
Microarchitectural Side-Channel Attacks for Privileged Adversaries

Jo Van Bulck

� imec-DistriNet, KU Leuven 7 jo.vanbulck@cs.kuleuven.be � jovanbulck

COSIC hardware security course, October 21, 2019

https://distrinet.cs.kuleuven.be/people/jo
mailto:jo.vanbulck@cs.kuleuven.be
https://twitter.com/jovanbulck

Today’s goals and perspective

Limitations of trusted execution environments (Sancus, Intel SGX)

→ Side-channel attacks from untrusted operating system to enclave

Software viewpoint on hardware optimizations

→ Security cross-cuts hardware-software abstraction layers(!)

1 / 43

A primer on software security

Secure program: convert all input to expected output

INPUT OUTPUT

2 / 43

A primer on software security (previous lecture)

Buffer overflow vulnerabilities: trigger unexpected behavior

INPUT OUTPUT

2 / 43

A primer on software security (previous lecture)

Safe languages & formal verification: preserve expected behavior

INPUT OUTPUT

2 / 43

A primer on software security (this lecture)

Side-channels: observe side-effects of the computation

INPUT OUTPUT

2 / 43

A primer on software security (this lecture)

Constant-time code: eliminate secret-dependent side-effects

INPUT OUTPUT

2 / 43

A vulnerable example program and its constant-time equivalent

1 v o i d check pwd (c h a r ∗ i n p u t)
2 {
3 f o r (i n t i =0; i < PWD LEN ; i ++)

4 i f (i n p u t [i] != pwd [i])

5 r e t u r n 0 ;

6

7 r e t u r n 1 ;
8 }

Overall execution time reveals correctness of individual password bytes!

→ reduce brute-force attack from an exponential to a linear effort. . .

3 / 43

A vulnerable example program and its constant-time equivalent

1 v o i d check pwd (c h a r ∗ i n p u t)
2 {
3 f o r (i n t i =0; i < PWD LEN ; i ++)
4 i f (i n p u t [i] != pwd [i])
5 r e t u r n 0 ;
6

7 r e t u r n 1 ;
8 }

1 v o i d check pwd (c h a r ∗ i n p u t)
2 {
3 i n t r v = 0 x0 ;
4 f o r (i n t i =0; i < PWD LEN ; i ++)

5 r v |= i n p u t [i] ˆ pwd [i] ;

6

7 r e t u r n (r e s u l t == 0) ;
8 }

Rewrite program such that execution time does not depend on secrets

→ manual, error-prone solution; side-channels are likely here to stay. . .

3 / 43

Vulnerable patterns: Secret-dependent code/data memory accesses

1 v o i d s e c r e t v o t e (c h a r c a n d i d a t e)
2 {
3 i f (c a n d i d a t e == ’ a ’)

4 v o t e c a n d i d a t e a () ;
5 e l s e
6 v o t e c a n d i d a t e b () ;
7 }

1 i n t s e c r e t l o o k u p (i n t s)
2 {
3 i f (s > 0 && s < ARRAY LEN)

4 r e t u r n a r r a y [s] ;

5 r e t u r n −1;
6

7 }

What are the ways for adversaries to create an “oracle” for all
victim code+data memory access sequences?

4 / 43

Vulnerable patterns: Secret-dependent code/data memory accesses

1 v o i d s e c r e t v o t e (c h a r c a n d i d a t e)
2 {
3 i f (c a n d i d a t e == ’ a ’)

4 v o t e c a n d i d a t e a () ;
5 e l s e
6 v o t e c a n d i d a t e b () ;
7 }

1 i n t s e c r e t l o o k u p (i n t s)
2 {
3 i f (s > 0 && s < ARRAY LEN)

4 r e t u r n a r r a y [s] ;

5 r e t u r n −1;
6

7 }

What are the ways for adversaries to create an “oracle” for all
victim code+data memory access sequences?

4 / 43

Evolution of “side-channel attack” occurrences in Google Scholar

1990 1994 1998 2002 2006 2010 2014 2018

3000

4000

2000

1000

DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/
5 / 43

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

Side-channel attacks and trusted computing

1990 1994 1998 2002 2006 2010 2014 2018

3000

4000

2000

1000

SGX

ARM TrustZone

Sancus

TPM

SMART

Flicker

DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/
5 / 43

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

Side-channel attacks and trusted computing (focus of today)

1990 1994 1998 2002 2006 2010 2014 2018

3000

4000

2000

1000

SGX

ARM TrustZone

Sancus

TPM

SMART

Flicker

DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/
5 / 43

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

What’s inside the black box?
6 / 43

https://informationisbeautiful.net/visualizations/million-lines-of-code/
7 / 43

https://informationisbeautiful.net/visualizations/million-lines-of-code/

Enclaved execution: Reducing attack surface

Mem HDD

OS kernel

Trusted Untrusted

CPU

AppApp

TPM

Hypervisor

AppApp

8 / 43

Enclaved execution: Reducing attack surface

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

Enclave app

Intel SGX promise: hardware-level isolation and attestation

8 / 43

Enclaved execution: Privileged side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

Enclave app

Game-changer: Untrusted OS → new class of powerful side-channels

8 / 43

Enclaved execution: Privileged side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

Enclave app

Game-changer: Untrusted OS → new class of powerful side-channels
Xu et al. “Controlled-channel attacks: Deterministic side-channels for untrusted operating systems”, IEEE S&P 2015 [XCP15]

8 / 43

Enclaved execution: Privileged side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

Enclave app
IR

Q
 l
a
te

n
c
y 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Instruction (interrupt number)

Game-changer: Untrusted OS → new class of powerful side-channels
Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018 [VBPS18]

8 / 43

A note on side-channel attacks (Intel)

https://software.intel.com/en-us/node/703016

9 / 43

https://software.intel.com/en-us/node/703016

Today’s agenda: Understanding privileged side-channel leakage

Critical remarks on TEE isolation:
Which side-channels exist? Which enclave applications are vulnerable? (Not only crypto!)
How to (not) defend against them, and at what cost?

Focus on privileged attack surfaces: page tables, interrupts (Game-changer!)

Out-of-scope:

“Traditional” leakage sources: caches, branch predictors, etc. (cf. next lecture?)

Speculative execution attacks (Spectre, Meltdown, Foreshadow, etc.)

Key question: Infer secrets from functionally correct enclave programs through untrusted OS?

→ overview several attack avenues. . . with an explicit focus on Intel SGX TEEs

10 / 43

Today’s agenda: Understanding privileged side-channel leakage

Critical remarks on TEE isolation:
Which side-channels exist? Which enclave applications are vulnerable? (Not only crypto!)
How to (not) defend against them, and at what cost?

Focus on privileged attack surfaces: page tables, interrupts (Game-changer!)

Out-of-scope:

“Traditional” leakage sources: caches, branch predictors, etc. (cf. next lecture?)

Speculative execution attacks (Spectre, Meltdown, Foreshadow, etc.)

Key question: Infer secrets from functionally correct enclave programs through untrusted OS?

→ overview several attack avenues. . . with an explicit focus on Intel SGX TEEs

10 / 43

Intel SGX: A helicopter view

https://software.intel.com/en-us/sgx/details

Enclaves live in user-space guest application

Inaccessible by all outside software (including OS)

Virtual memory extensions enforce isolation

Memory encrypted when outside processor package

x86 ISA instruction extensions:
eenter/eexit, eresume/aex: switch in/out enclave
egetkey: hardware-level key derivation, attestation

11 / 43

https://software.intel.com/en-us/sgx/details

The virtual memory abstraction

Costan et al. “Intel SGX explained”, IACR 2016 [CD16]

12 / 43

Intel SGX: How enclave accesses are enforced

Intel SGX enclaves live in virtual address space of untrusted host application

Costan et al. “Intel SGX explained”, IACR 2016 [CD16]

13 / 43

Intel SGX: How enclave accesses are enforced

Challenge: Untrusted OS controls virtual-to-physical mapping → address-remapping attacks!

Costan et al. “Intel SGX explained”, IACR 2016 [CD16]

13 / 43

Intel SGX: How enclave accesses are enforced

Solution: Additional checks to verify untrusted address translation outcome

paging unit SGX checkslogical address physical address

13 / 43

Intel SGX: How enclave accesses are enforced

Solution: Additional checks to verify untrusted address translation outcome

https://blog.quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.html
13 / 43

https://blog.quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.html

Attack idea #1

Can we abuse untrusted address translation as a side-channel?

14 / 43

Page faults as a side-channel

paging unit SGX checkslogical address physical address

SGX machinery protects against direct address remapping attacks

→ page fault deterministically reveals that the enclave tried to access a certain 4 KiB memory page. . .

15 / 43

Page faults as a side-channel

paging unit SGX checks

page fault (#PF)

logical address physical address

. . . but untrusted address translation may fault during enclaved execution (!)

→ page fault deterministically reveals that the enclave tried to access a certain 4 KiB memory page. . .

15 / 43

Page faults as a side-channel

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015 [XCP15]

⇒ Page fault traces leak private control data/flow

→ page fault deterministically reveals that the enclave tried to access a certain 4 KiB memory page. . .

15 / 43

#PF attacks: An end-to-end example

1 Revoke access rights on unprotected
enclave page table entry

2 Enter victim enclave

3 Secret-dependent data memory access

↝ Processor performs virt-to-phys address translation!
↝ By reading page table entry setup by untrusted OS

4 Virtual address not present → raise page fault

↝ Processor exits enclave and vectors to untrusted OS
↝ Noise-free side-channel signal that the enclave

wants to access page A(!)

5 Restore access rights and resume victim enclave

void inc_secret(void)
{
 if (secret)
 *a += 1;
 else
 *b += 1;
}

PTE a

PTE b

P
a
g

e
 T

a
b

le

16 / 43

#PF attacks: An end-to-end example

1 Revoke access rights on unprotected
enclave page table entry

2 Enter victim enclave

3 Secret-dependent data memory access

↝ Processor performs virt-to-phys address translation!
↝ By reading page table entry setup by untrusted OS

4 Virtual address not present → raise page fault

↝ Processor exits enclave and vectors to untrusted OS
↝ Noise-free side-channel signal that the enclave

wants to access page A(!)

5 Restore access rights and resume victim enclave

void inc_secret(void)
{
 if (secret)
 *a += 1;
 else
 *b += 1;
}

PTE a

PTE b

P
a
g

e
 T

a
b

le

UNMAP

16 / 43

#PF attacks: An end-to-end example

1 Revoke access rights on unprotected
enclave page table entry

2 Enter victim enclave

3 Secret-dependent data memory access

↝ Processor performs virt-to-phys address translation!
↝ By reading page table entry setup by untrusted OS

4 Virtual address not present → raise page fault

↝ Processor exits enclave and vectors to untrusted OS
↝ Noise-free side-channel signal that the enclave

wants to access page A(!)

5 Restore access rights and resume victim enclave

void inc_secret(void)
{
 if (secret)
 *a += 1;
 else
 *b += 1;
}

PTE a

PTE b

P
a
g

e
 T

a
b

le

EENTER

16 / 43

#PF attacks: An end-to-end example

1 Revoke access rights on unprotected
enclave page table entry

2 Enter victim enclave

3 Secret-dependent data memory access

↝ Processor performs virt-to-phys address translation!
↝ By reading page table entry setup by untrusted OS

4 Virtual address not present → raise page fault

↝ Processor exits enclave and vectors to untrusted OS
↝ Noise-free side-channel signal that the enclave

wants to access page A(!)

5 Restore access rights and resume victim enclave

void inc_secret(void)
{
 if (secret)
 *a += 1;
 else
 *b += 1;
}

PTE a

PTE b

P
a
g

e
 T

a
b

le

Address

translation

16 / 43

#PF attacks: An end-to-end example

1 Revoke access rights on unprotected
enclave page table entry

2 Enter victim enclave

3 Secret-dependent data memory access

↝ Processor performs virt-to-phys address translation!
↝ By reading page table entry setup by untrusted OS

4 Virtual address not present → raise page fault

↝ Processor exits enclave and vectors to untrusted OS
↝ Noise-free side-channel signal that the enclave

wants to access page A(!)

5 Restore access rights and resume victim enclave

void inc_secret(void)
{
 if (secret)
 *a += 1;
 else
 *b += 1;
}

PTE a

PTE b

P
a
g

e
 T

a
b

le

Page fault

(AEX)

16 / 43

#PF attacks: An end-to-end example

1 Revoke access rights on unprotected
enclave page table entry

2 Enter victim enclave

3 Secret-dependent data memory access

↝ Processor performs virt-to-phys address translation!
↝ By reading page table entry setup by untrusted OS

4 Virtual address not present → raise page fault

↝ Processor exits enclave and vectors to untrusted OS
↝ Noise-free side-channel signal that the enclave

wants to access page A(!)

5 Restore access rights and resume victim enclave

void inc_secret(void)
{
 if (secret)
 *a += 1;
 else
 *b += 1;
}

PTE a

PTE b

P
a
g

e
 T

a
b

le

REMAP

ERESUME

16 / 43

Page table-based attacks in practice

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015 [XCP15]

⇒ Low-noise, single-run exploitation of legacy applications

17 / 43

Page table-based attacks in practice

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015 [XCP15]

. . . but at a relative coarse-grained 4 KiB granularity

17 / 43

Attack idea #2

What about other side-effects of address translation?

18 / 43

Naive solutions: Hiding enclave page faults

paging unit SGX checks

page fault (#PF)

logical address physical address

Shih et al. “T-SGX: Eradicating controlled-channel attacks against enclave programs”, NDSS 2017 [SLKP17]

Shinde et al. “Preventing page faults from telling your secrets”, AsiaCCS 2016 [SCNS16]

19 / 43

Naive solutions: Hiding enclave page faults

paging unit SGX checks

page fault (#PF)

logical address physical address

. . . But stealthy attacker can still learn page accesses without triggering faults!

19 / 43

Documented side-effects of address translation

20 / 43

Telling your secrets without page faults

1 Attack vector: PTE status flags:

A(ccessed) bit
D(irty) bit

↝ Also updated in enclave mode!

2 Attack vector: Unprotected page table memory:

Cached as regular data
Accessed during address translation

↝ Flush+Reload cache timing attack!
(cf. next lecture)

void inc_secret(void)
{
 for (i=0; i < len; i++)
 {
 if (secret[i])
 *a += 1;
 else
 *b += 1;
 }
}

PTE a

PTE b

P
a
g

e
 T

a
b

le

 ACCESSED ?

IRQ/AEX

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017 [VBWK
+

17]

21 / 43

Telling your secrets without page faults

1 Attack vector: PTE status flags:

A(ccessed) bit
D(irty) bit

↝ Also updated in enclave mode!

2 Attack vector: Unprotected page table memory:

Cached as regular data
Accessed during address translation

↝ Flush+Reload cache timing attack!
(cf. next lecture)

void inc_secret(void)
{
 for (i=0; i < len; i++)
 {
 if (secret[i])
 *a += 1;
 else
 *b += 1;
 }
}

PTE a

PTE b

P
a
g

e
 T

a
b

le

 ACCESSED ?

IRQ/AEX

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017 [VBWK
+

17]

21 / 43

Attacking Libgcrypt EdDSA (simplified)

gcry_free

...

mpi_test_bit

mpi_ec_add_p

mpi_ec_mul_p

0x0F000

0xC0000

0xC1000

mpi_add

0xC9000

0xCA000

...

...

...

22 Code pages
per iteration

Memory layout

22 / 43

Attacking Libgcrypt EdDSA (simplified)

gcry_free

...

mpi_test_bit

mpi_ec_add_p

mpi_ec_mul_p

0x0F000

0xC0000

0xC1000

mpi_add

0xC9000

0xCA000

...

...

...

 ACCESSED ?

Memory layout

Monitor
trigger page

22 / 43

Attacking Libgcrypt EdDSA (simplified)

gcry_free

...

mpi_test_bit

mpi_ec_add_p

mpi_ec_mul_p

0x0F000

0xC0000

0xC1000

mpi_add

0xC9000

0xCA000

...

...

...

INTERRUPT

Memory layout

22 / 43

Attacking Libgcrypt EdDSA (simplified)

gcry_free

...

mpi_test_bit

mpi_ec_add_p

mpi_ec_mul_p

0x0F000

0xC0000

0xC1000

mpi_add

0xC9000

0xCA000

...

...

...

 ACCESSED ?

 ACCESSED ?

Record page set
0011

Memory layout

22 / 43

Attacking Libgcrypt EdDSA (simplified)

gcry_free

...

mpi_test_bit

mpi_ec_add_p

mpi_ec_mul_p

0x0F000

0xC0000

0xC1000

mpi_add

0xC9000

0xCA000

...

...

...

RESUME

Full 512-bit key recovery, single run

Memory layout

22 / 43

Attack idea #3

Can we further improve the temporal resolution?

23 / 43

Intel’s note on side-channel attacks (revisited)

https://software.intel.com/en-us/node/703016

24 / 43

https://software.intel.com/en-us/node/703016

Temporal resolution limitations for the page fault oracle

Counting strlen loop iterations

Note: page fault-driven attacks cannot make progress for single code + data page

⇒ tight loop: 4 instructions, single memory operand, single code + data page

25 / 43

Temporal resolution limitations for the page fault oracle

Counting strlen loop iterations

⇒ progress requires both pages present ↔ page fault oracle requires non-present pages

.text

.func strlen
strlen:
 for (s=str; *s; s++);

.data

.ascii "SysTEX 2017"

PTE text

Page Table

PTE data

⇒ tight loop: 4 instructions, single memory operand, single code + data page

25 / 43

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop
26 / 43

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop

Building a precise single-stepping primitive

SGX-Step goal: executing enclaves one instruction at a time

Challenge: we need a very precise timer interrupt:

/ x86 hardware debug features disabled in enclave mode
, . . . but we have root access!

⇒ Setup user-space virtual memory mappings for x86 APIC

27 / 43

Building a precise single-stepping primitive

SGX-Step goal: executing enclaves one instruction at a time

Challenge: we need a very precise timer interrupt:

/ x86 hardware debug features disabled in enclave mode
, . . . but we have root access!

⇒ Setup user-space virtual memory mappings for x86 APIC

27 / 43

SGX-Step: Executing enclaves one instruction at a time

SGX-Step: user space APIC timer + interrupt handling ,

SGX-Step

user space

4 ERESUME

Van Bulck et al. “SGX-Step: A practical attack framework for precise enclave execution control”, SysTEX 2017 [VBPS17]

https://github.com/jovanbulck/sgx-step

28 / 43

https://github.com/jovanbulck/sgx-step

High-resolution attack example: Counting strlen loop iterations

Page fault adversary

Progress ⇒ both code + data pages present /

.text

.func strlen
strlen:
 for (s=str; *s; s++);

.data

.ascii "SysTEX 2017"

PTE text

Page Table

PTE data

29 / 43

High-resolution attack example: Counting strlen loop iterations

Single-stepping adversary

Execute one step → interrupt → probe accessed bit , → resume

PTE text

Page Table

PTE data

INTERRUPT

.text

.func strlen
strlen:
 for (s=str; *s; s++);

.data

.ascii "SysTEX 2017"

29 / 43

High-resolution attack example: Counting strlen loop iterations

Single-stepping adversary

Execute one step → interrupt → probe accessed bit , → resume

PTE text

Page Table

PTE data

ACCESSED ?

INTERRUPT

.text

.func strlen
strlen:
 for (s=str; *s; s++);

.data

.ascii "SysTEX 2017"

29 / 43

CVE-2018-3626: strlen() side-channel attacks in practice

https://https://software.intel.com/sites/default/files/managed/e1/ec/180309_SGX_SDK_Developer_Guidance_Edger8r.pdf

Side-channel oracle: Execute strlen() on attacker-provided pointer!

First execute strlen(), only then validate untrusted argument pointer. . .

⇒ Side-channel leakage reveals positions of 0x00 bytes in enclave memory

30 / 43

https://https://software.intel.com/sites/default/files/managed/e1/ec/180309_SGX_SDK_Developer_Guidance_Edger8r.pdf

CVE-2018-3626: strlen() side-channel attacks in practice

Side-channel oracle: Execute strlen() on attacker-provided pointer!

First execute strlen(), only then validate untrusted argument pointer. . .

⇒ Side-channel leakage reveals positions of 0x00 bytes in enclave memory

30 / 43

Breaking AES-NI with strlen() null byte oracle

Van Bulck et al. “A Tale of Two Worlds: Assessing the Vulnerability of Enclave Shielding Runtimes”, CCS 2019 (to appear) [VBOM
+

19]

31 / 43

Breaking AES-NI with strlen() null byte oracle

Van Bulck et al. “A Tale of Two Worlds: Assessing the Vulnerability of Enclave Shielding Runtimes”, CCS 2019 (to appear) [VBOM
+

19]

31 / 43

Reconstructing the full AES-NI round key

Algorithm 1 strlen() oracle AES key recovery where S (⋅) denotes the AES SBox and SR (p)
the position of byte p after AES ShiftRows.

while not full key K recovered do
(P,C , L)← random plaintext, associated ciphertext, strlen oracle
if L < 16 then

K [SR (L)]← C [SR(L)]⊕ S (0)
end if

end while

32 / 43

Attack idea #4

What about simplified processors without virtual memory?

33 / 43

Sancus: Open-source trusted computing for the IoT (cf. lecture 2)

Embedded enclaved execution:

ISA extensions for isolation & attestation

Save + clear CPU state on enclave interrupt (˜SGX)

Extremely low-end processor (openMSP430):

Area: ≤ 2 kLUTs

Deterministic execution: no pipeline/cache/MMU/. . .

CPU “as simple as it gets”

→ No known microarchitectural side-channels (!)

Noorman et al. “Sancus 2.0: A Low-Cost Security Architecture for IoT devices”, ACM TOPS 2017 [NVBM
+

17]

De Clercq et al. “Secure interrupts on low-end microcontrollers”, IEEE ASAP 2014 [dCPSV14]

https://github.com/sancus-pma and https://distrinet.cs.kuleuven.be/software/sancus/

34 / 43

https://github.com/sancus-pma
https://distrinet.cs.kuleuven.be/software/sancus/

Back to basics: Fetch-decode-execute

Elementary CPU behavior: stored program computer

Fetch Decode Execute

Jump?PC++

yes

no

Variable instruction latency

35 / 43

Back to basics: Fetch-decode-execute

Interrupts: asynchronous real-world events, handled on instruction retirement

Fetch Decode Execute

IRQ?Jump?PC++

Secure IRQ logicPC = IVT[irq]

no

yesyes

no

Variable instruction latency

35 / 43

Back to basics: Fetch-decode-execute

Timing leak: IRQ response time depends on currently executing instruction(!)

Fetch Decode Execute

IRQ?Jump?PC++

Secure IRQ logicPC = IVT[irq]

no

yesyes

no

Variable instruction latency

35 / 43

Wait a cycle: Interrupt latency as a side-channel

CLK

CMD NOP IRQ logic ISR

IRQ

CMD ADD IRQ logic ISR

IRQ

if (secret){ ADD @R5+, R6;} // 2 cycles
else { NOP; NOP; } // 2*1 cycle

36 / 43

Attacking a Sancus application with interrupt latency

Secure keypad: enclave has exclusive access to memory-mapped I/O device

Van Bulck et al. “VulCAN: Vehicular component authentication and software isolation”, ACSAC 2017 [VBMP17]

37 / 43

Attacking a Sancus application with interrupt latency

Driver enclave: 16-bit vector indicates which keys are down

0100000000000000
traverse bits

PIN code enclave

37 / 43

Attacking a Sancus application with interrupt latency

Attacker: Interrupt conditional control flow to infer secret PIN

Key 'B' was pressed!

0100000000000000
traverse bits

IRQ

PIN code enclave

37 / 43

Attacking a Sancus application with interrupt latency

MMIOSM_driver

SM_secure

(asm)

Timer_A

MSP430 core

while (poll_keypad())

function poll_keypad :
 key_state = read_key_state()
 for i=0 to 15 do
 if key_state & (0x1<<i) then
 secret_pin.add(keymap[i])
 end if
 end for

INTERRUPT

37 / 43

Sancus IRQ timing attack: Inferring key strokes

1

4

IR
Q

 l
a
te

n
c
y

Instruction (interrupt number)

Enclave x-ray: Start-to-end trace enclaved execution

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018 [VBPS18]

38 / 43

Sancus IRQ timing attack: Inferring key strokes

1

4

IR
Q

 l
a
te

n
c
y 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Instruction (interrupt number)

Enclave x-ray: Keymap bit traversal (ground truth)

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018 [VBPS18]

38 / 43

Sancus IRQ timing attack: Inferring key strokes

1

4

IR
Q

 l
a
te

n
c
y 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

2

3

4

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

Instruction (interrupt number)

0 (no press) 1 (key pressed) 0 (no press)

38 / 43

Does this also work for Intel SGX enclaves?

Yes(!): precise x86 APIC timer interrupts can be abused to reconstruct execution timings for
individual enclave instructions → same attack vector as on Sancus. . .

SGX-Step

https://github.com/jovanbulck/sgx-step and https://github.com/jovanbulck/nemesis

39 / 43

https://github.com/jovanbulck/sgx-step
https://github.com/jovanbulck/nemesis

Microbenchmarks: Measuring Intel x86 instruction latencies

Latency distribution: 10,000 samples from benchmark enclave

IRQ latency (cycles)

F
re

q
u

e
n

c
y

nop

add rdrandfscalelfence

40 / 43

Microbenchmarks: Measuring Intel x86 instruction latencies

Timing leak: reconstruct instruction latency class

IRQ latency (cycles)

F
re

q
u

e
n

c
y

nop

add rdrandfscalelfence

40 / 43

Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Start-to-end trace enclaved execution

Instruction (interrupt number)

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

41 / 43

Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Spotting high-latency instructions

Instruction (interrupt number)

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

rdrand (generate stack canary on enclave entry)

41 / 43

Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Zooming in on bsearch function

Instruction (interrupt number)

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

41 / 43

De-anonymizing enclave lookups with interrupt latency

Binary search: Find 40 in {20, 30, 40, 50, 80, 90, 100}

42 / 43

De-anonymizing enclave lookups with interrupt latency

Adversary: Infer secret lookup in known array

left

right

hit
42 / 43

De-anonymizing enclave lookups with interrupt latency

Goal: Infer lookup → reconstruct bsearch control flow

7800

7950

Interrupt (instruction number)

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

42 / 43

De-anonymizing enclave lookups with interrupt latency

Goal: Infer lookup → reconstruct bsearch control flow

7800

7950

Interrupt (instruction number)

Left Right Hit

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

42 / 43

De-anonymizing enclave lookups with interrupt latency

⇒ Sample instruction latencies in secret-dependent path

7800

7950

Interrupt (instruction number)

HLLL LLHL HHHH

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

42 / 43

Conclusions and take-away

Security cross-cuts hardware-software boundaries

Trusted execution environments are not perfect(!)

No silver-bullet defenses: write constant-time code

43 / 43

References I

V. Costan and S. Devadas.

Intel SGX explained.
Cryptology ePrint Archive, Report 2016/086, 2016.

R. de Clercq, F. Piessens, D. Schellekens, and I. Verbauwhede.

Secure interrupts on low-end microcontrollers.
In 25th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2014), ASAP’14, pp. 1–6. IEEE, 2014.

J. Noorman, J. Van Bulck, J. T. Mühlberg, F. Piessens, P. Maene, B. Preneel, I. Verbauwhede, J. Götzfried, T. Müller, and F. Freiling.

Sancus 2.0: A low-cost security architecture for IoT devices.
ACM Transactions on Privacy and Security (TOPS), 2017.

S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena.

Preventing page faults from telling your secrets.
In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security (ASIA CCS), pp. 317–328. ACM, 2016.

M.-W. Shih, S. Lee, T. Kim, and M. Peinado.

T-SGX: Eradicating controlled-channel attacks against enclave programs.
In Proceedings of the 2017 Network and Distributed System Security Symposium (NDSS 2017), February 2017.

J. Van Bulck, J. T. Mühlberg, and F. Piessens.

VulCAN: Efficient component authentication and software isolation for automotive control networks.
In Proceedings of the 33th Annual Computer Security Applications Conference (ACSAC’17). ACM, 2017.

J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. Garcia, and F. Piessens.

A tale of two worlds: Assessing the vulnerability of enclave shielding runtimes.
In Proceedings of the 26th ACM Conference on Computer and Communications Security (CCS’19). ACM, November 2019.

44 / 43

References II

J. Van Bulck, F. Piessens, and R. Strackx.

SGX-Step: A practical attack framework for precise enclave execution control.
In Proceedings of the 2nd Workshop on System Software for Trusted Execution, SysTEX’17, pp. 4:1–4:6. ACM, 2017.

J. Van Bulck, F. Piessens, and R. Strackx.

Nemesis: Studying microarchitectural timing leaks in rudimentary CPU interrupt logic.
In Proceedings of the 25th ACM Conference on Computer and Communications Security (CCS’18). ACM, October 2018.

J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx.

Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution.
In Proceedings of the 26th USENIX Security Symposium. USENIX Association, August 2017.

Y. Xu, W. Cui, and M. Peinado.

Controlled-channel attacks: Deterministic side channels for untrusted operating systems.
In 36th IEEE Symposium on Security and Privacy. IEEE, May 2015.

45 / 43

	Appendix

