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automotive control networks, specifically in Controller Area Networks
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• We argue for the use of timing-based covert communication in auto-
motive control networks, and evaluate qualitative characteristics of a
practical timing channel implementation on CAN.

• We present a timing-based nonce synchronisation scheme for message
authentication in VulCAN, improving robustness against message loss.

• We evaluate the security properties of our design and develop an ar-
gument showing that our scheme does not harm VulCAN’s security
guarantees in the presence of a powerful network-level attacker.

• We conduct the first comprehensive exploration of covert, and covert-
like, bandwidth sources applicable to CAN.
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Abstract

Automotive control networks offer little resistance against security threats
that come with the long-range connectivity in modern cars. Remote at-
tacks that undermine the safety of vehicles have been shown to be practical.
A range of security mechanisms have been proposed to harden resource-
constrained embedded microcontrollers against malicious interference, in-
cluding cryptographic protocols that establish the authenticity of in-vehicle
message exchange. However, authenticated communication comes with reper-
cussions on deployability and vehicle safety in terms of reliability, real-time
compliance, backwards compatibility, and bandwidth and resource use.

In this article we investigate benign, defensive uses of covert channels
to implement and support vehicular message authentication mechanisms as
a transparent, resource-conserving approach to automotive network secu-
rity. We provide the first comprehensive evaluation of covert channels in
Controller Area Networks (CAN) with respect to the attainable bandwidth
and reliability of covert communication. Our analysis identifies timing-based
covert channels as candidates to design a complementary nonce synchroni-
sation channel that can enhance robustness against message loss in existing
authentication schemes. We practically implement and evaluate this design
on top of an open-source authenticated CAN communication library, showing
that covert timing channels can improve communication robustness in benign
circumstances, while not reducing the security guarantees of the underlying
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authentication primitives when under attack.

Keywords: covert channels, message authentication, trusted computing,
Controller Area Network, automotive security

1. Introduction

Information leakage through side channels is long known to be exploitable
in practical attacks [1, 2] across all kinds of systems. In the context of
connected vehicles, this information leakage has been identified as a threat to
user privacy [3]. Experimental exploits aim at tracking vehicles [4], attack key
exchange protocols [5], or compromise the security of commercial immobiliser
systems [6]. In this paper, however, we develop a novel defensive use case for
the “hidden” bandwidth provided by side channels, which we use to support
authentication schemes for automotive control networks.

Automotive Control Networks. Modern-day vehicles are equipped with an
unprecedented amount of embedded Electronic Control Units (ECUs), that
regulate and enhance the experience of both drivers and passengers. Con-
troller Area Networks (CANs) serve to connect such in-vehicle components
and are widely used by the automotive industry, as well as in building au-
tomation, factory control and agriculture. Given those application domains,
CAN often plays a major role in safety-critical, real-time sensitive functions,
such as emergency braking and parking assistance.

Therefore, CAN network security in the form of, e.g., access control and
message authentication, was sacrificed for performance and timeliness. This
is a sensible approach when assuming CAN networks to be inaccessible be-
yond vehicle boundaries. However, the rise of on-board systems for entertain-
ment, communication and navigation broke that assumption, by connecting
a subset of embedded vehicle components not only to CAN, but also to
wider-reaching networks, including the Internet. As such, remotely accessi-
ble vectors for penetrating CAN networks were introduced, which resulted
in a wide range of practical attack demonstrations against CAN networks
and the connected ECUs [7, 8, 4, 9]. Those findings show that, given the
safety-critical functions performed by ECUs, major harm can follow from
these devices’ CAN communication being tampered with.

Authentication in CAN. The unique constraints of the automotive industry,
in terms of resource utilisation and backwards-compatibility requirements,
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have prompted researchers to propose a multitude of lightweight crypto-
graphic protocols for transmitting customised Message Authentication Codes
(MACs) on the CAN bus [10, 11, 12]. Moreover, the use of embedded Trusted
Execution Environments (TEEs) has recently been put forward as a promis-
ing solution to protect software and cryptographic key material on partic-
ipating ECUs [13, 14]. For the purpose of our research, VulCAN [13] is
particularly interesting because it presents a light-weight open-source library
implementation of multiple CAN authentication protocols for a readily avail-
able IoT TEE [15]. Despite these strong security guarantees, however, ex-
isting message authentication measures remain impractical due to increased
CAN bus activity and the possibility of message loss, thereby weakening the
real-time and reliability properties of safety-critical in-vehicle functionality.

A challenging trade-off thus exists for CAN applications, which have to
consider automotive safety requirements from largely incompatible perfor-
mance and security angles. TACAN (Transmitter Authentication in CAN, [16])
recently suggested to somewhat alleviate resource demands by transmit-
ting authentication messages via covert channels. Such non-conventional
communication forms exploit behavioural properties of regular, bandwidth-
consuming traffic for their information carrier, and consequently incur no ex-
tra network load for transmitting data. As such, when employed for defensive
purposes, covert channels hold the compelling potential of transparently im-
plementing security mechanisms without sacrificing scarcely available band-
width. TACAN’s immediate use of covert authentication suffers from several
major limitations, however. Most importantly, TACAN does not aspire to be
a full authentication solution, but only pursues a significantly weaker form
of continuous “transmitter authentication”. That is, in the face of severe
restrictions regarding the available bandwidth and reliability of covert com-
munication, TACAN cannot guarantee the authenticity of individual message
payloads and only enables a trusted monitor node to periodically establish
that sender nodes have access to a certain key by means of heavily truncated
cryptographic digests.

Our Contributions. In this paper, we refine the challenges and opportunities
for using covert communication in benign applications. Specifically, we move
beyond using covert channels as a mere drop-in replacement for existing CAN
authentication schemes, and we develop a more innovative and suitable com-
posite usage where covert bandwidth is leveraged not to replace but rather
to complement existing authentication protocols. After comprehensively sur-
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veying covert-channel opportunities in CAN, we conclude that inter-arrival
time manipulation provides the most tempting characteristics for software-
defined and application-independent covert transmission. We then design
such a timing-based covert channel that enhances existing MAC-based au-
thentication schemes, and we ensure the use of that covert channel to be
(1) secure, in the sense that authentication cannot be bypassed even when
the covert channel is completely controlled by the adversary, (2) optional, in
the sense that authentication remains functional even under circumstances
where the covert channel completely fails, but (3) advantageous, in the sense
that quality-of-service improves by reducing the number of authentication
failures caused by (possibly non-malicious) message loss.

Concretely, we use a timing-based covert channel to extend and improve
nonce synchronisation in the previously published vatiCAN [11] message au-
thentication protocol. Our practical implementation is conceived as a plug-
gable backend extension to the open-source VulCAN [13] authentication li-
brary. Crucially, by using covert bandwidth to encode partial nonce bits, we
can entirely dispose of vatiCAN’s global nonce generator component, which
has previously been shown to be vulnerable to practical replay attacks based
on the birthday paradox [13]. To that end, we first present and evaluate a
covert channel based on packet inter-arrival time manipulation on the CAN
bus. Next, we migrate that timing channel to the specific application con-
text of nonce synchronisation in VulCAN’s vatiCAN backend, and we argue
that our approach improves robustness without compromising the pursued
security guarantees. In summary, we make the following contributions:2

1. We argue for the use of timing-based covert communication in auto-
motive control networks, and evaluate qualitative characteristics of a
practical timing channel implementation on CAN.

2. We present a timing-based nonce synchronisation scheme for message
authentication in VulCAN, improving robustness against message loss.

3. We evaluate the security properties of our design and develop an ar-
gument showing that our scheme does not harm VulCAN’s security
guarantees in the presence of a powerful network-level attacker.

2All experiments will be made open-source available upon acceptance. The code is
available for reviewers on request through the program chairs.
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4. We conduct the first comprehensive exploration of covert, and covert-
like, bandwidth sources applicable to CAN.

Outline. Section 2 provides background, and Section 3 defines the problem,
goals, and requirements. We develop a practical timing channel instance in
Section 4. Section 5 presents our design for timing-based nonce synchronisa-
tion in VulCAN, which is analysed from a performance and security perspec-
tive in respectively Sections 6 and 7, and discuss limitations and future work
in Section 8. Finally, in Section 9, we present an overview of covert-channel
opportunities for CAN, and draw conclusions in Section 10.

2. Background and Related Work

This section positions our work in its context of previous research on CAN
security threats, message authentication, nonce synchronisation, and covert
channels. From the combination of those fields emerges the purpose of our
work, i.e., improving CAN application security by repurposing side channels,
traditionally known as attack vectors, as software-controlled, supplementary
bandwidth for benign use.

2.1. Controller Area Network

CAN protocol design. The Controller Area Network (CAN) protocol [17] is
used by, amongst others, the automotive industry for in-vehicle communi-
cation. It serves to connect the electrical components regulating, e.g., a
vehicle’s brakes to its parking sensors, or its dashboard velocity meter to
its wheels. Participating microcontrollers, typically referred to as Electrical
Control Units (ECUs), interface the CAN bus by means of dedicated CAN
transceiver hardware chips.

To fit this context of mostly embedded computing devices taking part
in CAN communication, CAN is built upon a broadcast medium without
an addressing mechanism, thus relieving from any overhead related to con-
nection management and/or network joining and leaving. Moreover, ECUs
are not synchronised in their access to a CAN bus, meaning all connected
ECUs can both transmit on and read from their CAN bus at any time. Pre-
venting from unstable bus behaviour due to this design, a 0-bit is deemed
dominant, which means its transmission overwrites a (recessive) 1-bit. To
accommodate such design, CAN nodes halt frame transmission on detecting
unwanted overwriting of their own communication.
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Figure 1: CAN 2.0 data frame fields. Software-controlled fields are indicated in grey,
others are controlled in the transceiver hardware.

A simplified overview of a CAN frame is given in Figure 1. Importantly,
the data payload field has a fixed maximal length of 8 bytes (64-bit), severely
restricting the amount of information that can be transmitted in a single
CAN frame. As indicated, an ID field is further leveraged as an addressing
mechanism for associating messages to their application and/or sender. It
measures 11 bits in original CAN, and is extended to 29 bits in CAN 2.0 [17].
Given the CAN arbitration scheme of 0-bit transmissions being dominant,
the ID field moreover serves to denote its message’s priority. Indeed, the
lower a frame’s ID, the higher chance it has of retaining bus occupation until
transmission of its data payload.

CAN security threats. Multiple network attacker capabilities were described
to be enabled by both the nature of the CAN design, and its increasingly
remote accessibility [7, 18, 19]. Their exploitation requires gaining control
over the transmission logic of an ECU connected to the targeted CAN bus,
either through the physical attachment of a rogue node [8], or a remote code
injection attack [4, 20, 21] that leverages external vehicle accessibility. Below,
the main capabilities enabled by such malicious ECU control are listed.

Eavesdropping. As CAN uses a broadcast medium that is not equipped with
access control, ECUs are free to record and inspect all traffic on the CAN bus
they are connected to. CAN moreover provides no confidentiality mechanism
in its design, which means malicious nodes receive the same plaintext data
as the benign nodes they are eavesdropping on.

Message insertion. As CAN provides no mechanisms for bus access control
and/or transmitter authentication, a malicious ECU can inject a frame carry-
ing any ID and data payload on its bus, and have it be successfully received
by other nodes on that bus, if that message conforms to the CAN frame
format and its CRC field carries a suitable checksum.
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Message deletion. Any 1-bit transmission on a CAN bus can be overwritten
by a 0-bit, and CAN nodes stop message transmission whenever they detect
such overwriting. Therefore, an appropriately timed 0-bit transmission by a
malicious ECU can cause deletion of any CAN message.

2.2. Message Authentication in CAN

CAN continues to be heavily used in the automotive industry. In the face
of the CAN security threats discussed above, several proposals have been
made to weaken network attackers in their capabilities, and harden software
modules against compromise. Cryptographic message authentication proto-
cols form a subset of those efforts, and are of specific interest for this work.

Message authentication is performed on each frame transmission, and
takes the frame at stake as a parameter. Concretely, when authenticating a
message, its sender calculates a Message Authentication Code (MAC) over
(1) the message itself, (2) a secret, and (3) a nonce value providing freshness,
and transmits that MAC along with the message at hand. Receiver parties
then verify the identity of a packet’s origin through validating such MACs
to be calculated over an appropriate message, secret and nonce.

Authentication Protocols. Several message authentication protocols were de-
veloped in academia specifically for CAN, including vatiCAN [11], LiBrA-
CAN [22], CANAuth [12] and LeiA [10]. The main common factor amongst
those protocols is their aim for backwards compatibility, i.e., CAN nodes
not supporting their form of message authentication should not break when
other components on their CAN bus enable authenticated communication.
The industry standard body AUTOSAR [23] formulates guidelines on back-
wards compatible in-vehicle message authentication, which are complied to
by vatiCAN [11] and LeiA [10]. There are additional protocols with focus on
establishing cryptographic (session) keys between ECUs, e.g., [24, 25].

VulCAN [13] is an open-source CAN authentication suite, including prac-
tical implementations of both the vatiCAN and LeiA protocols. Message
authentication in VulCAN is transparently performed by accompanying each
application message with a subsequently sent authentication message that
carries a truncated 64-bit MAC, calculated with a 128-bit symmetric cryp-
tographic key as recommended by AUTOSAR [23]. MAC-calculation and
-transmission details are governed by the respective vatiCAN or LeiA back-
ends. VulCAN furthermore supports efficient compilation to embedded San-
cus enclaves [26, 15] so as to shield application logic and cryptographic key
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material from potentially compromised firmware on the target ECU. For this,
VulCAN leverages the strong, hardware-level cryptographic primitives and
memory isolation guarantees provided by the Sancus TEE in an automotive
context to efficiently enable authenticated CAN communication, as well as
software attestation and isolation. Notably, the VulCAN design explicitly ex-
cludes the operating system, networking, and I/O interaction software from
its Trusted Computing Base (TCB), thus allowing for both CAN traffic and
unprotected ECU application logic to be taken over by an attacker while
retaining its security guarantees.

Nonce Synchronisation. In message authentication, nonces (or counters) are
crucial to provide message freshness. More specifically, a nonce, is associ-
ated with each authenticated message, and used as a parameter in both the
calculation and validation of that message’s MAC. As opposed to the secret
key used as another parameter in MAC calculation, nonces can safely be dis-
closed. Indeed, obtaining the nonce associated with a frame does not suffice
for an attacker to construct a valid corresponding MAC, as it is assumed not
to have access to the associated secret.

By using a unique nonce for each message, any two valid MACs are cal-
culated using a different nonce, meaning they are unlikely to be equal, de-
pending on MAC algorithm strength. As such, valid MACs are guaranteed
to correspond to fresh messages, i.e., messages that were not yet authenti-
cated and/or processed as such. Therefore, attackers incapable of producing
valid MACs themselves cannot successfully resort to replaying authenticated
traffic on a CAN bus and trick receivers into accepting it as such.

Since large nonces cannot be simply sent along with the corresponding
MAC in the limited-sized CAN frame layout, nonces pose a non-trivial chal-
lenge in synchronising sending and receiving ECUs. While some authentica-
tion protocols [11] rely on implicit nonce synchronisation, where the sender
and receiver ECUs each increment their own local nonce counter on respec-
tively every message transmission or arrival, such an approach cannot recover
from the likely scenario of message loss. Indeed, in the case of message loss,
sender and receiver nonces get out-of-sync and all subsequent MAC verifica-
tions will fail. Alternative solutions anticipate packet loss by including (the
lower bits of) the nonce in some of the fields of the authentication frame
itself. However, such solutions invariably have to sacrifice MAC strength [16]
or backwards compatibility [10], since the standard CAN frame does not
leave any remaining software-controlled bits free.
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2.3. Covert Channels

This work defines a covert channel as data transmission that (1) for its
payload carrier leverages some behavioural property of an underlying form of
non-covert communication (here, CAN traffic) and (2) in exploiting that car-
rier does not require write access to non-covert traffic data objects (here, CAN
frames). We consider only network-level covert channels, deeming hardware-
level behaviours out of scope.

Most literature on covert channels presents the concept as hiding trans-
mission from external parties by “covering” it in regular traffic, as stated
in our definition. Beyond that common ground however, little consensus
exists on a detailed covertness definition, in that certain channels are con-
sidered covert by some authors, and non-covert by others. For instance,
TACAN [16] proposes to overwrite CAN frame Least Significant Bits (LSBs)
for transmitting ”covert” data. A subset of existing research allows for covert
channels to overwrite overt traffic as long as it goes unnoticed in application
logic [27, 28, 29], thus categorising LSB manipulation as a covert channel in
applications that ignore a non-zero number of LSBs. Our definition however
prohibits packet manipulation regardless of the application logic at hand,
which follows a different group of authors [30, 31], amongst which Lamp-
son [31] in the original definition of covert channels.

Timing/storage covert channels. Covert channels are typically divided into
two subclasses. Timing channels use packet timings for their covert payload
carrier, whereas storage channels use memory locations, or data objects, that
all participating nodes can access. Our definition does not explicitly mention
those categories, yet allows for similar subclasses in covert communication.
Manipulation of a frame’s timing can be done regardless of its contents, which
adequately qualifies packet timing as a covert payload carrier. Therefore,
all timing channels applicable to CAN are considered covert here, such as
the packet Inter-Arrival Time (IAT) channel proposed by TACAN [16]. In
contrast, no network-level storage channels introduced in previous work meet
our covertness requirements, such as the LSB manipulation channel discussed
earlier. Timing channels have been discussed in the context of the Internet-
of-Things before [32], where the authors show that the detectability of the
channel is proportional to the channel’s reliability. Since our approach aims
at using covert bandwidth to transfer information that is not confidential
detectability of the channel is not a concern in our work.
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Security implications. Most known covert channels are leveraged for mali-
cious purposes, more specifically for leaking confidential information. Some
authors [31, 29] explicitly require the sending party in a covert channel to
have a privilege level different from its receiver’s, to enable security policy
bypass through covert communication. We pose no requirements on the se-
curity privileges of participants, however, as we innovatively leverage covert
communication to enforce defensive mechanisms, rather than to bypass them.

3. Problem Statement

From the previous section, we conclude that nonce synchronisation poses
an important and reoccurring challenge for CAN authentication solutions,
where message sizes are strictly limited, network bandwidth is scarce, and
packet loss is likely to occur in realistic deployments. We first argue below
why authentication solutions recently proposed in the literature do not pro-
vide satisfactory solutions to the nonce synchronisation challenge. Next, we
formulate requirements for practical and secure nonce synchronisation, and
we define the system model and attacker capabilities.

3.1. Motivation

vatiCAN limitations. Nonces cannot be included in the limited 64-bit vat-
iCAN authentication packets. All sender and receiver ECUs are instead
expected to maintain a local 32-bit nonce counter [11], which is incremented
for every successful message transmission or arrival, respectively. However,
in case of packet loss, sender and receiver nonces may get out-of-sync, lead-
ing all subsequent MAC verifications to fail after being computed with the
wrong nonce. To somewhat mitigate this scenario and allow authenticated
communication to eventually recover after message loss, vatiCAN proposes
the use of a trusted global Nonce Generator (NG) component that periodi-
cally synchronises nonces in the entire network. Particularly, NG periodically
broadcasts a randomly generated value that should be used as the new initial
nonce value by all participants on the CAN bus for that era.

However, NG’s periodic nonce reset scheme has been shown to render
vatiCAN susceptible to advanced replay attacks based on the birthday para-
dox [13]. Depending on the application and NG configuration, as little as 30
minutes of recorded CAN traffic may suffice to successfully replay a safety-
critical authenticated message [13]. VulCAN therefore excludes NG from its
vatiCAN backend, trading robustness against message loss for security.
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LeiA limitations. LeiA [10] offers a more tempting solution to message loss
recovery by directly embedding nonce bits in the 18-bit extended CAN iden-
tifier field. To compensate for the relatively small nonce size, LeiA includes
larger 64-bit epoch counters that can be used to refresh session keys on nonce
counter overflow. As every authentication message now carries the associ-
ated nonce in its identifier field, receivers can straightforwardly recover after
loosing one or more sender messages. Furthermore, to recover from longer-
term network outages, LeiA includes an elaborate error-frame protocol to
resynchronise sender and receiver epoch counters.

Crucially, however, sacrificing extended CAN identifiers to encode nonce
bits breaks backwards compatibility with real-world applications relying on
those. Even apart from backwards compatibility concerns, extended CAN
identifiers also come with a considerable performance cost. Namely, in the
first actual implementation of the LeiA specification, VulCAN [13] reports
considerable runtime overheads (in the order of 18 %) for sending a legacy
CAN message vs. one with an extended CAN 2.0 identifier. This is due to
the increased interaction with the CAN transceiver hardware and may likely
also affect other considerations such as power consumption.

TACAN limitations. The TACAN [16] protocol does not provide strong mes-
sage authentication, but rather pursues a significantly weaker form of “trans-
mitter authentication”. Particularly, successful authentication with TACAN
only entails that the sender ECU has access to a certain (TPM-backed) key,
which does not exclude that the adversary has manipulated the transmitted
messages at creation time or in-flight, or even has code execution on the
target ECU. TACAN relies on a global trusted monitor node to act as the
receiving end of a covert channel and periodically extract a covert authentica-
tion payload from the aggregated stream of sender messages (e.g., by means
of the relative timing of the individual messages). Every TACAN authentica-
tion payload consists of a nonce counter, which is increased for every covered
transmission era, followed by a MAC over that nonce to prove possession of
a symmetric cryptographic key. Due to the limited covert bandwidth avail-
able, the MACs have to be heavily truncated at the cost of the resulting
security level (e.g., TACAN’s evaluation only considers 36-bit authentication
messages, of which only 12 bits are derived from a cryptographic digest).
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Table 1: A summary of our proposal in comparison with related work, reflecting system
properties discussed in Section 2 and Section 3. We have grouped system properties (1)
general protocol features, (2) the presence of replay protection, and (3), our requirements
from Section 3. — Footnotes — *: Backwards compatibility means that ECUs that
support authentication can still interact with legacy ECUs. However, bus congestion and
the use of arbitration IDs may render the scheme incompatible with existing deployments.
**: Systems with partial message-loss robustness recover from individual message loss
through nonce-resynchronisation steps that degrade performance.
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3.2. System Requirements

Motivated by limitations in existing work on nonce synchronisation and
benign uses of covert channels, we identified system requirements listed be-
low. In Table 1 we provide an overview of related work and our requirements.

R1: Backwards compatibility. We require our approach to not affect
regular vatiCAN functionality, in that ECUs implementing our design can
participate in vatiCAN-authenticated communication with devices that do
not. As we aim for an extension to VulCAN, we require it not to break
backwards compatibility with applications using original VulCAN.

R2: Software controllability. To ensure flexibility and portability of
our design, we require it to affect software-controlled properties of CAN only.

R3: Message-loss robustness. Both benign and malicious message
loss are inevitable in CAN. We therefore aim to propose a solution that
increases vatiCAN’s availability guarantees in the event of message loss.

R4: Minimised resource use. In our context of embedded computing,
resources are scarce. Therefore, we aim for our design to require as little ECU
energy consumption and transmission latency as possible, and do not allow
it to incur supplementary CAN bus congestion.
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Figure 2: System model for covert nonce synchronisation in VulCAN.

3.3. System Model

The system model for our our design is graphically presented in Fig-
ure 2. It consists of “vulcanised” sender and receiver nodes, i.e., Sancus-
enabled ECUs that implement VulCAN. Communication proceeds over a
vatiCAN [11] authenticated connection, which is built upon a CAN bus that
is also accessible to rogue ECUs. As our design is formulated as an extension
to VulCAN [13], both the sender and the receiver are assumed to govern
authenticated CAN communication through an appropriately extended Vul-
CAN library that executes in a trusted Sancus enclave [15]. Their respective
CAN driver software and CAN transceiver hardware lie outside that trusted
environment, and are thus deemed under attacker control. To accommo-
date timing-based communication, the receiver ECU furthermore provides
an untrusted timer peripheral, which serves to measure authentication frame
timings, and an IAT buffer in which those measurements are stored.

3.4. Attacker Profiles and Security Objective

Attacker Level 1: Network attacker. Our Level 1 attacker model considers
a malicious party that, either via physical access or remote code injection
[4, 20], can take over a non-vulcanised ECU for deleting and/or inserting
CAN frames on the common bus. This is the traditional adversary considered
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by CAN message authentication solutions [10, 11] and is presented as a rogue
ECU in Figure 2.

Attacker Level 2: Software attacker. Going beyond the Level 1 profile, Vul-
CAN [13] protects even against a more powerful attacker that is capable of ar-
bitrary code execution in all software modules that are not Sancus-protected.
Consequently, our Level 2 attacker controls both non-vulcanised ECUs like
the Level 1 attacker does, and all non-enclave software on vulcanised ECUs.
Notably, the VulCAN design explicitly excludes CAN driver software from
its trusted computing base, meaning that CAN driver operations are to be
considered untrusted and under Level 2 attacker control. With such driver
logic propagating all CAN traffic to and from VulCAN software, overtaking
it yields this attacker an ideal man-in-the-middle position in CAN commu-
nication. The IAT buffer, and timer mechanism provided at receiver side
moreover lie outside Sancus protection as well, rendering the timing values
they store, respectively produce, under Level 2 attacker control.

Security objective. In formulating our design, we seek to arrive at a practical
solution which can provide strong authentication guarantees for individual
messages (vs. TACAN), while additionally being able to detect and recover
from incidental message loss without requiring to sacrifice extended CAN
identifiers (vs. LeiA) or to introduce a vulnerable global nonce generator
component (vs. vatiCAN). For this, we extend the vatiCAN backend in the
VulCAN library with an innovative covert nonce synchronisation mechanism
which offers security guarantees similar to LeiA [10]. Moreover, we will argue
for our design not harming VulCAN’s security guarantees in the face of both
attacker profiles listed above.

4. Timing-Based Covert Communication in CAN

As emerges from Section 9, the opportunities for truly covert transmission
in CAN that conform to system requirements R2 and R4 reside in timing-
based communication. Therefore, and as a prelude to our proposed design,
this section provides with an in-depth analysis of the T1 timing channel.

4.1. Channel Design

The timing channel considered here corresponds to the T1 channel in-
troduced in Section 9. Concretely, it transmits covert data by adjusting
the originally equal-sized time intervals between non-covert, periodic CAN
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messages, similar to a covert channel considered by TACAN [16]. At sender
side, packet inter-transmission times are modified accordingly, and receiver-
side logic monitors message inter-arrival times before decoding them to the
appropriate covert payload. This section discusses the core concepts consti-
tuting this channel and its implementation in more detail.

Sender side. The sender-side encoding of a covert bit bsend to an appropriate
inter-transmission time tITT here is done using a deviation from the under-
lying message stream period T with one δ offset parameter, as encoded in
Equation (1). Note that a deviation of multiple δ offsets could be used as
well. Such an approach allows for more than one covert bit to be encoded in
every inter-transmission time, as a trade-off for larger real-time effects.

tITT =


T + δ if bsend = 1

T − δ if bsend = 0

T otherwise

(1)

Receiver side. The receiver-side decoding of an observed packet inter-arrival
time tIAT to a corresponding covert payload breceive, here is implemented to
follow the decoding of Equation (2), which matches the encoding of Equa-
tion (1). To maximise accuracy, IAT value registration at receiver side can be
done by configuring the CAN transceiver chip to fire an interrupt on packet
arrival and measuring the timing interval elapsed since the last message ar-
rival in the corresponding Interrupt Service Routine (ISR).

breceive =


1 if tIAT > T + δ/2

0 if tIAT < T − δ/2

otherwise

(2)

4.2. Channel Evaluation

Implementation technology. An implementation of this timing channel was
done using two 16-bit MSP430 microcontrollers [33], both connected over
an SPI-interface to their own MCP2515 CAN transceiver [34]. One mi-
crocontroller implements receiver-side functionality, the other takes on the
role of a sender. Both connect to the same CAN bus via their respective
CAN controllers. The bus is configured to run at 500 kbps in all experi-
ments. When introducing bus noise for performance assessment purposes,
USBtin [35] hardware is used and attached to that same CAN bus.
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Figure 3: Fraction of covert payloads transmitted correctly for varying values of δ in a
low-level IAT channel implementation on MSP430 hardware, in four bus configurations
(clear bus, 50% and 75% random bus congestion, pre-recorded background traffic)

Experimental setup. The scenario used to assess our timing channel pro-
gresses as follows. Some covert payload is transmitted 100 consecutive times
over this channel, in 10,000 repetitions. That sequence is executed using
δ offset values varying from 150 to 350 CPU cycles, and in four different
CAN bus configurations: on a clear CAN bus, on a CAN bus with 50%
randomised congestion, on a bus with pre-recorded background traffic, and
on a CAN bus with 75% random bus congestion. Our pre-recorded traffic
stems from the 500 kbps bus of a 2005 Volkswagen vehicle driving slowly
on a test track. Thus, this part of the evaluation shows how our channel
performs when embedded in a realistic vehicular network. The experiments
with the final heavily congested bus configuration is meant to showcase the
limits of the approach, as our interrupt-driven channel exhibits near-perfect
performance in all other bus conditions.

Results. Our experimental results are depicted in Figure 3. In the first three
bus configurations on which our timing channel was assessed (clear bus, 50%
bus congestion, pre-recorded traffic), it transmits 100% of covert payloads
correctly, using δ offsets as low as 150 CPU clock cycles, which corresponds
to 7.5µs at a 20 MHz clocking frequency. Such accuracy was mainly enabled
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by our precise, interrupt-driven approach to IAT value registration.
When raising bus congestion to 75%, the amount of correctly transmit-

ted covert payloads drops to an average of 85-90% when varying δ from 150
to 350 clock cycles. Software-level noise sources for our IAT channel have
been eliminated as much as deemed possible, so this performance degrada-
tion mainly stems from bus occupancy by noise traffic which impedes timely
arrival of the non-covert traffic constituting our IAT channel.

5. Timing-Based Nonce Synchronisation

Given the promising results of IAT-exploitation on MSP430-hardware,
that mechanism can sensibly be applied to a more specific, practical context.
This section motivates and discusses the timing between application- and
corresponding authentication-traffic in VulCAN as a concrete source of such
covert bandwidth and proposes its use for nonce synchronisation purposes, in
an effort to alleviate performance- and security-related issues in the current
VulCAN design. This case-study shows that covert transmission, despite
its drawbacks, can considerably aid existing security solutions, even when
offering only little supplementary bandwidth.

5.1. Overview of the Approach

The following high-level overview of our proposed design for nonce syn-
chronisation in VulCAN is illustrated in Figure 4.

In the original VulCAN design, transmission of a message from a sender
(S) to a receiver (R) over a vatiCAN-authenticated connection progresses as
follows. First, S transmits the message at hand, or the application message.
Then, S calculates a MAC for the latter, using its local nonce. Finally, S
embeds that MAC in a second message, referred to as the authentication
message. Upon receiving an application message, R calculates its own MAC
using its local nonce, which R then compares to the MAC carried by the
authentication message it subsequently receives. Only if those two MACs are
equal, authentication passes and the application message at hand is accepted
by R, whereas it is discarded otherwise.

In our proposed covert VulCAN extension, S introduces a delay before
sending its authentication message, which is an encoding of the N least
significant bits of its local nonce value. R in turn proceeds as normal, yet
monitors the message pair’s inter-arrival time. Should authentication fail
using its local nonce, R does not immediately discard the application message
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Figure 4: High-level overview of timing-based nonce synchronisation in VulCAN’s vatiCAN
backend, with additions to the original VulCAN design indicated in grey

at hand. Instead, it replaces the N least significant bits of its local nonce
with the bits it decodes from the obtained inter-arrival time. R may then
retry and possibly correct authentication by calculating a different MAC
using that new nonce (if it meets certain criteria).

Our approach hence migrates the timing channel discussed and evalu-
ated in Section 4 to the practical context of vatiCAN nonce synchronisation
in VulCAN. Notably, while the original IAT channel carries its covert pay-
load in the timings between application messages, this nonce synchronisation
scenario exploits the relative timing difference between an application mes-
sage and its corresponding authentication frame. As such, authenticated
traffic can fully transparently carry covert information without exhibiting
application-level periodicity, which was not possible for the timing channel
discussed in Section 4.

5.2. Motivation

This section motivates our approach as presented in Section 5.1, more
specifically its VulCAN-embedded use of a timing channel on the one hand,
and the use of that covert bandwidth in nonce synchronisation for VulCAN’s
vatiCAN backend on the other hand. That distinction is explicitly made to
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emphasise how either could benefit VulCAN independent of the other, when
moving beyond the context of our work.

Moreover, we show that our design fulfils all system requirements listed in
Section 3.2. Concretely, it inherits R2 and R4 from using a timing channel,
and enables R1 and R3 as elaborated on below.

Timing channel embedding in VulCAN. Our proposed design embeds timing
channel logic, i.e., manipulation and decoding of authentication frame tim-
ings, in the VulCAN library itself, by extending the original code governing
vatiCAN-authenticated communication accordingly.

Transparency. The VulCAN library has full control over both the sending
and receiving of application messages, as well as authentication messages.
As such, all timing-related operations needed for exploiting the covert band-
width considered here can be embedded in the VulCAN library itself, without
affecting its user interface.

Backwards compatibility (R1). As both the current VulCAN library and the
vatiCAN message authentication protocol do not rely on any authentication
frame timing management in sending and receiving authenticated traffic, the
covert transmission described here is a mere extension of its existing func-
tionality, and no compatibility with legacy or “vulcanised” ECUs is broken
when it is enabled.

Application independence. Covert data here is transmitted via timings not
between application messages, but between each single application message
and its corresponding authentication frame. Our covert channel therefore
relieves from the communication periodicity prerequisite posed on application
traffic by the channel discussed in Section 4.

Real-time effects. The VulCAN library at receiver side propagates applica-
tion messages to the receiver’s higher-level logic only after they have been
authenticated. The proposed delay of authentication frames therefore delays
application frame processing as well, which may somewhat attenuate previ-
ous claims of transparency, backwards compatibility and application indepen-
dence in real-time scenarios. Indeed, applications that in their functionality
rely on CAN packet timings, depending on their sensitivity to deviation in
those timings, might break when their vulcanised CAN nodes transition to
using this extension.
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Application to nonce synchronisation. Our proposed design transmits the N
least significant bits of the nonce used in constructing the MAC carried by
an authentication frame in the timing of that frame.

2N -length message loss burst recovery (R3). The explicit, although covert,
transmission of N least significant local nonce bits allows for a gap between
the local nonce values of a sender and a receiver as large as 2N to be bridged
successfully on authentication message arrival. For security purposes, as
elaborated on in Section 7, only receiver nonces getting behind on sender
nonces can be recovered from, which in vatiCAN corresponds to recovery
from message loss.

Indeed, vatiCAN guarantees monotonically increasing local nonce values,
that are updated on successful message transmission (arrival) at sender (re-
ceiver) side, which means a higher local nonce at a sender implies some trans-
missions were left without a corresponding arrival. As vatiCAN moreover
increments local nonce values by one on each successful transmission/arrival,
a nonce gap of 2N corresponds to as many subsequent messages getting lost.
In comparison, current VulCAN design sacrifices message loss recovery com-
pletely for replay attack resistance in its vatiCAN backend, as discussed in
Section 2.

Benefits over LeiA. LeiA [10] uses extended CAN IDs, i.e., the ID1 covert
channel as discussed in Section 9, for transmitting partial nonce values, which
(1) breaks applications relying on extended IDs, and (2) incurs extra power
and time consumption in applications that were not previously using ex-
tended CAN frames. Our approach inherits neither of these drawbacks,
while partially implementing LeiA’s functionality of transmitting nonce bits
for synchronisation.

5.3. Sender-Side Design

We summarise sender-side operations for our covert nonce synchronisation
protocol in Figure 5.

In original VulCAN design, a sending node first transmits the message at
hand, with no modifications, then calculates the MAC value corresponding
to the message, and without delay transmits the MAC as authentication
payload in a second message.

In difference, in our proposed VulCAN extension, the sender addition-
ally encodes the N least significant bits of the nonce that is used during

20



ncur = 0

idle

send message mAPP

authenticated connection?

Mcalc = MAC(mapp, ncur + 1)

ITT = δ ∗ LSB(ncur)

delay for ITT

send Mcalc in mauth

ncur = ncur+1

no

Figure 5: Sender-side message transmission flowchart when leveraging authentication
frame timings for nonce synchronisation in VulCAN’s vatiCAN backend. Additions to
the original VulCAN design are indicated in grey. N denotes the amount of nonce bits
transmitted covertly, δ the IAT value granularity used.

MAC computation by carefully delaying transmission of the authentication
payload. In our implementation, a cycle-accurate delay can be caused by ex-
ecuting a busy-waiting assembly loop of appropriate length. Covert payload
encoding is performed by multiplying the N least-significant nonce bits with
a timing interval δ.

5.4. Receiver-Side Design

We summarise receiver-side operations for our covert nonce synchronisa-
tion protocol in Figure 6.

Receiving nodes on an authenticated communication channel in the orig-
inal VulCAN design first receive an application message, then calculate an
expected MAC value using their local nonce value, and then receive the cor-
responding authentication frame. If the latter carries a payload equal to
the expected MAC, authentication succeeds and the application message is
proceeded to the receiver’s higher-level logic. Otherwise, that application
message is discarded.
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Figure 6: Receiver-side message receiving flowchart when leveraging authentication frame
timings for nonce synchronisation in VulCAN’s vatiCAN backend. Additions to the origi-
nal VulCAN design are indicated in grey. N denotes the amount of nonce bits transmitted
covertly, δ the IAT value granularity used. buf refers to a buffer holding IAT values.
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The first extension to the original design accommodates the collection
of IAT values. For this, a circular IAT buffer is added to the receiver’s
software, which holds inter-arrival timings of both application messages and
authentication messages, and which is accessible to untrusted CAN driver
software as well as the trusted in-enclave VulCAN library. Registration of
IAT values is embedded in CAN driver software, using an interrupt mech-
anism similar to the timing channel implementation of Section 4. On each
CAN message arrival, an interrupt is fired, whose ISR measures its timing
relative to the preceding message arrival and stores that value in the IAT
buffer. Furthermore, a global IAT index is added to the receiver’s software
to denote the position of the most recently registered value in the shared
IAT buffer. That index, like the IAT buffer, is accessible by both the trusted
in-enclave VulCAN library and the untrusted CAN driver.

Second, the original vatiCAN backend of the VulCAN library is extended
with additional operations to recover from message authentication failure. In
such an event, a new tentative nonce is first constructed based on the inter-
arrival time of the most recent authentication frame. Recall that this timing
is recorded by the untrusted CAN driver and can be fetched from shared
memory by adding the current IAT index to the start address of the circular
IAT buffer. In construction of the new tentative nonce, N covert nonce bits
Ndec are first obtained by dividing the IAT value at hand by the δ parameter
used for encoding at the sender side (see Section 5.3). To protect against
malicious nonce downgrading attacks, our VulCAN extension subsequently
compares Ndec to the N least significant bits Nrec of the receiver’s local nonce.
Only when Ndec is strictly larger than Nrec, the receiver’s local nonce least
significant bits are replaced with Ndec. Otherwise, we assume an overflow of
the covert nonce bits and first increment the upper part (32−N bits) of the
receiver’s local nonce value before replacing the lower bits with Ndec.

Based on its new nonce, a second MAC value can now be calculated at
the receiver, which is then compared to the received MAC value. When
those are equal, authentication succeeds on this second attempt and the
covert nonce is committed at the receiver side. In this case, the receiver
has fully transparently recovered from the message loss, and the application
message at hand can be securely propagated to the application logic. In
the case where authentication fails again, on the other hand, the receiver’s
nonce remains at its original local value, on which the first authentication
failure occurred, and the application message at stake is discarded. Such
repeated authentication failure may for instance occur in case of a more
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Figure 7: Experimental set-up used for performance evaluation of timing-based nonce
synchronisation, as reported on in Table 3.

severe network outage, where more than 2N subsequent messages have been
lost. At this point, the receiver may opt to initiate a more involved and
expensive resynchronisation protocol with several messages going back and
forth to reset nonces and securely re-establish a shared session key with the
sender, as in the LeiA [10] specification.

6. Performance Evaluation

Experimental scenario. To evaluate the reliability our approach, we imple-
mented and assessed it on Sancus-enabled MSP430 hardware [33] equipped
with off-the-shelf MCP2515 CAN transceivers [34]. Our microcontroller
setup is identical to VulCAN [13] and the MSP430s are clocked at 20 MHz;
the CAN is configured to 500 kbps. As illustrated in 7, we configured a
vulcanised pair of nodes to use timing-based nonce synchronisation (N = 2
nonce bits, δ = 1000 CPU cycles) in a transmission sequence of 10.000 au-
thenticated messages, each fifth of which is explicitly suppressed to simulate
incidental message loss, totalling no less than 2000 dropped messages for
each experiment. We evaluate practical reliability by measuring the total
amount of authenticated messages that were successfully accepted at the re-
ceiver side, which reveals the average amount of message losses that were
successfully recovered from by our design. This experiment is repeated for
the four different CAN bus configurations used for our T1 timing channel
evaluation in Section 4: a clear bus, a bus replaying real-world CAN traffic,
a bus with 50% randomised congestion, and a bus with 75% randomised con-
gestion. With the simulated congestion, our setup is technically equivalent
to having many communicating ECUs on the same network, as in an actual
vehicle. All relevant experimental parameters are listed in 2.

Results. Table 3 summarises experimental results. It shows that our ap-
proach offers near-perfect > 99% reliability in recovering from message loss
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Table 2: Simulation parameters used in a performance evaluation of timing-based nonce
synchronisation, as reported on in Table 3.

Parameter Description Value
Application dependent

T
Time interval between packets
when unmodified for covert channel

100 ms

Drop rate Measure for artificial message loss Every fifth message

Total packet count Total amount of packets transmitted 10.000

Timing channel dependent

N
Amount of nonce bits sent
through packet timings

2

δ
Packet timing deviation used
for nonce bit encoding

1000 CPU cycles

CAN bus dependent

Congestion
Measure for background traffic
on the CAN bus used

0,50,75% / pre-recorded

CAN bus speed Bitrate on the CAN bus used 500 kbit/s

Table 3: Average fraction of message losses recovered from through timing-based nonce
synchronisation

% message loss recovered from

clear bus 99,68
recorded bus traffic 99,04
50% bus noise 95,35
75% bus noise 89,35

on a bus with real-world background traffic. Even when heavily increasing
CAN bus congestion to 75%, the nonce recovery rate only slightly degrades
to around 90%. These results are very similar to our T1 timing channel eval-
uation in Section 4, as was expected due to the close analogy between T1 and
the VulCAN-specific timing channel that is used in our design. Moreover,
these reliability results confirm the objective of our design offering message
loss robustness as imposed by R3. Figure 8 illustrates the throughput of
our channel for N = 2 and N = 3 nonce bits, and δ = 1000 and δ = 2000
CPU cycles (without bus congestion). Our results show that the preferable
channel configuration remains application specific and depends on the accept-
able latency. While VulCAN [13] reports round-trip times for authenticated
communication of 1.82 ms to 2.18 ms, which is well below many automotive
safety deadlines, our solution adds a modest 0.2 ms latency in the worst case.
However, this comes with increased robustness against message loss, which
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would trigger a more expensive nonce re-synchronisation.
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Figure 8: Time series of authentication frame inter-arrival times for timing-based nonce
synchronisation in VulCAN’s vatiCAN backend. Four times two nonce bits (left) or two
times three nonce bits (right) are transmitted over 16 application frames.

7. Security Analysis

As nonce mechanisms were put in place for security purposes, our nonce
synchronisation approach is carefully designed to harm neither vatiCAN’s
nor VulCAN’s security guarantees. We discuss the attacker capabilities that
affect our specific design, as well as the security measures put into place to
prevent those from being more effective in our proposed extensions, compared
to the original VulCAN design.

7.1. Attacker Capabilities

Below, we list the attacker capabilities that pertain to our specific use
of a timing channel, as enabled by the Level 1 and Level 2 attacker profiles
introduced in Section 3.4.

Attacker level 1: Network attacker. As demonstrated by existing CAN net-
work attacks [7, 8, 18], CAN inherently offers little security. By extension,
a timing channel built upon CAN communication, such as the one proposed
here, is vulnerable to multiple security threats. A Level 1 attacker can suc-
cessfully affect the timing channel used in our approach as listed below. Note
that these actions pertain to timing-based transmission itself, rather than its
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underlying CAN traffic. Nevertheless, both are evidently interdependent,
which leads to most IAT channel attacker capabilities following from CAN
network-level attacker capabilities as listed in Section 2.1. We consider side-
channel attacks or probing [5] against our covert channel as out of scope since
we use the channel to communicate non-confidential information only. These
analyses could, however, be applied against the underlying key management
and authentication protocols.

A1: Eavesdropping. As CAN employs broadcast communication with-
out enforcing bus access control, this attacker can eavesdrop on, as well as
record, packet inter-arrival times and thus all IAT channel payloads. As
nonce values however can be disclosed without affecting security guarantees,
this attacker capability does not cause any harm and thus will not be focused
on hereafter. This disclosing of all CAN traffic does however provide the at-
tacker with the scheduling and/or CAN network architecture knowledge that
could be a prerequisite for other attacker capabilities [7].

A2: Message manipulation. In multiple ways, an attacker is capable
of delaying the CAN traffic constituting IAT values. For example, injection
of high-priority CAN frames, or well-timed 0-bit transmissions, can cause
legitimate CAN transmission to be delayed due to the nature of its arbitration
mechanism, or targeted nodes can temporarily be forced into bus-off mode
[7, 8]. Consequently, all IAT values are vulnerable to modification. Note
how attackers can both increase and lower IAT values, through respectively
delaying authentication and application frames, which means arbitrary IAT
values can be constituted on an attacker-controlled CAN bus.

A3: Message deletion. In order to delete IAT payloads from a tim-
ing channel, the corresponding CAN packets are to be deleted, through for
example CAN bus flooding or a selective DoS attack [7, 18]. There is no
way for an attacker to delete IAT payloads from a timing channel without
suppressing the corresponding CAN frames, as their presence inevitably can
be detected, and their timing thus registered.

A4: Message insertion. Analogous to A3, an IAT value can be in-
serted into this IAT channel through inserting two corresponding CAN frames
on the targeted CAN bus. As a Level 1 attacker has free access to that bus,
they can place any two messages with any inter-arrival time on it.

Note that such inserted messages need to have the proper IDs in order
for their inter-arrival time to be registered by a vulcanised receiving node,
as VulCAN incorporates a low-level mechanism for message ID masking and
filtering. More specifically, VulCAN dictates the use of a message ID equal to
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an application message’s incremented by one, for its corresponding authenti-
cation frame. For IAT value insertion to work, the second inserted message’s
ID thus has to be equal to the first message’s ID incremented by one, and
the latter moreover has to be equal to the ID used by the targeted VulCAN
communication channel.

Attacker level 2: Software attacker. Our Level 2 attacker model gives rise
to supplementary attacker capabilities affecting our design, due to its unre-
stricted access to the untrusted non-enclave application logic on the partic-
ipating ECUs handling both regular and covert traffic. Note that a Level 2
attacker also has A1-A4 abilities, as it is strictly more powerful than a Level
1 attacker (see Section 3.4).

A5: Stealthy message manipulation. As opposed to the message ma-
nipulation capability A2 discussed for the Level 1 profile, a Level 2 attacker
is capable of altering IAT values much more directly, without even having to
interfere with the CAN bus. With arbitrary unprotected code execution at
the receiver side, Level 2 attackers can take over either CAN driver software,
IAT buffer and index contents, or even the timing peripheral measuring IAT
values. They can thus trivially cause arbitrary, attacker-chosen IAT values to
be registered and used as alleged authentication frame timings in the trusted
in-enclave VulCAN logic.

A6: IAT buffer location manipulation. CAN driver software is
deemed untrusted in our system model and requires write access to the
receiver-side IAT buffer. Therefore, that buffer is placed in unprotected
memory, which is subsequently dereferenced as an untrusted pointer by the
trusted, in-enclave VulCAN library. However, such pointer passing in the
shared address space is known to come with subtle security implications [36].
Particularly, in a confused-deputy attack scenario [37], Level 2 adversaries
can maliciously craft untrusted pointers such that the shared IAT buffer un-
expectedly falls inside the VulCAN enclave. As Sancus grants enclaves with
access to both private and public memory locations [15, 38], execution will
continue in such a case and the secret enclave data referenced by the poi-
soned buffer pointer will be wrongly interpreted as alleged IAT values. Any
attacker-observable properties of VulCAN’s execution, e.g., the passing or
failing of authentication, can subsequently be used as a side channel to leak
enclave secrets [36].

A7: IAT index manipulation. An index into the receiver’s IAT buffer,
that denotes the position of the most recently collected IAT value, is updated
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by CAN driver software in our proposed design. Therefore, that index value
and its location in unprotected memory is under Level 2 attacker control.
Hence, attackers can attempt to make trusted in-enclave VulCAN code deref-
erence arbitrary addresses, possibly lying in the protected memory range, by
supplying a malicious, out-of-bounds index [36]. Moreover, similar to the A6
capability, this attacker could position the IAT index at a protected location
in memory, and deduce private information from the trusted VulCAN library
dereferencing that location.

7.2. Security Measures

Our proposed nonce synchronisation approach was designed not to harm
VulCAN security properties, i.e., not to enlarge its vulnerability in the face
of both Level 1 and Level 2 attackers. The security measures listed below
were designed for that purpose, and are therefore executed in the trusted
Sancus enclaves hosting sender- and receiver-side VulCAN logic.

M1: IAT encoding. The encoding and decoding between nonce bits
and authentication frame delays in the proposed scheme is a multiplication
with, respectively division by, a parameter δ. When faced with a weaker
attacker profile, this design aspect could have been designed to provide ad-
ditional security guarantees, but since attackers can eavesdrop on, and ar-
bitrarily manipulate, all IAT values (see Section 7.1), it is justified to be as
algorithmically simple as possible.

M2: Monotonically increasing nonces. The proposed design entails
that whenever authentication fails using a receiver’s local nonce value, a sec-
ond try is done using a different nonce, which is constructed based on the
corresponding authentication frame timing (see Section 5.4). That nonce
construction is explicitly designed to only yield nonces higher than the origi-
nal local nonce value. Combined with vatiCAN’s guarantee of monotonically
increasing local nonces, this measure guarantees that whenever a receiver
changes its local nonce value after a successful authentication attempt, that
nonce is guaranteed to become strictly higher.

M3: Delayed nonce commit. Should an authentication retry using a
timing-based nonce fail, the local nonce of the receiver involved is reset to its
original value, which was used for its first authentication attempt. Conse-
quently, local nonce value incrementation only occurs when the correspond-
ing authentication frame is calculated using either the receiver’s original, or
IAT-constructed nonce value.
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The combination of M2 and M3 requires an attacker targeting this nonce
mechanism to possess a valid pair of application and authentication messages,
that is moreover calculated using a nonce strictly higher than the locally
stored value of a receiver in the targeted communication channel. Without
such a pair, an attacker’s capabilities for modification, deletion and insertion
in the proposed timing channel are insufficient to launch a nonce-based attack
against this VulCAN extension.

A valid message pair is available only when the attacker involved is either
capable of constructing its own valid authentication frame for an application
message, or can replay a recorded pair. On vulcanised nodes, MAC calcu-
lation is done in a protected Sancus enclave, using a cryptographic key to
which an attacker (of either Level 1 or Level 2) has no access. This renders
computation of forged authentication frames computationally infeasible. The
second approach of replaying recorded traffic is prohibited by the proper use
of monotonically increasing nonces for all authenticated traffic in the origi-
nal VulCAN design [13]. Likewise, measures M2 and M3 above ensure that
nonce monotonicity is strictly maintained at all times in our covert nonce
synchronisation extension, such that any attack directed at our nonce syn-
chronisation approach would coincide with an opportunity for launching a
replay attack against original VulCAN communication.

Consequently, M1, M2 and M3 together offer resilience of our nonce
synchronisation scheme to a Level 1 attacker. Indeed, none of its capabilities
render it capable of generating effective authentication frames. A Level 2
attacker does not have that ability either, but its control over the IAT buffer
and IAT buffer index read by trusted vatiCAN code leads to the additional
need for the following security measures.

M4: IAT buffer validation. Attacker capability A6 describes how the
considered system model (see Section 3.3) leads to trusted code dereferencing
Level 2 attacker-controlled memory locations, which is a known attack vector
for leaking enclave memory [36]. Validation of that buffer is therefore done
at VulCAN initialisation. More specifically, it is checked to completely lie
outside enclave memory.

M5: IAT buffer index validation. Attacker capability A7 poses the
same threat of trusted code dereferencing untrusted memory locations as
described in M4, which is mitigated by validating the IAT index to have a
value between 0 and the length of the IAT buffer at the time it is dereferenced
by trusted VulCAN code. Moreover, that index itself is validated to lie
outside of protected memory.
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In conclusion, the security measures M1-M5 do not prevent a malicious
party from executing its capabilities A1-A7, but mitigate harmful reper-
cussions. E.g., a Level 2 attacker in A7 is still capable of changing the
receiver-side IAT buffer index to an arbitrary value, yet they cannot leverage
that ability to leak trusted memory due to M5. Similarly, IAT values can
still be manipulated due to both A2 and A5, but an effective replay attack is
disabled by the combination of measures M2 and M3. A complete overview
of the security provided by our approach in comparison with related work is
provided in Table 1 in Section 3.

8. Limitations and Future Work

Guaranteed availability. Our explicit security objective, in line with previ-
ous CAN authentication solutions [13, 11, 10], is to ensure that only genuine
messages are ever processed at the receiver side. This does not entail, how-
ever, that all such messages will also arrive at the receiver side. That is,
in the presence of strong Level 1 or Level 2 attackers who can arbitrarily
manipulate traffic on the CAN bus, or even hijack untrusted system software
on the participating ECUs, guaranteed availability falls explicitly out of the
scope of our approach. Guaranteeing network bandwidth and availability is
an orthogonal question and would likely require, amongst other, replacing
CAN altogether with a non-broadcast medium that can guarantee quality-
of-service at the network level, as well as making extensive changes in the
TEE design on the participating ECUs [39].

Our solution, therefore, is more pragmatic in that we showcase the use of
limited covert bandwidth to improve the robustness of an existing authenti-
cation scheme (vatiCAN) for an existing industry-standard communication
medium (CAN). We have shown that our solution can improve quality-of-
service under benign circumstances, while at the same time not creating
insecurities when under attack.

Message suppression. The very motivation for our approach enables mali-
cious suppression of authenticated application traffic, which was not possible
in VulCAN’s original vatiCAN [11] backend. Concretely, when our nonce
synchronisation strategy is enabled, an attacker is capable of selectively sup-
pressing as much as 2N subsequent application messages at a time, while
other traffic is processed normally at receiver side. Depending on the ap-
plication scenario, such suppression could harm vehicle safety, e.g., when a
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message warning for malfunctioning components is suppressed and the re-
ceiver continues regular execution instead of initiating a reactive operation.
In contrast, the use of VulCAN’s current vatiCAN backend implies discarding
all CAN traffic subsequent to such message suppression.

As our security objective states, we aim to provide the same security
guarantees as LeiA [10]. Notably, this message suppression scenario succeeds
in LeiA as well and hence does not harm the compliance of our design to its
security objective. However, to accommodate application-level measures that
handle (malicious) message loss, future work could extend the VulCAN API
to include status information about message loss recovery through timing-
based nonce synchronisation.

Limitation to CAN. We identified covert channels in the specific context of
CAN, whereas other interesting opportunities could also exist for alterna-
tive network protocols. One such protocol is CAN+ [40], which is a physical
extension to CAN based on exploiting the higher clock frequency of most em-
bedded devices relative to their CAN bus’ speed, for extra CAN transmission
during their over-clocked cycles. This context could allow for more intricate
covert channels, for example based on the timing properties of transmission
within such over-clocked time intervals. That approach could allow for a tim-
ing channel similar to the one presented in Section 4, without the prerequisite
of periodicity in underlying traffic, as timing information of this specific kind
can be contained within the transmission of each individual message.

Limitation to VulCAN. This work discussed a practical application of covert
transmission in VulCAN’s approach to message authentication [13]. How-
ever, the covert channels discussed in Section 9 were formulated for CAN
communication in general, which means they could benefit application do-
mains beyond VulCAN as well. They moreover are not restricted to be
leveraged for message authentication, or other security mechanisms, as they
offer supplementary bandwidth usable for any purpose. As such, they could
even be implemented as an extension to CAN communication itself when
embedded in CAN driver software, instead of incorporated in existing appli-
cations and designs. They could therefore enable a backwards compatible,
transparent mitigation for bandwidth scarcity in CAN applications.

Limitation to vatiCAN. Our design was formulated specifically for VulCAN’s
vatiCAN backend [11], yet could benefit other message authentication schemes
similarly. The challenges faced in nonce synchronisation apply to any such
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scheme, and thus could be relieved by use of (timing-based) covert channels.
For instance, future work could explore the use of our timing channel for
synchronising implicit nonce parts in VulCAN’s LeiA backend [10].

Scalability in Realistic Scenarios. In [13], Van Bulck et al. extensively dis-
cuss scalability issues of authenticated communication in automotive CAN
networks that are compatible with legacy infrastructure that does not sup-
port the authentication protocol. Generally, adding AUTOSAR-compliant
authentication to the CAN communication of two ECUs will at least double
the bandwidth requirement and latency of a message exchange. That is be-
cause, instead of one message, two messages are to be transferred and the
authenticity of the payload is only established after both messages are re-
ceived and processed. Cryptographic operations add to this increased latency
and also increase the energy consumption and general costs of the system.
To which extent message loss and nonce synchronisation increase the general
overhead depends a lot on the actual operating conditions such as bus sat-
uration and (electrical) noise levels, and to the best of our knowledge, there
is no accessible database with this kind of data for modern cars or other
large-scale control systems. We therefore leave a comprehensive evaluation
of the scalability of our approach under real vehicular conditions for future
work.

9. An Overview of Covert Channels in CAN

This section overviews covert, and covert-like, bandwidth opportunities
in CAN. Most of them are storage channels, and do not satisfy our covert-
ness definition as formulated in Section 2.3, due to (partial) overwriting of
CAN frame fields. We do however include such channels for completeness, as
they comply to the covertness definition used in a subset of existing research
on covert channels [27, 29, 28]. Channels that satisfy our covertness defini-
tion are italicised in this overview, which is moreover structured following
the CAN frame format as presented in Figure 1, listing channels leveraging
respectively the ID field (ID), the data field (D), the CRC field (E) and
frame timings (T). For each channel, we indicate the system requirements
(see Section 3.2) it fulfils when incorporated in our design.

We refer to Table 4 at the end of this section for an overview matrix
summarising the properties of the channels discussed below.
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9.1. Storage Channels

ID1: Dedicating ID bits (R2). Some applications rely on fewer dis-
tinct IDs than representable with 11 or 29 bits. Those can dedicate bits in
the (extended) ID field of their frames to covert data. LeiA [10] uses this
channel for nonce synchronisation by embedding nonce bits in extended IDs.

ID2: Manipulating arbitration collision frequency. Existing CAN
attacks [7, 8] describe how CAN’s arbitration scheme enables selective DoS
attacks. Repurposing that technique to a covert channel, nodes can cause
selective arbitration collisions to transmit covert data to their targeted node.
The collision frequency then can encode some covert payload. Government
of arbitration collisions is not generally possible from CAN driver software,
restricting this channel’s applicability for our work to discussion purposes.

D1: Dedicating LSBs (R2, R4). As described by TACAN [16], some
applications are resilient to lowered accuracy in transmitted values. Some
amount of LSBs can then carry covert data, as long as no more bits than dis-
carded by the underlying application are repurposed. As only manipulation
of bits is done by this channel, its use incurs little computing overhead and
no real-time effects.

D2: Manipulating packet size (R2). Another approach to leverag-
ing the CAN frame data field uses frame sizes as a covert payload carrier,
by varying data field lengths, and data length values accordingly. The ap-
plications this channel is built on must tolerate the associated variations in
accuracy. Also, as this channel affects the amount of bits sent over its bus,
its influence on real-time compliance has to be considered.

D3: Data field padding (R2). Should an application use a predictable
(in extremis, fixed) data field length in its communication, the data field of
its packets can be padded with covert data. Naturally, this channel only
yields non-zero bandwidth when that predictable data field length is lower
than 8 bytes. Moreover, it increases the amount of traffic generated, which
endangers real-time compliance.

E1: Dedicating the CRC field. As CAN provides with automatic
retransmission of frames with an invalid CRC field, that field can carry covert
data on initial transmission, which a receiver can monitor before it is deemed
erroneous and retried. The CRC field however is not software-controllable,
rendering this channel not of interest for our work.

E2: Pass/fail of error detection check. In a less invasive manner than
proposed by E1, it is possible to embed covert information in the passing or
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failing of a packet’s CRC check. More specifically, a sender can purposely
manipulate its CRC field for it to yield an error when checked at receiver
side. A receiver monitoring this channel can then decode traces of its CRC
check outcomes, without needing the corresponding CRC fields themselves,
to the intended hidden payload.

9.2. Timing Channels

T1: Manipulating packet inter-arrival times (R2, R4). Even
when not in control of multiple message IDs, data can be encoded in packet
timings, more specifically in their inter-arrival times. If an application makes
use of periodic communication of period T, deviations from T can encode
some covert payload, as proposed by TACAN [16]. Making a receiving party
monitor packet inter-arrival times then enables it to decode those to the cor-
responding covert data. This approach obviously endangers real-time dead-
lines, and furthermore is only useful in applications using periodic commu-
nication.

T2: Packet reordering (R2, R4). Not only the timing of a packet,
but also its ordering relative to other packets can be an encoding of covert
data. More specifically, when an application is in control of packet trans-
missions with different ID fields, it can adjust the order of its packets to a
sequence from which covert information can be decoded. That practice ob-
viously impacts real-time behaviour and thus cannot be considered generally
applicable, even less because of its prerequisite of the underlying application
controlling multiple packet IDs.

T3: Combining T1 and T2 (R2, R4). As the ordering of payloads
is a property orthogonal to the timings between them, T1 and T2 can be
combined into one hybrid timing channel. More specifically, information can
be encoded at sender side in the ordering of the messages on the one hand,
and in their inter-transmission times on the other hand. A receiver can mon-
itor both from software to then decode them to the corresponding covert
data. Note that this approach also combines the underlying application pre-
requisites of both channels, which are governance of multiple message IDs
and periodic communication in this case.

9.3. Hybrid Channels

As already illustrated by the T3 channel, several of the channels described
in this section can be combined into one hybrid channel. Two conditions
should be fulfilled when committing to such a combination:
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Orthogonality. The channels combined must be pairwise orthogonal, i.e., the
use of one cannot interfere with the mechanisms enabling any of the others.
To illustrate, the use of N ID bits (ID1) can seamlessly be combined with
the use of M LSBs (D1). In contrast, overwriting those M least significant
bits serves no purpose if some bits in the data field are dropped for covert
communication via packet size (D2).

Prerequisite compatibility. The applications for which a hybrid channel is
suitable, must be in the common subset of those appropriate for its consti-
tuting channels. These application prerequisites thus should not contradict
each other.

9.4. Overview of (Covert) Channels in CAN

Table 4 summarises the properties of our selected channels in a matrix
structure. Its rows correspond to the channels discussed above, and its
columns evaluate several channel characteristics deemed useful in comparing
different forms of (covert) communication: (1) Channel ID : The identifier
used for a channel as introduced in Section 9; (2) Stack level : The level
from which a channel can be controlled (hardware/software); (3) Real-time
compliance: Whether or not enabling a channel affects real-time properties
of underlying transmission; (4) Application dependence: Dependence on the
nature of the application a channel is built on for it to expose non-zero
hidden/covert bandwidth; (5) Bandwidth parameters : Channel parameters
constituting a channel’s bandwidth formula; (6) Bandwidth formula: Ex-
presses the maximum bandwidth of a channel in bit/s as a function of its
already listed bandwidth parameters; (7) Covertness : Denotes whether a
channel satisfies the covertness definition of Section 2.3.

10. Conclusion

In-vehicle networks like CAN nowadays are faced with powerful remote
attackers. Lightweight cryptographic protocols for message authentication
have already been proposed to mitigate such threats, yet bring new chal-
lenges in terms of deployability in a safety-critical context. Our work ex-
plored the benign use of covert channels to complement and improve existing
restrained authentication solutions. To that end, we contributed a compre-
hensive overview of covert bandwidth opportunities in CAN. Motivated by
those results, we proposed a design that incorporates a timing channel for
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covert nonce synchronisation in an existing message authentication scheme.
Our approach showcases the use of limited covert bandwidth to improve
quality-of-service in benign circumstances, while not jeopardising the strong
security guarantees provided by the underlying authentication solution when
under attack. As such, we improved quality-of-service by increasing robust-
ness against message loss, while incurring little extra bandwidth, latency and
energy usage, which traditional message authentication strategies do not al-
low. Moreover, we showed that our design does not harm the underlying
authentication scheme’s security guarantees.

In a wider perspective, our nonce synchronisation case-study results en-
courage the benign, defensive use of covert channels in attacker-sensitive,
resource-limited scenarios beyond automotive applications or CAN.

Acknowledgments. This research is partially funded by the Research Fund
KU Leuven, and by the Flemish Research Programme Cybersecurity. We
thank Fritz Alder (imec-DistriNet, KU Leuven) for his constructive com-
ments on an earlier version of this paper.
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