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Today's goals and perspective

e Limitations of trusted execution environments (Sancus, Intel SGX)
— Side-channel attacks from untrusted operating system to enclave

@ Software viewpoint on hardware optimizations

— Security cross-cuts hardware-software abstraction layers(!)
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A primer on software security

Secure program: convert all input to expected output J
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A primer on software security (previous lecture)

Buffer overflow vulnerabilities: trigger unexpected behavior )

—>> OUTPUT
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A primer on software security (previous lecture)

Safe languages & formal verification: preserve expected behavior J
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A primer on software security (this lecture)

Side-channels: observe side-effects of the computation J
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A primer on software security (this lecture)

Constant-time code: eliminate secret-dependent side-effects )
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A vulnerable example program and its constant-time equivalent

1void check_pwd(char *input)

24 x

3 for. (ir.1t i:O.; i< PWD_I._EN; i++) ﬂ n n

y o o plals|siwiojrid]
6 /\/\/

7 return 1;

) plals|t[a

Overall execution time reveals correctness of individual password bytes!

— reduce brute-force attack from an exponential to a linear effort. ..
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A vulnerable example program and its constant-time equivalent

1void check_pwd(char *input)

:{
3 for (int i=0; i < PWD.LEN;
4 if (input[i] !'= pwd[i])
5 return O;

6

7 return 1;

5}

i+4)

1void check_pwd(char *input)

2
3 int rv = 0x0;
for (int i=0; i < PWDLLEN; i++)
5 rv |= input[i] ~ pwd[il];
6
7 return (result = 0);
s}

Rewrite program such that execution time does not depend on secrets

— manual, error-prone solution; side-channels are likely here to stay. ..
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Vulnerable patterns: Secret-dependent code/data memory accesses

1void

{

N~ o o A~ W

secret_vote(char candidate)

if(

else

candidate = 'a’)
vote_candidate_a () ;

vote_candidate_b () ;

1int

secret_lookup(int s)

if (s> 0 &% s < ARRAY_LEN)

return array[s];
return -1;
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Vulnerable patterns: Secret-dependent code/data memory accesses

1void

{

N o o s Ww

secret_vote(char candidate)

if (candidate = 'a’)
vote_candidate_a () ;

else
vote_candidate_b () ;

1int secret_lookup(int s)

2{

3 if (s> 0 &% s < ARRAY_LEN)
4 return array[s];

5 return -1;

6

7}

What are the ways for adversaries to create an “oracle” for all
victim code+data memory access sequences?
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Evolution of “side-channel attack” occurrences in Google Scholar
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Side-channel attacks and trusted computing
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Side-channel attacks and trusted computing (focus of today)
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What's inside the black box?
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Enclaved execution: Reducing attack surface
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Enclaved execution: Reducing attack surface

Ap@ App H Enclave app
OS kernel x
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Intel SGX promise: hardware-level isolation and attestation
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Enclaved execution: Privileged side-channel attacks
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Game-changer: Untrusted OS — new class of powerful side-channels
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Enclaved execution: Privileged side-channel attacks

App App Enclave app figl

1 S
3=

\J ‘\ 19§
|

TPM CPU& Mem HDD

. J

Game-changer: Untrusted OS — new class of powerful side-channels

Xu et al. “Controlled-channel attacks: Deterministic side-channels for untrusted operating systems”, IEEE S&P 2015 [XCP15]
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Enclaved execution: Privileged side-channel attacks

App App Enclave app
> 0O 14, 0000 00 O0O0O0OOOOOD O
Instruction (interrupt number)
TPM CPU & Mem HDD

Game-changer: Untrusted OS — new class of powerful side-channels

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018 [VBPS18]
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A note on side-channel attacks (Intel)

Protection from Side-Channel Attacks

Intel® SGX does not provide explicit protection from side-channel attacks. It is the enclave developer's
responsibility to address side-channel attack concerns.

In general, enclave operations that require an OCall, such as thread synchronization, I/O, etc., are exposed to
the untrusted domain. If using an OCall would allow an attacker to gain insight into enclave secrets, then
there would be a security concern. This scenario would be classified as a side-channel attack, and it would be
up to the ISV to design the enclave in a way that prevents the leaking of side-channel information.

An attacker with access to the platform can see what pages are being executed or accessed. This side-
channel vulnerability can be mitigated by aligning specific code and data blocks to exist entirely within a single

page.

More important, the application enclave should use an appropriate crypto implementation that is side channel
attack resistant inside the enclave if side-channel attacks are a concern.

https://software.intel.com/en-us/node/703016
9/43


https://software.intel.com/en-us/node/703016




Today's agenda: Understanding privileged side-channel leakage

@ Critical remarks on TEE isolation:

e Which side-channels exist? Which enclave applications are vulnerable? (Not only crypto!)
o How to (not) defend against them, and at what cost?

e Focus on privileged attack surfaces: page tables, interrupts (Game-changer!)

Out-of-scope:
e “Traditional” leakage sources: caches, branch predictors, etc. (cf. next lecture?)

@ Speculative execution attacks (Spectre, Meltdown, Foreshadow, etc.)
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Today's agenda: Understanding privileged side-channel leakage

@ Critical remarks on TEE isolation:

e Which side-channels exist? Which enclave applications are vulnerable? (Not only crypto!)
o How to (not) defend against them, and at what cost?

e Focus on privileged attack surfaces: page tables, interrupts (Game-changer!)

Out-of-scope:
e “Traditional” leakage sources: caches, branch predictors, etc. (cf. next lecture?)

@ Speculative execution attacks (Spectre, Meltdown, Foreshadow, etc.)

%\ Key question: Infer secrets from functionally correct enclave programs through untrusted OS? J

— overview several attack avenues. .. with an explicit focus on Intel SGX TEEs
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Intel SGX: A helicopter view

OApplication

/" Untrusted Part Trusted Part R
of App of App
Call Gate . . . .
. : @ Enclaves live in user-space guest application
Process
Create Enclave S @ Inaccessible by all outside software (including OS)
? @ Virtual memory extensions enforce isolation
CallTrusted() Return o .
SO o Memory encrypted when outside processor package
@ x86 ISA instruction extensions:
J e eenter/eexit, eresume/aex: switch in/out enclave
PrivilegedSystem Code o egetkey: hardware-level key derivation, attestation
0S, VMM, BIOS, SMM, ...

https://software.intel.com/en-us/sgx/details
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The virtual memory abstraction
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Costan et al. “Intel SGX explained”, IACR 2016 [CD16]
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Intel SGX: How enclave accesses are enforced

Intel SGX enclaves live in virtual address space of untrusted host application J
Host Application i Page Tables DRAM
Virtual Memory  Enclave Virtual | Managed by
View Memory View system software

EPC
Abort Page ELRANGE

Costan et al. “Intel SGX explained”, IACR 2016 [CD16]
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Intel SGX: How enclave accesses are enforced

Challenge: Untrusted OS controls virtual-to-physical mapping — address-remapping attacks! J

Page Tables
:  managed by
i system software :

Costan et al. “Intel SGX explained”, IACR 2016 [CD16]
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Intel SGX: How enclave accesses are enforced

Solution: Additional checks to verify untrusted address translation outcome J

logical address 4>[ pag|ng unit ]—>[ SGX checks ]—>physica| address

U
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Intel SGX: How enclave accesses are enforced

Solution: Additional checks to verify untrusted address translation outcome J
:' Non—Enclave Access E
Linear e e Physical i i
Address| 1raditiona Address : 1
Page Tale Enclave | No !
Access? 1 i
Checks ' !
| :
it et L Tl vy 1
| Enclave Access ! ' |
1 1 1
! Address ! E ]
E in EPC? |: || Replace =|
| N Address '
: | ! :| With Abort !
] 1 ]
! Signal Check " Page :
| P .'
1 ! 1
1 ! 1
i [ 1
| [ |
: R .'
| Yes 1
: i :
1 [ 1

https://blog.quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.html
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Attack idea #1

Can we abuse untrusted address translation as a side-channel?
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Page faults as a side-channel

logical address 4>[ pag|ng unit ]—>[ SGX checks ]—>physica| address

U

SGX machinery protects against direct address remapping attacks J
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Page faults as a side-channel

logical address paglng unit SGX checks ]—’physical address

page fault (#PF) @

.but untrusted address translation may fault during enclaved execution (!) )

— page fault deterministically reveals that the enclave tried to access a certain 4 KiB memory page. ..

15 / 43



Page faults as a side-channel

Page fault sequence

Page fault sequence X Z

XY

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015 [XCP15]

= Page fault traces leak private control data/flow J
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#PF attacks: An end-to-end example

void inc_secret( void )
{
if (secret)
*a +=1;
else
*b +=1;

e .

........................................

.......................................
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#PF attacks: An end-to-end example

© Revoke access rights on unprotected

~
enclave page table entry
void inc_secret( void )
{
if (secret)
*a +=1;
else
*b +=1;
}
J
2 ........................................
K] PTE a
'g .....................................
g .......................................
® PTE b
B, “tvencsnncesnnsnsnnnesashonanannnnnnnnns

B, uwwer
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#PF attacks: An end-to-end example
Y

. EENTER ==
© Revoke access rights on unprotected [ ad

~
enclave page table entry \
void inc_secret( void )

@ Enter victim enclave {

if (secret)
*a +=1,;

else
*b+=1;

o .

........................................

.......................................
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#PF attacks: An end-to-end example

© Revoke access rights on unprotected

~
enclave page table entry
void inc_secret( void )
@ Enter victim enclave ‘.
if (secret) Add
*3 +=1; r,?ss
© Secret-dependent data memory access P
else translation®,
~ Processor performs virt-to-phys address translation! o+=1; H
~ By reading page table entry setup by untrusted OS } )
2 --------------------------------
2 PTE a
'E .......................................
@Q  ereeeesssrssrrsssssrssssssssssssnnnena,
2 i PTED
R
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#PF attacks: An end-to-end example

© Revoke access rights on unprotected
enclave page table entry

@ Enter victim enclave

© Secret-dependent data memory access

~ Processor performs virt-to-phys address translation!
~ By reading page table entry setup by untrusted OS

@ Virtual address not present — raise page fault

~ Processor exits enclave and vectors to untrusted OS

void inc_secret( void )

{
if (secret)
*g +=1; Page fault
else (AEX)

*b+=1;
}
J

~> Noise-free side-channel signal that the enclave
wants to access page A(!)
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#PF attacks: An end-to-end example

© Revoke access rights on unprotected
enclave page table entry

@ Enter victim enclave

© Secret-dependent data memory access

~ Processor performs virt-to-phys address translation!
~ By reading page table entry setup by untrusted OS

@ Virtual address not present — raise page fault

~ Processor exits enclave and vectors to untrusted OS

8
[— ERESUME &S

\]

void inc_secret( void )

~> Noise-free side-channel signal that the enclave
wants to access page A(!)

© Restore access rights and resume victim enclave

{
if (secret)
*a +=1;
else
*b +=1;
}
2 ........................................
Q PTE a
B e
g .......................................
b PTE b
B, “tvencsnnsesnnsnunnsnsansanndeannnesnnns
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Page table-based attacks in practice

Original Recovered Original Recovered

) |

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015 [XCP15]

= Low-noise, single-run exploitation of legacy applications )
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Page table-based attacks in practice

Original Recovered Original Recovered

) |

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015 [XCP15]

... but at a relative coarse-grained 4 KiB granularity J
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Attack idea #2

What about other side-effects of address translation?
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Naive solutions: Hiding enclave page faults

logical address 4>[ pag|ng unit ]—»[ SGX checks ]—>physical address

—page-fault (#PF)-

Shih et al. “T-SGX: Eradicating controlled-channel attacks against enclave programs”, NDSS 2017 [SLKP17]
Shinde et al. “Preventing page faults from telling your secrets”, AsiaCCS 2016 [SCNS16]
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Naive solutions: Hiding enclave page faults

logical address—)[n pag|ng unit ]—»[ SGX checks ]—>physical address
| Nt Y
=

A

... But stealthy attacker can still learn page accesses without triggering faults!
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Documented side-effects of address translation

4.8 ACCESSED AND DIRTY FLAGS

For any paging-structure entry that is used during linear-address translation, bit 5 is the accessed flag.2 For
paging-structure entries that map a page (as opposed to referencing another paging structure), bit 6 is the dirty
flag. These flags are provided for use by memory-management software to manage the transfer of pages and
paging structures into and out of physical memory.

Whenever the processor uses a paging-structure entry as part of linear-address translation, it sets the accessed
lag in that entry (if it is not already set).

Whenever there is a write to a linear address, the processor sets the dirty flag (if it is not already set) in the paging-
structure entry that identifies the final physical address for the linear address (either a PTE or a paging-structure
entry in which the PS flag is 1).

20 / 43



CANT;SEE PAGE FAULTS THEY SAID

BUT WE CAN SPY
- ONPAGE TRBLE MEMORY
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Telling your secrets without page faults

@ Attack vector: PTE status flags:
o A(ccessed) bit

void inc_secret( void )

for (i=0; i < len; i++)
{
D(i i if (secret[i])
e D(irty) bit {secretli .
~ Also updated in enclave mode! IRQ/AEX else

*b +=1;

Page Table

ggg ACCESSED ?
rd

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017 [VBWK+17]
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Telling your secrets without page faults

N
void inc_secret( void )
@ Attack vector: PTE status flags: o .
i for (i=0; i < len; i++)
o A(ccessed) bit
H : if (secret[i])
e D(irty) bit e .
i ! IRQ/AEX else @
~ Also updated in enclave model! Q b 4= 1 “

@ Attack vector: Unprotected page table memory:

e Cached as regular data
o Accessed during address translation

~» Flush+Reload cache timing attack! »
(cf. next lecture) g%—g ACCESSED ?
4

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017 [VBWK+17]
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Attacking Libgcrypt EdDSA (simplified)

Memory layout

1

2

3

4 0xO0F000
5 gcry_free

6

7

i mpi_add 0xC0000
10 mpi_test_bit 0xC1000
1

12

13 for (j=nbits—1; j >=0; j——) { 22 Code pages . 0xC9000
14 _gcry_mpi_ec_dup_point (result, result, ctx); per iteration mpi_ec_add_p

15 if (mpi_test_bit (scalar, j)) moi ec mul 0xCA000
16 _gcry_-mpi_ec_add_points (result, result, point, ctx); piec_mulp

17 } \

18
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Attacking Libgcrypt EdDSA (simplified)

Memory layout

Monitor
‘ trigger page gery_free | ¥XOF0%°
o -
6
7
8 8 mpi_add 0xC0000
0 =
" O i test b 0xC1000
(=~
11
12
13 for (j=nbits—1; j >=0; j——) { ACCESSED ? 0xC9000
14 _gcry_mpi_ec_dup_point (result, result, ctx); mpi_ec_add_p
15 if (mpi_test_bit (scalar, j)) moi ec mul 0xCA000
16 _gcry_-mpi_ec_add_points (result, result, point, ctx); piec_mulp
17 }
18

22 /43



Attacking Libgcrypt EdDSA (simplified)

Memory layout

AW N =

0x0F000

5 gcry_free
6
7
8 8 po—— 0xC0000
10 O mpi_test_bit 0xC1000

P _test |
1 INTERRUPT
12
13 for (j=nbits—1; j >=0; j——) { - 0XxC9000
14 _gcry_mpi_ec_dup_point (result, result, ctx); mpi_ec_add_p
15 if (mpi_test_bit (scalar, j)) moi ec mul 0xCA000
16 _gcry_-mpi_ec_add_points (result, result, point, ctx); piec_mulp
17 }
18
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Attacking Libgcrypt EdDSA (simplified)

15
16
17

18

for (j=nbits—1; j >=0; j——) {
_gcry_mpi_ec_dup_point (result, result, ctx);
if (mpi_test_bit (scalar, j))

_gcry_-mpi_ec_add_points (result, result, point, ctx);

Memory layout

0x0F000
gcry_free

mpi_add

ACCESSED ?

0xC0000

o

§

0xC1000

mpi_test_bit

Record page set

jo
0011
mpi_ec_add_p 0xC9000
ACCESSED ? ) 0xCA000
mpi_ec_mul_p
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Attacking Libgcrypt EdDSA (simplified)

Memory layout

AW N =

0x0F000
5 gcry_free
6
7
8 8 mpi_add 0xC0000
0 =
10 O mpi_test_bit 0xC1000
11 s
12
13 for (j=nbits—1; j >=0; j——) { RESUME 0xC9000
14 _gcry_mpi_ec_dup_point (result, result, ctx); mpi_ec_add_p
15 if (mpi_test_bit (scalar, j)) moi ec mul 0xCA000
16 _gcry_-mpi_ec_add_points (result, result, point, ctx); piec_mulp
17
15 } Full 512-bit key recovery, single run
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Attack idea #3

Can we further improve the temporal resolution?

23 /43



Intel’s note on side-channel attacks (revisited)

Protection from Side-Channel Attacks

Intel® SGX does not provide explicit protection from side-channel attacks. It is the enclave developer's responsibility to
address side-channel attack concems.

In general, enclave operations that require an OCall, such as thread synchronization, I/O, etc., are exposed to the
untrusted domain. If using an OCall would allow an attacker to gain insight into enclave secrets, then there would be a
security concem. This scenario would be classified as a side-channel attack, and it would be up to the 1SV to design the
enclave in a way that prevents the leaking of side-channel information.

An attacker with access to the platform can see what pages are being executed or accessed. This side-channel
vulnerability can be mitigated by aligning specific code and data blocks to exist entirely within a single page.

More important, the application enclave should use an appropriate crypto implementation that is side channel attack
resistant inside the enclave if side-channel attacks are a concem.

https://software.intel.com/en-us/node/703016
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Temporal resolution limitations for the page fault oracle

Counting strlen loop iterations
Note: page fault-driven attacks cannot make progress for single code + data page J

1 size_t strlen (char xstr)
> A
3 char xs;
4
5 for (s = str; xs; 4+s);
6 return (s — str);
7}

= tight loop: 4 instructions, single memory operand, single code + data page

25 /43



Temporal resolution limitations for the page fault oracle

Counting strlen loop iterations

= progress requires both pages present <= page fault oracle requires non-present pages

Page Table

-------------------------------------

i PTE text

text
.func strlen
strlen:
for (s=str; *s; s++);

\ .data
.ascii "SysTEX 2017"

L
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i

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop
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MORSE’S Gallery, 417 Montgomery St., San Francisco,
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Building a precise single-stepping primitive

’_ﬂ‘ SGX-Step goal: executing enclaves one instruction at a time J

Challenge: we need a very precise timer interrupt:

® x86 hardware debug features disabled in enclave mode
© ...but we have root access!
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Building a precise single-stepping primitive

’_Q‘ SGX-Step goal: executing enclaves one instruction at a time

Challenge: we need a very precise timer interrupt:

® x86 hardware debug features disabled in enclave mode
© ...but we have root access!

= Setup user-space virtual memory mappings for x86 APIC

jo@sgx-laptop:~$ cat /proc/iomem | grep "Local APIC"
feed0ROO-feelOfff

jo@sgx-laptop:~$ sudo devmem2 OxFEEQ0030 h

/dev/mem opened.

Memory mapped at address @x7f37dcl87000.
Value at address OxFEEGO030 (0x7737dcl87030): 0x15
jo@sgx-laptop:~$ []

27 /43



SGX-Step: Executing enclaves one instruction at a time

SGX-Step: user space APIC timer + interrupt handling © ]

(2) AEX . (3) IRQ Handiler

Enclave @ IRQ

if secret do ~"
instl A =/

=l SGX-Step
inst2

endif (4) ERESUME

user space

Van Bulck et al. “SGX-Step: A practical attack framework for precise enclave execution control”, SysTEX 2017 [VBPS17]

() https://github.com/jovanbulck/sgx-step
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High-resolution attack example: Counting strlen loop iterations

Page fault adversary
Progress = both code + data pages present & J
~
Page Table .text
P L L LLL L L LU L LLELLLLLS func strlen
: PTE text : strlen:
K for (s=str; *s; s++);
\ .data
.ascii "SysTEX 2017"
\ J
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High-resolution attack example: Counting strlen loop iterations

Single-stepping adversary

Execute one step — interrupt — probe accessed bit © — resume

Page Table

! PTE text

...............................

...............................

...............................

.....

.....

.....

for (s=str; *s; s++);

N e

.ascii "SysTEX 2017"
\.

~
text

.func strlen -
strlen: el

L
/

INTERRUPT

J
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High-resolution attack example: Counting strlen loop iterations

Single-stepping adversary
Execute one step — interrupt — probe accessed bit © — resume J
N
Page Table .text A
P L L LLL L L LU L LLELLLLLS func strlen _{ S,
: PTE text : strlen: - &
I for (s=sir; *s; S+.4); |  INTERRUPT
i PTE data T \\
B, Accessep?
\
,O .data
.ascii "SysTEX 2017"
1\ J
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CVE-2018-3626: strlen() side-channel attacks in practice
(hﬂeD

2 Background

On February 16th, 2018, a team of security researchers at Catholic University of Leuven (KU Leuven)
disclosed to Intel Corporation an issue with Edger8r Tool within the Intel® Software Guard Extensions
(Intel® SGX) Software Developer’s Kit (SDK). This issue could cause the Edger8r tool to generate source
code that could, when used as intended within an SGX enclave, expose the enclave to a side-channel
attack. The attack would then have the potential to disclose confidential data within the enclave.

https://https://software.intel.com/sites/default/files/managed/el/ec/180309_SGX_SDK_Developer_Guidance_Edger8r.pdf
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CVE-2018-3626: strlen() side-channel attacks in practice

static sgx status t SGX CDECL sgx _ecall pointer string(void* pms)

{

CHECK_REF_POINTER(pms, sizeof (ms_ecall pointer_string t));

ms ecall pointer string t* ms =

SGX CAST (ms ecall pointer string t*, pms);
sgx status t sEatuS = SGX SUCCESS;
char* tmp str = ms->ms str;
sizeit__leg_str = _tmp_gtr ? strlen(_tmp str) + 1 : 0;
char* _in_str = NULL;

CHECK UNIQUE POINTER( tmp str, _len str);

%\ Side-channel oracle: Execute strlen() on attacker-provided pointer!

@ First execute strlen(), only then validate untrusted argument pointer. . .

@ = Side-channel leakage reveals positions of 0x00 bytes in enclave memory
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Breaking AES-NI with strlen() null byte oracle

aesenc xmm@
aesenc xmmo
aesenclast xm

Interrupt

Enclave memory

mo

(store registers)

OxAB 0x82 0x99 0x00

Ciphertext |AB‘82‘99‘00|... ‘ ‘ ‘

last round

% = Sbox(0) ® Ox3F

Ciphertext |- |- [--

Ed

final

Van Bulck et al. “A Tale of Two Worlds: Assessing the Vulnerability of Enclave Shielding Runtimes”, CCS 2019 (to appear) [VBOM*19]
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Breaking AES-NI with strlen() null byte oracle

aesenc xmm@
aesenc xmmo
aesenclast xm

Interrupt

Enclave memory

mo

(store registers)

OxAB 0x82 0x99 0x00

Ciphertext |AB‘82‘99‘00|... ‘ ‘ ‘

last round

% = Sbox(0) ® Ox3F

Ciphertext |- |- [--

Ed

final

Van Bulck et al. “A Tale of Two Worlds: Assessing the Vulnerability of Enclave Shielding Runtimes”, CCS 2019 (to appear) [VBOM*19]
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Reconstructing the full AES-NI round key

Algorithm 1 strlen() oracle AES key recovery where S (-) denotes the AES SBox and SR (p)
the position of byte p after AES ShiftRows.
while not full key K recovered do
(P, C, L) < random plaintext, associated ciphertext, strlen oracle
if L < 16 then
K[SR(L)] « C[SR(L)]® S(0)
end if
end while
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Attack idea #4

What about simplified processors without virtual memory?
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Sancus: Open-source trusted computing for the loT (cf. lecture 2)

Embedded enclaved execution:
@ ISA extensions for isolation & attestation

@ Save + clear CPU state on enclave interrupt ("SGX)

Extremely low-end processor (openMSP430):
@ Area: <2 kLUTs
@ Deterministic execution: no pipeline/cache/MMU/. . .

o CPU “as simple as it gets”

— No known microarchitectural side-channels (!) \

Noorman et al. “Sancus 2.0: A Low-Cost Security Architecture for loT devices”, ACM TOPS 2017 [NVBM+17]
De Clercq et al. “Secure interrupts on low-end microcontrollers”, IEEE ASAP 2014 [dCPSV14]

) https://github.com/sancus-pma and https://distrinet.cs.kuleuven.be/software/sancus/
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Back to basics: Fetch-decode-execute

Elementary CPU behavior: stored program computer

D

Fetc_hJ

yes

ecode

Jump?

Execute
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Back to basics: Fetch-decode-execute

Interrupts: asynchronous real-world events, handled on instruction retirement J

Fetc_hJ Decode Execute
PC++ no Jump? no

yes ‘

PC = IVT]Jirq] <—[5ecure IRQ logic
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Back to basics: Fetch-decode-execute

%\ Timing leak: IRQ response time depends on currently executing instruction(!) J

Variable instruction latency

Fetc_hJ Decode Execute
PC+ [« Jump? no IRQ?

yes ‘ { yes

PC = IVT]irq] Secure IRQ /ogic}
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Wait a cycle: Interrupt latency as a side-channel

A A

CMD 7§ NOP X  IRQ logic

ISR

ISR

if (secret){ ADD @R5+, R6;} // 2 cycles ‘J >
else { NOP; NOP; } // 2*1 cycle
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Attacking a Sancus application with interrupt latency

Secure keypad: enclave has exclusive access to memory-mapped |/O device J

Van Bulck et al. “VulCAN: Vehicular component authentication and software isolation”, ACSAC 2017 [VBMP17]
37 /43



Attacking a Sancus application with interrupt latency

Driver enclave: 16-bit vector indicates which keys are down J

PIN code enclave

Ooo0d
00 ||||:> 0100000000000000

[ traverse bits
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Attacking a Sancus application with interrupt latency

Attacker: Interrupt conditional control flow to infer secret PIN J
PIN code enclave
o0
00 ||||:> 0100000000000000
E£ traverse bits

@.RQ.

Q Key 'B' was pressed!
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Attacking a Sancus application with interrupt latency

(MSP430 core ‘ )
L ——

while (poll_keypad()) -
A INTERRUPT Timer A
(- Yy SM_secure / _
4

function poll keypad :
for =0 to 15 do g
SM_driver
(asm) |7
J

~
4
key state = read_key_state()/
if key state & (Ox1<<i) then
secret pin.add(keymapli]) MMIO DDD
end if <00
end for DD

\ J — =
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Sancus IRQ timing attack: Inferring key strokes

A
4.
>
]
c
[]
-
=
o
&
1 >
Instruction (interrupt number)
‘5‘ Enclave x-ray: Start-to-end trace enclaved execution J

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018 [VBPS18]
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Sancus IRQ timing attack: Inferring key strokes

Ly

~ IRQ latency »

0O 1| 0 00000 O0O0O0OOO0ODO0OODO

Y

Instruction (interrupt number)

“‘ Enclave x-ray: Keymap bit traversal (ground truth) J

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018 [VBPS18]
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Sancus IRQ timing attack: Inferring key strokes

~ IRQ latency »

0O 1( 00 00 0O0O0OO0ODOOOOODO

IRQ latency (cycles)

0 (no press)

i

1 (key pressed)

N

0 (no press)

Instruction (interrupt number)
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Does this also work for Intel SGX enclaves?

Yes(!): precise x86 APIC timer interrupts can be abused to reconstruct execution timings for
individual enclave instructions — same attack vector as on Sancus. . .

(2) AEX . (3) IRQ Handiler
Enclave @

if secret do
instl
else
inst2
endif

SGX-Step

/) (4) ERESUME

) nttps://github.com/jovanbulck/sgx-step and https://github.com/jovanbulck/nemesis
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Microbenchmarks: Measuring Intel x86 instruction latencies

Latency distribution: 10,000 samples from benchmark enclave J

rdrand

add Ifence fscale

e

nop

Frequency

Y

7700 7900 IRQ latency (cycles) 8300 8500
40 / 43



Microbenchmarks: Measuring Intel x86 instruction latencies

Timing leak: reconstruct instruction latency class )

rdrand

add Ifence fscale

e

nop

Frequency

Y

7700 7900 IRQ latency (cycles) 8300 8500
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Single-stepping Intel SGX enclaves in practice

IRQ latency (cycles)

‘;‘ Enclave x-ray: Start-to-end trace enclaved execution

)

W

Instruction (interrupt number)
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Single-stepping Intel SGX enclaves in practice

..‘ ~ . . C b . .
s Enclave x-ray: Spotting high-latency instructions J

rdrand (generate stack canary on enclave entry)
/7

IRQ latency (cycles)

W

Instruction (interrupt number)
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Single-stepping Intel SGX enclaves in practice

IRQ latency (cycles)

‘5‘ Enclave x-ray: Zooming in on bsearch function

W

Instruction (interrupt number)

41/ 43



De-anonymizing enclave lookups with interrupt latency

Binary search: Find 40 in {20, 30, 40, 50, 80, 90, 100} J
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De-anonymizing enclave lookups with interrupt latency

Adversary: Infer secret lookup in known array J
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De-anonymizing enclave lookups with interrupt latency

Goal: Infer lookup — reconstruct bsearch control flow J

7950 A

IRQ latency (cycles)

7800 A d

Y

Interrupt (instruction number)
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De-anonymizing enclave lookups with interrupt latency

Goal: Infer lookup — reconstruct bsearch control flow J
A . ,
7950 ' K Left Right > Hit ©
m <
o r
9
[
§ ¢
g [*a /s
3
8
(o4
«
7800 - J b

Interrupt (instruction number)
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De-anonymizing enclave lookups with interrupt latency

=> Sample instruction latencies in secret-dependent path J
A
o, & HLLL  LLHL » HHHH
N
9
[
g
K
]
5
(=4
«
7800

Interrupt (instruction number)
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Conclusions and take-away

@ Security cross-cuts hardware-software boundaries
@ Trusted execution environments are not perfect(!)

@ No silver-bullet defenses: write constant-time code

8
= !
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