60.

[31] Marcus Hähnel, Weidong Cui, and Marcus Peinado. 2017. High-resolution side

channels for untrusted operating systems. In 2017 USENIX Annual Technical
Conference (ATC ’17). USENIX Association.

[32] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan

Del Cuvillo. 2013. Using innovative instructions to create trustworthy software

solutions. In HASP@ ISCA. 11.
[33] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and Emmett

Witchel. 2013. InkTag: Secure applications on an untrusted operating system. In

Proceedings of the Eighteenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). ACM, 265–278.

[34] Intel Corporation. 2014. Intel software guard extensions programming reference.
Order no. 329298-002US.

[35] Intel Corporation. 2018. Intel 64 and IA-32 architectures optimization reference
manual. Order no. 248966-040.

[36] Intel Corporation. 2018. Intel 64 and IA-32 architectures software developer’s
manual. Order no. 325384-067US.

[37] Intel Corporation. 2018. Intel software guard extensions (SGX) SW development
guidance for potential bounds check bypass (CVE-2017-5753) side channel exploits.
Rev. 1.1.

[38] Simon Johnson. 2017. Intel SGX and side-channels. https://software.intel.com/

en-us/articles/intel-sgx-and-side-channels.

[39] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,

Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael

Norrish, et al. 2009. seL4: Formal verification of an OS kernel. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. ACM, 207–220.

[40] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner

Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael

Schwarz, and Yuval Yarom. 2019. Spectre attacks: exploiting speculative execution.

In 40th IEEE Symposium on Security and Privacy (S&P’19).
[41] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan.

2014. TrustLite: A security architecture for tiny embedded devices. In Proceedings
of the Ninth European Conference on Computer Systems. ACM, Article 10, 14 pages.

[42] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Mar-

cus Peinado. 2017. Inferring fine-grained control flow inside SGX enclaves with

branch shadowing. In Proceedings of the 26th USENIX Security Symposium. Van-

couver, Canada.

[43] Andy Leiserson. 2018. Side channels and runtime encryption solutions with Intel

SGX. https://www.fortanix.com/assets/Fortanix_Side_Channel_Whitepaper.pdf.

(2018).

[44] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval

Yarom, and Mike Hamburg. 2018. Meltdown: Reading kernel memory from user

space. In 27th USENIX Security Symposium (USENIX Security 18).
[45] P. Maene, J. Götzfried, R. de Clercq, T. Müller, F. Freiling, and I. Verbauwhede. 2017.

Hardware-based trusted computing architectures for isolation and attestation.

IEEE Trans. Comput. 99 (2017).
[46] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Vir-

gil D. Gligor, and Adrian Perrig. 2010. TrustVisor: Efficient TCB reduction and

attestation. In 2010 IEEE Symposium on Security and Privacy. IEEE, 143–158.
[47] Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi

Isozaki. 2008. Flicker: An execution infrastructure for TCB minimization. In

Proceedings of the 2008 EuroSys Conference, Glasgow, Scotland, UK, April 1-4, 2008.
ACM, 315–328.

[48] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,

Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative instructions

and software model for isolated execution. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy. ACM,

Article 10, 1 pages.

[49] Mike Mitchell. 2002. Implementing an ultralow-power keypad interface with the
MSP430. Technical Report. Texas Instruments. http://www.ti.com/lit/an/slaa139/

slaa139.pdf.

[50] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. 2018. MemJam: A false

dependency attack against constant-time crypto implementations in SGX. In

CryptographersâĂŹ Track at the RSA Conference. Springer, 21–44.
[51] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. CacheZoom:

How SGX amplifies the power of cache attacks. In Conference on Cryptographic
Hardware and Embedded Systems (CHES ’17).

[52] Job Noorman. 2017. Sancus: A low-cost security architecture for distributed IoT
applications on a shared infrastructure. Ph.D. Dissertation. KU Leuven. https:

//lirias.kuleuven.be/bitstream/123456789/574995/1/thesis.pdf.

[53] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Her-

rewege, Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, and Frank

Piessens. 2013. Sancus: Low-cost trustworthy extensible networked devices with

a zero-software trusted computing base. In 22nd USENIX Security Symposium.

USENIX Association, 479–494.

[54] Job Noorman, Jan Tobias Mühlberg, and Frank Piessens. 2017. Authentic exe-

cution of distributed event-driven applications with a small TCB. In STM ’17
(LNCS), Vol. 10547. Springer, Heidelberg, 55–71.

[55] Job Noorman, Jo Van Bulck, Jan Tobias Mühlberg, Frank Piessens, Pieter Maene,

Bart Preneel, Ingrid Verbauwhede, Johannes Götzfried, Tilo Müller, and Felix

Freiling. 2017. Sancus 2.0: A low-cost security architecture for IoT devices. ACM
Transactions on Privacy and Security (TOPS) 20, 3 (September 2017), 7:1–7:33.

[56] Guevara Noubir and Amirali Sanatinia. 2016. Trusted code execution on untrusted

platform using Intel SGX. Virus Bulletin (2016).

[57] Open Whisper Systems. 2017. Technology preview: Private contact discovery

for Signal. https://signal.org/blog/private-contact-discovery/.

[58] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and coun-

termeasures: the case of AES. In Cryptographers’ Track at the RSA Conference.
Springer, 1–20.

[59] Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke, and

Frank Piessens. 2015. Secure compilation to protected module architectures. ACM
Transactions on Programming Languages and Systems (TOPLAS) 37, 2 (2015).

[60] Peter Puschner, Raimund Kirner, Benedikt Huber, and Daniel Prokesch. 2012.

Compiling for time predictability. In International Conference on Computer Safety,
Reliability, and Security. Springer, 382–391.

[61] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus

Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy

data analytics in the cloud using SGX. In 2015 IEEE Symposium on Security and
Privacy. IEEE, 38–54.

[62] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan

Mangard. 2017. Malware guard extension: Using SGX to conceal cache attacks.

In Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA)
(DIMVA).

[63] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017. T-SGX:

Eradicating controlled-channel attacks against enclave programs. In Proceedings
of the 2017 Annual Network and Distributed System Security Symposium (NDSS).
San Diego, CA.

[64] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena.

2016. Preventing page faults from telling your secrets. In Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security (ASIA CCS
’16). ACM, 317–328.

[65] Shweta Shinde, Shruti Tople, Deepak Kathayat, and Prateek Saxena. 2015. Podarch:
Protecting legacy applications with a purely hardware TCB. Technical Report.

National University of Singapore.

[66] Raoul Strackx, Job Noorman, Ingrid Verbauwhede, Bart Preneel, and Frank

Piessens. 2013. Protected software module architectures. In ISSE 2013 Securing
Electronic Business Processes. Springer, 241–251.

[67] Raoul Strackx and Frank Piessens. 2017. The Heisenberg defense: Proac-

tively defending SGX enclaves against page-table-based side-channel attacks.

https://arxiv.org/abs/1712.08519. arXiv preprint arXiv:1712.08519 (Dec. 2017).
[68] Raoul Strackx, Frank Piessens, and Bart Preneel. 2010. Efficient isolation of trusted

subsystems in embedded systems. In Security and Privacy in Communication
Networks. Springer, 344–361.

[69] Texas Instruments. 2006. MSP430x1xx family: User’s guide. http://www.ti.com/

lit/ug/slau049f/slau049f.pdf.

[70] Florian Tramer, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and Elaine

Shi. 2017. Sealed-glass proofs: Using transparent enclaves to prove and sell

knowledge. In 2nd IEEE European Symposium on Security and Privacy (Euro S&P).
IEEE.

[71] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.

2018. Foreshadow: Extracting the keys to the Intel SGX kingdom with transient

out-of-order execution. In Proceedings of the 27th USENIX Security Symposium.

USENIX Association.

https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://www.fortanix.com/assets/Fortanix_Side_Channel_Whitepaper.pdf
http://www.ti.com/lit/an/slaa139/slaa139.pdf
http://www.ti.com/lit/an/slaa139/slaa139.pdf
https://lirias.kuleuven.be/bitstream/123456789/574995/1/thesis.pdf
https://lirias.kuleuven.be/bitstream/123456789/574995/1/thesis.pdf
https://signal.org/blog/private-contact-discovery/
http://www.ti.com/lit/ug/slau049f/slau049f.pdf
http://www.ti.com/lit/ug/slau049f/slau049f.pdf

[72] Jo Van Bulck, Jan Tobias Mühlberg, and Frank Piessens. 2017. VulCAN: Effi-

cient component authentication and software isolation for automotive control

networks. In Proceedings of the 33th Annual Computer Security Applications Con-
ference (ACSAC’17). ACM.

[73] Jo Van Bulck, Job Noorman, Jan Tobias Mühlberg, and Frank Piessens. 2016.

Towards availability and real-time guarantees for protected module architectures.

In MODULARITY Companion Proceedings ’16. ACM, New York, 146–151.

[74] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step: A practical

attack framework for precise enclave execution control. In Proceedings of the 2nd
Workshop on System Software for Trusted Execution (SysTEX’17). ACM, 4:1–4:6.

[75] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul

Strackx. 2017. Telling your secrets without page faults: Stealthy page table-

based attacks on enclaved execution. In Proceedings of the 26th USENIX Security
Symposium. USENIX Association.

[76] Marcus Völp, Jérémie Decouchant, Christoph Lambert, Maria Fernandes, and

Paulo Esteves-Verissimo. 2017. Enclave-based privacy-preserving alignment of

raw genomic information: Information leakage and countermeasures. In Proceed-
ings of the 2nd Workshop on System Software for Trusted Execution (SysTEX’17).
ACM, Article 7, 6 pages.

[77] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,

Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. 2017. Leaky cauldron

on the dark land: Understanding memory side-channel hazards in SGX. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2421–2434.

[78] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch, and Yuval Yarom.

2018. Foreshadow-NG: Breaking the virtual memory abstraction with transient

out-of-order execution. Technical Report (2018).
[79] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel

attacks: Deterministic side channels for untrusted operating systems. In 2015
IEEE Symposium on Security and Privacy. IEEE, 640–656.

[80] Yuval Yarom and Katrina Falkner. 2014. Flush+ reload: A high resolution, low

noise, L3 cache side-channel attack. In 23rd USENIX Security Symposium. USENIX

Association, 719–732.

A MSP430 INSTRUCTION CYCLES

This appendix provides the full instruction timings for the MSP430

architecture, as published by Texas Instruments [69]. All jump in-

structions require two clock cycles to execute, regardless of whether

the jump is taken or not. The number of CPU cycles required for

other instructions depends on the addressing modes of the source

and destination operands, not the instruction type itself. Tables 1

and 2 list the number of cycles for respectively single and double

operand instructions. Note that a number of MSP430 assembly op-

erations (including nop, incd, rla, ret, and tst) are emulated by

means of the listed machine instructions.

Table 1: MSP430 single operand instruction cycles.

No. of Cycles

Addressing RRA, RRC, PUSH CALL Example

Mode SWPB, SXT

Rn 1 3 4 SWPB R5
@Rn 3 4 4 RRC @R9
@Rn+ 3 5 5 SWPB @R10+
#N – 4 5 CALL #0F000H
x(Rn) 4 5 5 CALL 2(R7)
EDE 4 5 5 PUSH EDE
&EDE 4 5 5 SXT &EDE

Table 2: MSP430 double operand instruction cycles.

Addressing Mode No. of

Src Dst Cycles Example

Rn Rm 1 MOV R5,R8
PC 2 BR R9
x(Rm) 4 ADD R5,4(R6)
EDE 4 XOR R8,EDE
&EDE 4 MOV R5,&EDE

@Rn Rm 2 AND @R4,R5
PC 2 BR @R8
x(Rm) 5 XOR @R5,8(R6)
EDE 5 MOV @R5,EDE
&EDE 5 XOR @R5,&EDE

@Rn+ Rm 2 ADD @R5+,R6
PC 3 BR @R9+
x(Rm) 5 XOR @R5+,8(R6)
EDE 5 MOV @R9+,EDE
&EDE 5 MOV @R9+,&EDE

#N Rm 2 MOV #20, R9
PC 3 BR #2AEH
x(Rm) 5 MOV #0300H,0(SP)
EDE 5 ADD #33,EDE
&EDE 5 ADD #33,&EDE

x(Rn) Rm 3 MOV 2(R5),R7
PC 3 BR 2(R6)
x(Rm) 6 ADD 2(R4),6(R9)
EDE 6 MOV 4(R7),EDE
&EDE 6 MOV 2(R4),&EDE

EDE Rm 3 AND EDE,R6
PC 3 BR EDE,R6
x(Rm) 6 MOV EDE,0(SP)
EDE 6 CMP EDE,EDE
&EDE 6 MOV EDE,&EDE

&EDE Rm 3 MOV &EDE,R8
PC 3 BR &EDE
x(Rm) 6 MOV &EDE,0(SP)
EDE 6 MOV &EDE,EDE
&EDE 6 MOV &EDE,&EDE

B SECURE KEYPAD IMPLEMENTATION

The enclaved keypad program below was derived from a recently

published open-source
8
automotive Sancus application scenario [72],

which we had to minimally modify in order to run without function

callbacks in a stand-alone enclave.

The start-to-end timing of the poll_keypad function only re-

veals the number of times the if statement was executed, i.e., the

number of keys that were down (cf. return value). By carefully

interrupting the function each loop iteration, an untrusted ISR can

learn the value of the secret PIN code.

8
https://github.com/sancus-pma/vulcan/blob/master/demo/ecu-tcs/sm_tcs_kypd.c

https://github.com/sancus-pma/vulcan/blob/master/demo/ecu-tcs/sm_tcs_kypd.c

i n t SM_DATA(s e cu r e) i n i t = 0 x0 ;
i n t SM_DATA(s e cu r e) p i n _ i d x = 0 x0 ;
u i n t 1 6 _ t SM_DATA(s e cu r e) k e y_ s t a t e = 0 x0 ;
char SM_DATA(s e cu r e) p in [PIN_LEN] ;
cons t char SM_DATA(s e cu r e) keymap [NB_KEYS] =
{

' 1 ' , ' 4 ' , ' 7 ' , ' 0 ' , ' 2 ' , ' 5 ' , ' 8 ' , ' F ' ,
' 3 ' , ' 6 ' , ' 9 ' , ' E ' , 'A ' , ' B ' , 'C ' , 'D '

} ;

i n t SM_ENTRY (s e cu r e) po l l _keypad (vo id)
{

i n t i s _ p r e s s e d , was_pressed , mask = 0 x1 ;

/ ∗ S e c u r e l y i n i t i a l i z e SM on f i r s t c a l l . ∗ /
i f (! i n i t) r e t u r n d o _ i n i t () ;

/ ∗ F e t c h key s t a t e from MMIO d r i v e r SM . ∗ /
u i n t 1 6 _ t new_key_sta te = r e ad_key_ s t a t e () ;

/ ∗ S t o r e down key s i n p r i v a t e PIN a r r a y . ∗ /
f o r (i n t key = 0 ; key < NB_KEYS ; key ++)
{

i s _ p r e s s e d = (new_key_s ta te & mask) ;
was_pressed = (k e y_ s t a t e & mask) ;
i f (i s _ p r e s s e d

/ ∗ INTERRUPT SHOULD ARRIVE HERE ∗ /
&& ! was_pressed && (p i n _ i d x < PIN_LEN))

{
p in [p i n _ i d x ++] = keymap [key] ;

}
/ ∗ . . OR HERE . When c o n f i g u r i n g t h e t im e r
f o r t h e key compar i s on i n t h e n e x t l oop
i t e r a t i o n , ISR shou l d t a k e i n t o a c c oun t
key p r e s s e s from p r e v i o u s run s t o be a b l e
t o d e t e c t key r e l e a s e s . ∗ /
mask = mask << 1 ;

}
k e y _ s t a t e = new_key_s ta te ;

/ ∗ Re tu rn t h e number o f c h a r a c t e r s s t i l l
t o be e n t e r e d by t h e u s e r . ∗ /
r e t u r n (PIN_LEN − p i n _ i d x) ;

}

For completeness, we also provide a disassembled version of this

function, as compiled with LLVM/Clang v3.7.0.

poll_keypad:

push r4

mov r1 , r4

push r11

push r10

push r9

tst &init

jz 3f

call #read_key_state

mov #1, r12

clr r13

mov &key_state , r14

1: mov &pin_idx , r11

cmp #4, r11

jge 2f

mov r12 , r10

and r15 , r10

tst r10 # test key state

jz 2f # V no. of cycles

mov r14 , r10 # 1

and r12 , r10 # 1

tst r10 # 1

jnz 2f

mov.b 518(r13), r10

mov r11 , r9

inc r9

mov r9, &pin_idx

mov.b r10 , 550(r11) # V no. of cycles

2: rla r12 # 1

incd r13 # 1

cmp #32, r13 # 2

jnz 1b

mov r15 , &key_state

mov #4, r15

sub &pin_idx , r15

jmp 4f

3: call #do_init

4: pop r9

pop r10

pop r11

pop r4

ret

C INTEL SGX SDK BINARY SEARCH

IMPLEMENTATION

In this appendix, we provide the full C source code of the bsearch
function from the trusted in-enclave libc in the official Intel SGX

Linux SDK v2.1.2 (linux-sgx/sdk/tlibc/stdlib/bsearch.c).

/ ∗
∗ Copy r i g h t (c) 1 990 R e g en t s o f t h e U n i v e r s i t y
∗ o f C a l i f o r n i a . A l l r i g h t s r e s e r v e d .
∗ /

i n c l u d e < s t d l i b . h>

/ ∗
∗ Pe r fo rm a b i n a r y s e a r c h .
∗
∗ The code be low i s a b i t sneaky . A f t e r a
∗ compar i s on f a i l s , we d i v i d e t h e work i n h a l f

∗ by moving e i t h e r l e f t o r r i g h t . I f l im i s
∗ odd , moving l e f t s imp l y i n v o l v e s h a l v i n g
∗ l im : e . g . , when l im i s 5 we l o o k a t i t em 2 ,
∗ so we change l im to 2 so t h a t we w i l l l o o k
∗ a t i t em s 0 & 1 . I f l im i s even , t h e same
∗ a p p l i e s . I f l im i s odd , moving r i g h t a ga i n
∗ i n v o l v e s h a l v i n g l im , t h i s t ime moving t h e
∗ ba s e up one i t em pa s t p : e . g . , when l im i s 5
∗ we change ba s e t o i t em 3 and make l im 2 so
∗ t h a t we w i l l l o o k a t i t em s 3 and 4 . I f l im
∗ i s even , however , we have t o s h r i n k i t by
∗ one b e f o r e h a l v i n g : e . g . , when l im i s 4 , we
∗ s t i l l l o o k e d a t i t em 2 , so we have t o make
∗ l im 3 , t h en ha l v e , o b t a i n i n g 1 , so t h a t we
∗ w i l l on l y l o o k a t i t em 3 .
∗ /

vo id ∗
b sea r ch (cons t vo id ∗ key , cons t vo id ∗ base0 ,

s i z e _ t nmemb , s i z e _ t s i z e ,
i n t (∗ compar) (con s t vo id ∗ , c on s t vo id ∗))

{
c on s t char ∗ base = (cons t char ∗) base0 ;
s i z e _ t l im ; i n t cmp ; cons t vo id ∗ p ;

f o r (l im = nmemb ; l im ! = 0 ; l im >>= 1) {
p = base + (l im >> 1) ∗ s i z e ;
cmp = (∗ compar) (key , p) ;
i f (cmp == 0)

r e t u r n ((vo id ∗) p) ;
i f (cmp > 0) { / ∗ key > p : move r i g h t ∗ /

base = (char ∗) p + s i z e ;
l im −−;

} / ∗ e l s e move l e f t ∗ /
}
r e t u r n (NULL) ;

}

Since Nemesis-type IRQ latency attacks exploit information leak-

age at an instruction-level granularity, we also provide a disassem-

bled version of this function, as compiled with gcc v5.4.0.

bsearch:

push %r15

push %r14

push %r13

push %r12

push %rbp

push %rbx

sub $0x18 ,%rsp

test %rdx ,%rdx

mov %rdi ,0x8(%rsp)

je 3f

mov %rsi ,%r12

mov %rdx ,%rbx

mov %rcx ,%rbp

mov %r8 ,%r13

jmp 2f

/* base = (char *)p + size; lim --; */

1: sub $0x1 ,%rbx

lea (%r14 ,%rbp ,1),%r12

shr %rbx

test %rbx ,%rbx

je 3f

/* for (lim = nmemb; lim != 0; lim >>= 1) */

2: mov %rbx ,%r15

mov 0x8(%rsp),%rdi

shr %r15

mov %r15 ,%rdx

imul %rbp ,%rdx

lea (%r12 ,%rdx ,1),%r14

mov %r14 ,%rsi

callq *%r13

cmp $0x0 ,%eax

je 4f # cmp == 0

jg 1b # cmp > 0

mov %r15 ,%rbx # else move left

test %rbx ,%rbx

jne 2b

/* return (NULL); */

3: add $0x18 ,%rsp

xor %eax ,%eax

pop %rbx

pop %rbp

pop %r12

pop %r13

pop %r14

pop %r15

retq

/* return ((void *)p); */

4: add $0x18 ,%rsp

mov %r14 ,%rax

pop %rbx

pop %rbp

pop %r12

pop %r13

pop %r14

pop %r15

retq

For completeness, we finally list the source code and dissassemly

of the integer comparison function we used in the macrobenchmark

evaluation of Section 5.3.

i n t int_comp (cons t vo id ∗ p1 , cons t vo id ∗ p2)
{

i n t a = ∗ ((i n t ∗) p1) , b = ∗ ((i n t ∗) p2) ;

i f (a == b)
r e t u r n 0 ;

e l s e i f (a > b)
r e t u r n 1 ;

e l s e
r e t u r n −1;

}

int_comp:

xor %eax , %eax

mov (%rsi), %edx

cmp %edx , (%rdi)

je 1f

setg %al

movzbl %al ,%eax

lea -0x1(%rax ,%rax ,1),%eax

1: retq

	Abstract
	1 Introduction
	2 Background and Basic Attack
	2.1 Attacker Model and Assumptions
	2.2 Fetch-Decode-Execute Operation
	2.3 Basic Nemesis Attack

	3 Case Study Platforms and Attacks
	3.1 Sancus and Embedded PMAs
	3.2 Intel Software Guard eXtensions

	4 Implementation Aspects
	4.1 Implementation on Sancus Platforms
	4.2 IRQ Latency Traces on SGX Platforms

	5 Evaluation
	5.1 Effectiveness on Sancus
	5.2 SGX Microbenchmarks
	5.3 SGX Macrobenchmark Attack Scenarios

	6 Discussion and Mitigations
	7 Related Work
	8 Conclusion
	References
	A MSP430 Instruction Cycles
	B Secure Keypad Implementation
	C Intel SGX SDK Binary Search Implementation

