Microarchitectural Side-Channel Attacks for Privileged Adversaries J

Jo Van Bulck

A imec-DistriNet, KU Leuven B9 jo.vanbulck@cs.kuleuven.be W jovanbulck

COSIC hardware security course, October 21, 2019

https://distrinet.cs.kuleuven.be/people/jo
mailto:jo.vanbulck@cs.kuleuven.be
https://twitter.com/jovanbulck

Today's goals and perspective

e Limitations of trusted execution environments (Sancus, Intel SGX)
— Side-channel attacks from untrusted operating system to enclave

@ Software viewpoint on hardware optimizations

— Security cross-cuts hardware-software abstraction layers(!)

8 :
= 0L

1/ 43

A primer on software security

Secure program: convert all input to expected output J

N

INPUT ———> — 3 OUTPUT

2/43

A primer on software security (previous lecture)

Buffer overflow vulnerabilities: trigger unexpected behavior)

—>> OUTPUT

2/43

A primer on software security (previous lecture)

Safe languages & formal verification: preserve expected behavior J

INPUT ———>

a8
=

.l — OUTPUT
K il

2/43

A primer on software security (this lecture)

Side-channels: observe side-effects of the computation J

a

oo
0
$3
INPUT —> Ny —> OUTPUT

\ Y4

2/43

A primer on software security (this lecture)

Constant-time code: eliminate secret-dependent side-effects)

@

INPUT ———>

&

—>> OUTPUT

N\ -

L

2/43

s @ ﬁ.

s &
Y @ _—§— VAULT DOOR .v
LB = : i

@

A vulnerable example program and its constant-time equivalent

1void check_pwd(char *input)

24 x

3 for. (ir.1t i:O.; i< PWD_I._EN; i++) ﬂ n n

y o o plals|siwiojrid]
6 /\/\/

7 return 1;

) plals|t[a

Overall execution time reveals correctness of individual password bytes!

— reduce brute-force attack from an exponential to a linear effort. ..

3/43

A vulnerable example program and its constant-time equivalent

1void check_pwd(char *input)

:{
3 for (int i=0; i < PWD.LEN;
4 if (input[i] !'= pwd[i])
5 return O;

6

7 return 1;

5}

i+4)

1void check_pwd(char *input)

2
3 int rv = 0x0;
for (int i=0; i < PWDLLEN; i++)
5 rv |= input[i] ~ pwd[il];
6
7 return (result = 0);
s}

Rewrite program such that execution time does not depend on secrets

— manual, error-prone solution; side-channels are likely here to stay. ..

3/43

Vulnerable patterns: Secret-dependent code/data memory accesses

1void

{

N~ o o A~ W

secret_vote(char candidate)

if(

else

candidate = 'a’)
vote_candidate_a () ;

vote_candidate_b () ;

1int

secret_lookup(int s)

if (s> 0 &% s < ARRAY_LEN)

return array[s];
return -1;

4/43

Vulnerable patterns: Secret-dependent code/data memory accesses

1void

{

N o o s Ww

secret_vote(char candidate)

if (candidate = 'a’)
vote_candidate_a () ;

else
vote_candidate_b () ;

1int secret_lookup(int s)

2{

3 if (s> 0 &% s < ARRAY_LEN)
4 return array[s];

5 return -1;

6

7}

What are the ways for adversaries to create an “oracle” for all
victim code+data memory access sequences?

4/43

Evolution of “side-channel attack” occurrences in Google Scholar

A
4000 —
3000
2000
DO WE JUST SUCK
AT... COMPUTERS?
\iup. ESPECIALLY SHARED ONES,
1000 — S
T T T T T T T >
1990 1994 1998 2002 2006 2010 2014 2018

Based on github.com/Pol1d87/academic-keyword-occurrence and xkcd.com/1938/ 5/ 43

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

Side-channel attacks and trusted computing

A
4000 —
. (intel
P -
3000 — <
Sancus

2000 SMART

DO WE JUST SUCK

AT... COMPUTERS?

- TPM \iup. ESPECIALLY SHARED ONES,
1000 - Flicker /
ARM TrustZone
T T T T T T T >
1990 1994 1998 2002 2006 2010 2014 2018

Based on github.com/Pol1d87/academic-keyword-occurrence and xkcd.com/1938/ 5/ 43

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

Side-channel attacks and trusted computing (focus of today)

A
4000 —
intel)
D - SGX .
3000 6 N —— 4
>
Sancus ///
2000 SMART
DO WE JUST SUCK
AT... COMPUTERS?
- TPM \iup. ESPECIALLY SHARED ONES,
1000 — Flicker)
ARM TrustZone
| | | | | | | >
1990 1994 1998 2002 2006 2010 2014 2018

Based on github.com/Pol1d87/academic-keyword-occurrence and xkcd.com/1938/ 5/ 43

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

What's inside the black box?

25 Microsoft Office 2001
Windows 2000

Microsoft Office for Mac

2006

Symbian

obile operating syster

Windows 7

2000

Windows XP

2001

Microsoft Office 2013

- 50 Large Hadron Collider
Windows Vista

2007

Microsoft Visual Studio 2012

Facebook

US Army Future Combat System

fast battlefield network n (aborted)

Debian 5.0 codebase

pen-souirce operating syster

Mac OS X “Tiger”
104
_].(X) Car software

Mouse*

otal DNA basepeirs in gerome

https://informationisbeautiful.net/visualizations/million-lines-of-code/
743

https://informationisbeautiful.net/visualizations/million-lines-of-code/

Enclaved execution: Reducing attack surface

App App } App } App
.~ _ =/
OS kernel
Hypervisor
TPM CPU Mem HDD

Trusted D Untrusted

8 /43

Enclaved execution: Reducing attack surface

Ap@ App H Enclave app
OS kernel x

v A v A

—__

) Hypervisor

-

-

\ TPM } CPU&{ Mem H HDD

Intel SGX promise: hardware-level isolation and attestation

8 /43

Enclaved execution: Privileged side-channel attacks

'd N

App M App HEnclaveapp

OS kernel

PP
Hypervisor = /
TPM } CPU&{ Mem H HDD

Game-changer: Untrusted OS — new class of powerful side-channels

N

e

-

"

8 /43

Enclaved execution: Privileged side-channel attacks

App App Enclave app figl

1 S
3=

\J ‘\ 19§
|

TPM CPU& Mem HDD

. J

Game-changer: Untrusted OS — new class of powerful side-channels

Xu et al. “Controlled-channel attacks: Deterministic side-channels for untrusted operating systems”, IEEE S&P 2015 [XCP15]
8 /43

Enclaved execution: Privileged side-channel attacks

App App Enclave app
> 0O 14, 0000 00 O0O0O0OOOOOD O
Instruction (interrupt number)
TPM CPU & Mem HDD

Game-changer: Untrusted OS — new class of powerful side-channels

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018 [VBPS18]
8 /43

KEEP CALM

IT IS

OUT OF SCOPE

A note on side-channel attacks (Intel)

Protection from Side-Channel Attacks

Intel® SGX does not provide explicit protection from side-channel attacks. It is the enclave developer's
responsibility to address side-channel attack concerns.

In general, enclave operations that require an OCall, such as thread synchronization, I/O, etc., are exposed to
the untrusted domain. If using an OCall would allow an attacker to gain insight into enclave secrets, then
there would be a security concern. This scenario would be classified as a side-channel attack, and it would be
up to the ISV to design the enclave in a way that prevents the leaking of side-channel information.

An attacker with access to the platform can see what pages are being executed or accessed. This side-
channel vulnerability can be mitigated by aligning specific code and data blocks to exist entirely within a single

page.

More important, the application enclave should use an appropriate crypto implementation that is side channel
attack resistant inside the enclave if side-channel attacks are a concern.

https://software.intel.com/en-us/node/703016
9/43

https://software.intel.com/en-us/node/703016

Today's agenda: Understanding privileged side-channel leakage

@ Critical remarks on TEE isolation:

e Which side-channels exist? Which enclave applications are vulnerable? (Not only crypto!)
o How to (not) defend against them, and at what cost?

e Focus on privileged attack surfaces: page tables, interrupts (Game-changer!)

Out-of-scope:
e “Traditional” leakage sources: caches, branch predictors, etc. (cf. next lecture?)

@ Speculative execution attacks (Spectre, Meltdown, Foreshadow, etc.)

10 / 43

Today's agenda: Understanding privileged side-channel leakage

@ Critical remarks on TEE isolation:

e Which side-channels exist? Which enclave applications are vulnerable? (Not only crypto!)
o How to (not) defend against them, and at what cost?

e Focus on privileged attack surfaces: page tables, interrupts (Game-changer!)

Out-of-scope:
e “Traditional” leakage sources: caches, branch predictors, etc. (cf. next lecture?)

@ Speculative execution attacks (Spectre, Meltdown, Foreshadow, etc.)

%\ Key question: Infer secrets from functionally correct enclave programs through untrusted OS? J

— overview several attack avenues. .. with an explicit focus on Intel SGX TEEs

10 / 43

Intel SGX: A helicopter view

OApplication

/" Untrusted Part Trusted Part R
of App of App
Call Gate
. : @ Enclaves live in user-space guest application
Process
Create Enclave S @ Inaccessible by all outside software (including OS)
? @ Virtual memory extensions enforce isolation
CallTrusted() Return o .
SO o Memory encrypted when outside processor package
@ x86 ISA instruction extensions:
J e eenter/eexit, eresume/aex: switch in/out enclave
PrivilegedSystem Code o egetkey: hardware-level key derivation, attestation
0S, VMM, BIOS, SMM, ...

https://software.intel.com/en-us/sgx/details

11/ 43

https://software.intel.com/en-us/sgx/details

The virtual memory abstraction

Virtual

Address Space

Address
Translation

Virtual
Address

Mapping

T

Page
Tables

1
1
I
I
I
I
I
1
1
1
1
1
1
1
1
1
I
I
I
1
I
1
I
1
I
1
I
'

Physical
Address Space

Physical
Address
I
System bus
v

DRAM

Costan et al. “Intel SGX explained”, IACR 2016 [CD16]

12/ 43

Intel SGX: How enclave accesses are enforced

Intel SGX enclaves live in virtual address space of untrusted host application J
Host Application i Page Tables DRAM
Virtual Memory Enclave Virtual | Managed by
View Memory View system software

EPC
Abort Page ELRANGE

Costan et al. “Intel SGX explained”, IACR 2016 [CD16]

13 / 43

Intel SGX: How enclave accesses are enforced

Challenge: Untrusted OS controls virtual-to-physical mapping — address-remapping attacks! J

Page Tables
: managed by
i system software :

Costan et al. “Intel SGX explained”, IACR 2016 [CD16]

13 / 43

Intel SGX: How enclave accesses are enforced

Solution: Additional checks to verify untrusted address translation outcome J

logical address 4>[pag|ng unit]—>[SGX checks]—>physica| address

U

13 / 43

Intel SGX: How enclave accesses are enforced

Solution: Additional checks to verify untrusted address translation outcome J
:' Non—Enclave Access E
Linear e e Physical i i
Address| 1raditiona Address : 1
Page Tale Enclave | No !
Access? 1 i
Checks ' !
| :
it et L Tl vy 1
| Enclave Access ! ' |
1 1 1
! Address ! E]
E in EPC? |: || Replace =|
| N Address '
: | ! :| With Abort !
] 1]
! Signal Check " Page :
| P .'
1 ! 1
1 ! 1
i [1
| [|
: R .'
| Yes 1
: i :
1 [1

https://blog.quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.html
13 /43

https://blog.quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.html

Attack idea #1

Can we abuse untrusted address translation as a side-channel?

14 / 43

Page faults as a side-channel

logical address 4>[pag|ng unit]—>[SGX checks]—>physica| address

U

SGX machinery protects against direct address remapping attacks J

15 / 43

Page faults as a side-channel

logical address paglng unit SGX checks]—’physical address

page fault (#PF) @

.but untrusted address translation may fault during enclaved execution (!))

— page fault deterministically reveals that the enclave tried to access a certain 4 KiB memory page. ..

15 / 43

Page faults as a side-channel

Page fault sequence

Page fault sequence X Z

XY

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015 [XCP15]

= Page fault traces leak private control data/flow J

15 / 43

#PF attacks: An end-to-end example

void inc_secret(void)
{
if (secret)
*a +=1;
else
*b +=1;

e .

..

.......................................

16 / 43

#PF attacks: An end-to-end example

© Revoke access rights on unprotected

~
enclave page table entry
void inc_secret(void)
{
if (secret)
*a +=1;
else
*b +=1;
}
J
2 ..
K] PTE a
'g
g
® PTE b
B, “tvencsnncesnnsnsnnnesashonanannnnnnnnns

B, uwwer

16 / 43

#PF attacks: An end-to-end example
Y

. EENTER ==
© Revoke access rights on unprotected [ad

~
enclave page table entry \
void inc_secret(void)

@ Enter victim enclave {

if (secret)
*a +=1,;

else
*b+=1;

o .

..

.......................................

16 / 43

#PF attacks: An end-to-end example

© Revoke access rights on unprotected

~
enclave page table entry
void inc_secret(void)
@ Enter victim enclave ‘.
if (secret) Add
*3 +=1; r,?ss
© Secret-dependent data memory access P
else translation®,
~ Processor performs virt-to-phys address translation! o+=1; H
~ By reading page table entry setup by untrusted OS })
2 --------------------------------
2 PTE a
'E
@Q ereeeesssrssrrsssssrssssssssssssnnnena,
2 i PTED
R

16 / 43

#PF attacks: An end-to-end example

© Revoke access rights on unprotected
enclave page table entry

@ Enter victim enclave

© Secret-dependent data memory access

~ Processor performs virt-to-phys address translation!
~ By reading page table entry setup by untrusted OS

@ Virtual address not present — raise page fault

~ Processor exits enclave and vectors to untrusted OS

void inc_secret(void)

{
if (secret)
*g +=1; Page fault
else (AEX)

*b+=1;
}
J

~> Noise-free side-channel signal that the enclave
wants to access page A(!)

16 / 43

#PF attacks: An end-to-end example

© Revoke access rights on unprotected
enclave page table entry

@ Enter victim enclave

© Secret-dependent data memory access

~ Processor performs virt-to-phys address translation!
~ By reading page table entry setup by untrusted OS

@ Virtual address not present — raise page fault

~ Processor exits enclave and vectors to untrusted OS

8
[— ERESUME &S

\]

void inc_secret(void)

~> Noise-free side-channel signal that the enclave
wants to access page A(!)

© Restore access rights and resume victim enclave

{
if (secret)
*a +=1;
else
*b +=1;
}
2 ..
Q PTE a
B e
g
b PTE b
B, “tvencsnnsesnnsnunnsnsansanndeannnesnnns

16 / 43

Page table-based attacks in practice

Original Recovered Original Recovered

) |

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015 [XCP15]

= Low-noise, single-run exploitation of legacy applications)

17 / 43

Page table-based attacks in practice

Original Recovered Original Recovered

) |

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015 [XCP15]

... but at a relative coarse-grained 4 KiB granularity J

17 / 43

Attack idea #2

What about other side-effects of address translation?

18 / 43

Naive solutions: Hiding enclave page faults

logical address 4>[pag|ng unit]—»[SGX checks]—>physical address

—page-fault (#PF)-

Shih et al. “T-SGX: Eradicating controlled-channel attacks against enclave programs”, NDSS 2017 [SLKP17]
Shinde et al. “Preventing page faults from telling your secrets”, AsiaCCS 2016 [SCNS16]

19 / 43

Naive solutions: Hiding enclave page faults

logical address—)[n pag|ng unit]—»[SGX checks]—>physical address
| Nt Y
=

A

... But stealthy attacker can still learn page accesses without triggering faults!

19 / 43

Documented side-effects of address translation

4.8 ACCESSED AND DIRTY FLAGS

For any paging-structure entry that is used during linear-address translation, bit 5 is the accessed flag.2 For
paging-structure entries that map a page (as opposed to referencing another paging structure), bit 6 is the dirty
flag. These flags are provided for use by memory-management software to manage the transfer of pages and
paging structures into and out of physical memory.

Whenever the processor uses a paging-structure entry as part of linear-address translation, it sets the accessed
lag in that entry (if it is not already set).

Whenever there is a write to a linear address, the processor sets the dirty flag (if it is not already set) in the paging-
structure entry that identifies the final physical address for the linear address (either a PTE or a paging-structure
entry in which the PS flag is 1).

20 / 43

CANT;SEE PAGE FAULTS THEY SAID

BUT WE CAN SPY
- ONPAGE TRBLE MEMORY

imafil

Telling your secrets without page faults

@ Attack vector: PTE status flags:
o A(ccessed) bit

void inc_secret(void)

for (i=0; i < len; i++)
{
D(i i if (secret[i])
e D(irty) bit {secretli .
~ Also updated in enclave mode! IRQ/AEX else

*b +=1;

Page Table

ggg ACCESSED ?
rd

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017 [VBWK+17]

21/ 43

Telling your secrets without page faults

N
void inc_secret(void)
@ Attack vector: PTE status flags: o .
i for (i=0; i < len; i++)
o A(ccessed) bit
H : if (secret[i])
e D(irty) bit e .
i ! IRQ/AEX else @
~ Also updated in enclave model! Q b 4= 1 “

@ Attack vector: Unprotected page table memory:

e Cached as regular data
o Accessed during address translation

~» Flush+Reload cache timing attack! »
(cf. next lecture) g%—g ACCESSED ?
4

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017 [VBWK+17]

21/ 43

Attacking Libgcrypt EdDSA (simplified)

Memory layout

1

2

3

4 0xO0F000
5 gcry_free

6

7

i mpi_add 0xC0000
10 mpi_test_bit 0xC1000
1

12

13 for (j=nbits—1; j >=0; j——) { 22 Code pages . 0xC9000
14 _gcry_mpi_ec_dup_point (result, result, ctx); per iteration mpi_ec_add_p

15 if (mpi_test_bit (scalar, j)) moi ec mul 0xCA000
16 _gcry_-mpi_ec_add_points (result, result, point, ctx); piec_mulp

17 } \

18

22 /43

Attacking Libgcrypt EdDSA (simplified)

Memory layout

Monitor
‘ trigger page gery_free | ¥XOF0%°
o -
6
7
8 8 mpi_add 0xC0000
0 =
" O i test b 0xC1000
(=~
11
12
13 for (j=nbits—1; j >=0; j——) { ACCESSED ? 0xC9000
14 _gcry_mpi_ec_dup_point (result, result, ctx); mpi_ec_add_p
15 if (mpi_test_bit (scalar, j)) moi ec mul 0xCA000
16 _gcry_-mpi_ec_add_points (result, result, point, ctx); piec_mulp
17 }
18

22 /43

Attacking Libgcrypt EdDSA (simplified)

Memory layout

AW N =

0x0F000

5 gcry_free
6
7
8 8 po—— 0xC0000
10 O mpi_test_bit 0xC1000

P _test |
1 INTERRUPT
12
13 for (j=nbits—1; j >=0; j——) { - 0XxC9000
14 _gcry_mpi_ec_dup_point (result, result, ctx); mpi_ec_add_p
15 if (mpi_test_bit (scalar, j)) moi ec mul 0xCA000
16 _gcry_-mpi_ec_add_points (result, result, point, ctx); piec_mulp
17 }
18

22 /43

Attacking Libgcrypt EdDSA (simplified)

15
16
17

18

for (j=nbits—1; j >=0; j——) {
_gcry_mpi_ec_dup_point (result, result, ctx);
if (mpi_test_bit (scalar, j))

gcry-mpi_ec_add_points (result, result, point, ctx);

Memory layout

0x0F000
gcry_free

mpi_add

ACCESSED ?

0xC0000

o

§

0xC1000

mpi_test_bit

Record page set

jo
0011
mpi_ec_add_p 0xC9000
ACCESSED ?) 0xCA000
mpi_ec_mul_p

22 /43

Attacking Libgcrypt EdDSA (simplified)

Memory layout

AW N =

0x0F000
5 gcry_free
6
7
8 8 mpi_add 0xC0000
0 =
10 O mpi_test_bit 0xC1000
11 s
12
13 for (j=nbits—1; j >=0; j——) { RESUME 0xC9000
14 _gcry_mpi_ec_dup_point (result, result, ctx); mpi_ec_add_p
15 if (mpi_test_bit (scalar, j)) moi ec mul 0xCA000
16 _gcry_-mpi_ec_add_points (result, result, point, ctx); piec_mulp
17
15 } Full 512-bit key recovery, single run

22 /43

Attack idea #3

Can we further improve the temporal resolution?

23 /43

Intel’s note on side-channel attacks (revisited)

Protection from Side-Channel Attacks

Intel® SGX does not provide explicit protection from side-channel attacks. It is the enclave developer's responsibility to
address side-channel attack concems.

In general, enclave operations that require an OCall, such as thread synchronization, I/O, etc., are exposed to the
untrusted domain. If using an OCall would allow an attacker to gain insight into enclave secrets, then there would be a
security concem. This scenario would be classified as a side-channel attack, and it would be up to the 1SV to design the
enclave in a way that prevents the leaking of side-channel information.

An attacker with access to the platform can see what pages are being executed or accessed. This side-channel
vulnerability can be mitigated by aligning specific code and data blocks to exist entirely within a single page.

More important, the application enclave should use an appropriate crypto implementation that is side channel attack
resistant inside the enclave if side-channel attacks are a concem.

https://software.intel.com/en-us/node/703016

24 /43

https://software.intel.com/en-us/node/703016

Temporal resolution limitations for the page fault oracle

Counting strlen loop iterations
Note: page fault-driven attacks cannot make progress for single code + data page J

1 size_t strlen (char xstr)
> A
3 char xs;
4
5 for (s = str; xs; 4+s);
6 return (s — str);
7}

= tight loop: 4 instructions, single memory operand, single code + data page

25 /43

Temporal resolution limitations for the page fault oracle

Counting strlen loop iterations

= progress requires both pages present <= page fault oracle requires non-present pages

Page Table

i PTE text

text
.func strlen
strlen:
for (s=str; *s; s++);

\ .data
.ascii "SysTEX 2017"

L

25 /43

i

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop

26 / 43

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop

MORSE’S Gallery, 417 Montgomery St., San Francisco,

o [
7 THE j"IORSE IN OTION.

Building a precise single-stepping primitive

’_ﬂ‘ SGX-Step goal: executing enclaves one instruction at a time J

Challenge: we need a very precise timer interrupt:

® x86 hardware debug features disabled in enclave mode
© ...but we have root access!

27 /43

Building a precise single-stepping primitive

’_Q‘ SGX-Step goal: executing enclaves one instruction at a time

Challenge: we need a very precise timer interrupt:

® x86 hardware debug features disabled in enclave mode
© ...but we have root access!

= Setup user-space virtual memory mappings for x86 APIC

jo@sgx-laptop:~$ cat /proc/iomem | grep "Local APIC"
feed0ROO-feelOfff

jo@sgx-laptop:~$ sudo devmem2 OxFEEQ0030 h

/dev/mem opened.

Memory mapped at address @x7f37dcl87000.
Value at address OxFEEGO030 (0x7737dcl87030): 0x15
jo@sgx-laptop:~$ []

27 /43

SGX-Step: Executing enclaves one instruction at a time

SGX-Step: user space APIC timer + interrupt handling ©]

(2) AEX . (3) IRQ Handiler

Enclave @ IRQ

if secret do ~"
instl A =/

=l SGX-Step
inst2

endif (4) ERESUME

user space

Van Bulck et al. “SGX-Step: A practical attack framework for precise enclave execution control”, SysTEX 2017 [VBPS17]

() https://github.com/jovanbulck/sgx-step
28 / 43

https://github.com/jovanbulck/sgx-step

High-resolution attack example: Counting strlen loop iterations

Page fault adversary
Progress = both code + data pages present & J
~
Page Table .text
P L L LLL L L LU L LLELLLLLS func strlen
: PTE text : strlen:
K for (s=str; *s; s++);
\ .data
.ascii "SysTEX 2017"
\ J

29 / 43

High-resolution attack example: Counting strlen loop iterations

Single-stepping adversary

Execute one step — interrupt — probe accessed bit © — resume

Page Table

! PTE text

...............................

...............................

...............................

.....

.....

.....

for (s=str; *s; s++);

N e

.ascii "SysTEX 2017"
\.

~
text

.func strlen -
strlen: el

L
/

INTERRUPT

J

29 / 43

High-resolution attack example: Counting strlen loop iterations

Single-stepping adversary
Execute one step — interrupt — probe accessed bit © — resume J
N
Page Table .text A
P L L LLL L L LU L LLELLLLLS func strlen _{ S,
: PTE text : strlen: - &
I for (s=sir; *s; S+.4); | INTERRUPT
i PTE data T \\
B, Accessep?
\
,O .data
.ascii "SysTEX 2017"
1\ J

29 / 43

CVE-2018-3626: strlen() side-channel attacks in practice
(hﬂeD

2 Background

On February 16th, 2018, a team of security researchers at Catholic University of Leuven (KU Leuven)
disclosed to Intel Corporation an issue with Edger8r Tool within the Intel® Software Guard Extensions
(Intel® SGX) Software Developer’s Kit (SDK). This issue could cause the Edger8r tool to generate source
code that could, when used as intended within an SGX enclave, expose the enclave to a side-channel
attack. The attack would then have the potential to disclose confidential data within the enclave.

https://https://software.intel.com/sites/default/files/managed/el/ec/180309_SGX_SDK_Developer_Guidance_Edger8r.pdf

30 /43

https://https://software.intel.com/sites/default/files/managed/e1/ec/180309_SGX_SDK_Developer_Guidance_Edger8r.pdf

CVE-2018-3626: strlen() side-channel attacks in practice

static sgx status t SGX CDECL sgx _ecall pointer string(void* pms)

{

CHECK_REF_POINTER(pms, sizeof (ms_ecall pointer_string t));

ms ecall pointer string t* ms =

SGX CAST (ms ecall pointer string t*, pms);
sgx status t sEatuS = SGX SUCCESS;
char* tmp str = ms->ms str;
sizeit__leg_str = _tmp_gtr ? strlen(_tmp str) + 1 : 0;
char* _in_str = NULL;

CHECK UNIQUE POINTER(tmp str, _len str);

%\ Side-channel oracle: Execute strlen() on attacker-provided pointer!

@ First execute strlen(), only then validate untrusted argument pointer. . .

@ = Side-channel leakage reveals positions of 0x00 bytes in enclave memory

30 /43

ALLYOUR ZEBUEYTES
= =

AIIE BEllING 'I'[l Us -

makeameme.or

Breaking AES-NI with strlen() null byte oracle

aesenc xmm@
aesenc xmmo
aesenclast xm

Interrupt

Enclave memory

mo

(store registers)

OxAB 0x82 0x99 0x00

Ciphertext |AB‘82‘99‘00|... ‘ ‘ ‘

last round

% = Sbox(0) ® Ox3F

Ciphertext |- |- [--

Ed

final

Van Bulck et al. “A Tale of Two Worlds: Assessing the Vulnerability of Enclave Shielding Runtimes”, CCS 2019 (to appear) [VBOM*19]

31/43

Breaking AES-NI with strlen() null byte oracle

aesenc xmm@
aesenc xmmo
aesenclast xm

Interrupt

Enclave memory

mo

(store registers)

OxAB 0x82 0x99 0x00

Ciphertext |AB‘82‘99‘00|... ‘ ‘ ‘

last round

% = Sbox(0) ® Ox3F

Ciphertext |- |- [--

Ed

final

Van Bulck et al. “A Tale of Two Worlds: Assessing the Vulnerability of Enclave Shielding Runtimes”, CCS 2019 (to appear) [VBOM*19]

31/43

Reconstructing the full AES-NI round key

Algorithm 1 strlen() oracle AES key recovery where S (-) denotes the AES SBox and SR (p)
the position of byte p after AES ShiftRows.
while not full key K recovered do
(P, C, L) < random plaintext, associated ciphertext, strlen oracle
if L < 16 then
K[SR(L)] « C[SR(L)]® S(0)
end if
end while

32/ 43

Attack idea #4

What about simplified processors without virtual memory?

33 /43

Sancus: Open-source trusted computing for the loT (cf. lecture 2)

Embedded enclaved execution:
@ ISA extensions for isolation & attestation

@ Save + clear CPU state on enclave interrupt ("SGX)

Extremely low-end processor (openMSP430):
@ Area: <2 kLUTs
@ Deterministic execution: no pipeline/cache/MMU/. . .

o CPU “as simple as it gets”

— No known microarchitectural side-channels (!) \

Noorman et al. “Sancus 2.0: A Low-Cost Security Architecture for loT devices”, ACM TOPS 2017 [NVBM+17]
De Clercq et al. “Secure interrupts on low-end microcontrollers”, IEEE ASAP 2014 [dCPSV14]

) https://github.com/sancus-pma and https://distrinet.cs.kuleuven.be/software/sancus/

34 /43

https://github.com/sancus-pma
https://distrinet.cs.kuleuven.be/software/sancus/

Back to basics: Fetch-decode-execute

Elementary CPU behavior: stored program computer

D

Fetc_hJ

yes

ecode

Jump?

Execute

35 /43

Back to basics: Fetch-decode-execute

Interrupts: asynchronous real-world events, handled on instruction retirement J

Fetc_hJ Decode Execute
PC++ no Jump? no

yes ‘

PC = IVT]Jirq] <—[5ecure IRQ logic

35 /43

Back to basics: Fetch-decode-execute

%\ Timing leak: IRQ response time depends on currently executing instruction(!) J

Variable instruction latency

Fetc_hJ Decode Execute
PC+ [« Jump? no IRQ?

yes ‘ { yes

PC = IVT]irq] Secure IRQ /ogic}

35 /43

Wait a cycle: Interrupt latency as a side-channel

A A

CMD 7§ NOP X IRQ logic

ISR

ISR

if (secret){ ADD @R5+, R6;} // 2 cycles ‘J >
else { NOP; NOP; } // 2*1 cycle

36 / 43

X WIIII'I' Bl]lllD)PGSSIBlY

!v....b”

m'“

&,

r

-

Attacking a Sancus application with interrupt latency

Secure keypad: enclave has exclusive access to memory-mapped |/O device J

Van Bulck et al. “VulCAN: Vehicular component authentication and software isolation”, ACSAC 2017 [VBMP17]
37 /43

Attacking a Sancus application with interrupt latency

Driver enclave: 16-bit vector indicates which keys are down J

PIN code enclave

Ooo0d
00 ||||:> 0100000000000000

[traverse bits

37 /43

Attacking a Sancus application with interrupt latency

Attacker: Interrupt conditional control flow to infer secret PIN J
PIN code enclave
o0
00 ||||:> 0100000000000000
E£ traverse bits

@.RQ.

Q Key 'B' was pressed!

37 /43

Attacking a Sancus application with interrupt latency

(MSP430 core ‘)
L ——

while (poll_keypad()) -
A INTERRUPT Timer A
(- Yy SM_secure / _
4

function poll keypad :
for =0 to 15 do g
SM_driver
(asm) |7
J

~
4
key state = read_key_state()/
if key state & (Ox1<<i) then
secret pin.add(keymapli]) MMIO DDD
end if <00
end for DD

\ J — =

37 /43

Sancus IRQ timing attack: Inferring key strokes

A
4.
>
]
c
[]
-
=
o
&
1 >
Instruction (interrupt number)
‘5‘ Enclave x-ray: Start-to-end trace enclaved execution J

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018 [VBPS18]
38 /43

Sancus IRQ timing attack: Inferring key strokes

Ly

~ IRQ latency »

0O 1| 0 00000 O0O0O0OOO0ODO0OODO

Y

Instruction (interrupt number)

“‘ Enclave x-ray: Keymap bit traversal (ground truth) J

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018 [VBPS18]
38 /43

Sancus IRQ timing attack: Inferring key strokes

~ IRQ latency »

0O 1(00 00 0O0O0OO0ODOOOOODO

IRQ latency (cycles)

0 (no press)

i

1 (key pressed)

N

0 (no press)

Instruction (interrupt number)

38 /43

Does this also work for Intel SGX enclaves?

Yes(!): precise x86 APIC timer interrupts can be abused to reconstruct execution timings for
individual enclave instructions — same attack vector as on Sancus. . .

(2) AEX . (3) IRQ Handiler
Enclave @

if secret do
instl
else
inst2
endif

SGX-Step

/) (4) ERESUME

) nttps://github.com/jovanbulck/sgx-step and https://github.com/jovanbulck/nemesis

39 /43

https://github.com/jovanbulck/sgx-step
https://github.com/jovanbulck/nemesis

Microbenchmarks: Measuring Intel x86 instruction latencies

Latency distribution: 10,000 samples from benchmark enclave J

rdrand

add Ifence fscale

e

nop

Frequency

Y

7700 7900 IRQ latency (cycles) 8300 8500
40 / 43

Microbenchmarks: Measuring Intel x86 instruction latencies

Timing leak: reconstruct instruction latency class)

rdrand

add Ifence fscale

e

nop

Frequency

Y

7700 7900 IRQ latency (cycles) 8300 8500
40 / 43

Single-stepping Intel SGX enclaves in practice

IRQ latency (cycles)

‘;‘ Enclave x-ray: Start-to-end trace enclaved execution

)

W

Instruction (interrupt number)

41/ 43

Single-stepping Intel SGX enclaves in practice

..‘ ~ . . C b . .
s Enclave x-ray: Spotting high-latency instructions J

rdrand (generate stack canary on enclave entry)
/7

IRQ latency (cycles)

W

Instruction (interrupt number)

41/ 43

Single-stepping Intel SGX enclaves in practice

IRQ latency (cycles)

‘5‘ Enclave x-ray: Zooming in on bsearch function

W

Instruction (interrupt number)

41/ 43

De-anonymizing enclave lookups with interrupt latency

Binary search: Find 40 in {20, 30, 40, 50, 80, 90, 100} J

42 /43

De-anonymizing enclave lookups with interrupt latency

Adversary: Infer secret lookup in known array J

42 /43

De-anonymizing enclave lookups with interrupt latency

Goal: Infer lookup — reconstruct bsearch control flow J

7950 A

IRQ latency (cycles)

7800 A d

Y

Interrupt (instruction number)

42 /43

De-anonymizing enclave lookups with interrupt latency

Goal: Infer lookup — reconstruct bsearch control flow J
A . ,
7950 ' K Left Right > Hit ©
m <
o r
9
[
§ ¢
g [*a /s
3
8
(o4
«
7800 - J b

Interrupt (instruction number)

42 /43

De-anonymizing enclave lookups with interrupt latency

=> Sample instruction latencies in secret-dependent path J
A
o, & HLLL LLHL » HHHH
N
9
[
g
K
]
5
(=4
«
7800

Interrupt (instruction number)

42 /43

»

4 B /;.-
-
-~
o \\
» 4 - 5
1

'\

= 4‘

—

RS!

o1

RISTUEETO

LOSI

GJIS

\
\

I

Conclusions and take-away

@ Security cross-cuts hardware-software boundaries
@ Trusted execution environments are not perfect(!)

@ No silver-bullet defenses: write constant-time code

8
= !

43 /43

References |

@ V. Costan and S. Devadas.
Intel SGX explained.
Cryptology ePrint Archive, Report 2016/086, 2016.
@ R. de Clercq, F. Piessens, D. Schellekens, and |. Verbauwhede.
Secure interrupts on low-end microcontrollers.
In 25th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2014), ASAP'14, pp. 1-6. |IEEE, 2014.
J. Noorman, J. Van Bulck, J. T. Miihlberg, F. Piessens, P. Maene, B. Preneel, |. Verbauwhede, J. Gotzfried, T. Miiller, and F. Freiling.
Sancus 2.0: A low-cost security architecture for loT devices.
ACM Transactions on Privacy and Security (TOPS), 2017.
S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena.
Preventing page faults from telling your secrets.
In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security (ASIA CCS), pp. 317-328. ACM, 2016.
M.-W. Shih, S. Lee, T. Kim, and M. Peinado.
T-SGX: Eradicating controlled-channel attacks against enclave programs.
In Proceedings of the 2017 Network and Distributed System Security Symposium (NDSS 2017), February 2017.
J. Van Bulck, J. T. Miihlberg, and F. Piessens.
VulCAN: Efficient component authentication and software isolation for automotive control networks.
In Proceedings of the 33th Annual Computer Security Applications Conference (ACSAC’17). ACM, 2017.
J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. Garcia, and F. Piessens.

A tale of two worlds: Assessing the vulnerability of enclave shielding runtimes.
In Proceedings of the 26th ACM Conference on Computer and Communications Security (CCS5'19). ACM, November 2019.

) B & D =

44/ 43

References Il

@ J. Van Bulck, F. Piessens, and R. Strackx.

SGX-Step: A practical attack framework for precise enclave execution control.
In Proceedings of the 2nd Workshop on System Software for Trusted Execution, SysTEX'17, pp. 4:1-4:6. ACM, 2017.

@ J. Van Bulck, F. Piessens, and R. Strackx.

Nemesis: Studying microarchitectural timing leaks in rudimentary CPU interrupt logic.
In Proceedings of the 25th ACM Conference on Computer and Communications Security (CC5'18). ACM, October 2018.

@ J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx.

Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution.
In Proceedings of the 26th USENIX Security Symposium. USENIX Association, August 2017.

@ Y. Xu, W. Cui, and M. Peinado.

Controlled-channel attacks: Deterministic side channels for untrusted operating systems.
In 36th IEEE Symposium on Security and Privacy. IEEE, May 2015.

45 / 43

	Appendix

