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The Big Picture: Reducing Attack Surface with Enclaves
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Traditional layered designs: Large trusted computing base
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The Big Picture: Reducing Attack Surface with Enclaves

Mem HDD

OS kernel
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AppApp

TPM

Hypervisor

 Enclave app

Intel SGX promise: Hardware-level isolation and attestation
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The Rise of Trusted Execution Environments

• 2004: ARM TrustZone

• 2015: Intel Software Guard Extensions (SGX)

• 2016: AMD Secure Encrypted Virtualization (SEV)

• 2018: IBM Protected Execution Facility (PEF)

• 2020: AMD SEV with Secure Nested Paging (SEV-SNP)

• 2022: Intel Trust Domain Extensions (TDX)

• 2024: ARM Confidential Computing Architecture (CCA)

TEEs are here to stay. . .
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Hardware Enclaves vs. Homomorphic Encryption?

Confidential Computing is available in production to-

day. It provides practical, useful protections for data

in use and in a few years, we should see Homomor-

phic Encryption become available for production

� https://confidentialcomputing.io/2023/03/29/confidential-computing-and-homomorphic-encryption/
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Hardware Enclaves vs. Homomorphic Encryption?

Mathematical guarantees! Real-world implementation?

Confidential Computing is already in active use, while Homomorphic En-

cryption is still in the experimentation phase

� https://www.edgeless.systems/blog/the-differences-between-homomorphic-encryption-he-the-differences-between-homomorphic

-encryption-he-and-confidential-computing-cc
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Overview: Architectural Enclave Isolation
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OS kernel
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Enclave app
 

App

Architectural promise: Transparent data-in-use protection against

privileged software adversaries
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Overview: Microarchitectural Side-Channel Attacks (today)

Mem

  Enclave app

CPU

2

Microarchitectural reality: Novel side channels to spy on

enclave-CPU interaction metadata
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Overview: Transient-Execution Attacks (not today)
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OS kernel
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CPU
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Microarchitectural reality: Direct data extraction via

transient-execution attacks. . .
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A Note on SGX Side-Channel Attacks (Intel)

� software.intel.com/en-us/node/703016
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Vulnerable Patterns: Secret-Dependent Code/Data Accesses

1 vo i d s e c r e t v o t e ( cha r c and i d a t e )

2 {
3 i f ( c and i d a t e == ’ a ’ )

4 v o t e c a n d i d a t e a ( ) ;

5 e l s e

6 v o t e c a n d i d a t e b ( ) ;

7 }

1 i n t s e c r e t l o o k u p ( i n t s )

2 {
3 i f ( s > 0 && s < ARRAY LEN)

4 r e t u r n a r r a y [ s ] ;

5 r e t u r n −1;

6

7 }

What are new ways for privileged adversaries to create an
“oracle” for enclave code+data memory accesses?
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Idea #1: Monitoring Address Translation



The Virtual Memory Abstraction

Costan et al. “Intel SGX explained”, IACR 2016.
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Intel SGX: Page Faults as a Side Channel

paging unit SGX checkslogical address physical address

SGX machinery protects against direct address remapping attacks
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Intel SGX: Page Faults as a Side Channel

paging unit SGX checks

page fault (#PF)

logical address physical address

. . . but untrusted address translation may fault(!)
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Intel SGX: Page Faults as a Side Channel

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015.

⇒ Page fault traces leak private control data/flow

13



Page Table-Based Attacks in Practice

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015.

⇒ Low-noise, single-run exploitation of legacy applications
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Page Table-Based Attacks in Practice

Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015.

. . . but a coarse-grained 4KiB spatial granularity
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Idea #2: Improving Temporal Resolution



Intel’s Note on Side-Channel Attacks (Revisited)

� software.intel.com/en-us/node/703016
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Temporal Resolution Limitations for the Page-Fault Oracle

⇒ tight loop: 4 instructions, single memory operand, single code + data page

Counting strlen loop iterations?

Progress requires both pages present (non-faulting) ↔ page fault oracle

16



Temporal Resolution Limitations for the Page-Fault Oracle

.text

.func strlen
strlen:
    for (s=str; *s; s++);
 
 
 
 
.data
secret:
    .byte 0xaa, 0x00
 

 

PTE text

Page Table

 

PTE data

 
 

Counting strlen loop iterations?

Progress requires both pages present (non-faulting) ↔ page fault oracle

16



Building the strlen() side-channel oracle with execution timing?

Too noisy: Modern x86 processors are lightning fast. . .

60 70 80 90 100 110 120
Execution time (cycles)

0

5000

10000

15000

20000

25000

30000

F
re

q
u

e
n

c
y

100,000 runs, strlen=1

100,000 runs, strlen=2

17



Building the strlen() side-channel oracle with execution timing?

Too noisy: Modern x86 processors are lightning fast. . .

60 70 80 90 100 110 120
Execution time (cycles)

0

5000

10000

15000

20000

25000

30000

F
re

q
u

e
n

c
y

100,000 runs, strlen=1

100,000 runs, strlen=2

17



Fast
shutter speed

Medium
shutter speed

Slow
shutter speed

Challenge: Side-channel Sampling Rate

CC-BY-SA Nevit Dilmen



SGX-Step: Executing Enclaves one Instruction at a Time

INPUT OUTPUT

INTERRUPT

Van Bulck et al., “SGX-Step: A Practical Attack Framework for Precise Enclave Execution Control”, SysTEX 2017.
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SGX-Step: Executing Enclaves one Instruction at a Time

libsgxstep

user space

ERESUME

OS kernel

Interrupt handler

Van Bulck et al., “SGX-Step: A Practical Attack Framework for Precise Enclave Execution Control”, SysTEX 2017. 19



SGX-Step demo: Building a memcmp() Password Oracle

20



SGX-Step: Enabling a New Line of High-Resolution Attacks

Yr Venue Paper Step Use Case Drv

’15 S&P Ctrl channel [XCP15] ∼ Page Probe (page fault) ✓

’16 ESORICS AsyncShock [WKPK16] ∼ Page Exploit (mem safety) –
’17 CHES CacheZoom [MIE17] ✗ >1 Probe (L1 cache) ✓

’17 ATC Hahnel et al. [HCP17] ✗ 0 - >1 Probe (L1 cache) ✓

’17 USENIX BranchShadow [LSG
+
17] ✗ 5 - 50 Probe (BPU) ✗

’17 USENIX Stealthy PTE [VBWK
+
17] ∼ Page Probe (page table) ✓

’17 USENIX DarkROP [LJJ
+
17] ∼ Page Exploit (mem safety) ✓

’17 SysTEX SGX-Step [VBPS17] ✓ 0 - 1 Framework ✓

’18 ESSoS Off-limits [GVBPS18] ✓ 0 - 1 Probe (segmentation) ✓

’18 AsiaCCS Single-trace RSA [WSB18] ∼ Page Probe (page fault) ✓

’18 USENIX Foreshadow [VBMW
+
18] ✓ 0 - 1 Probe (transient exec) ✓

’18 EuroS&P SgxPectre [CCX
+
19] ∼ Page Exploit (transient) ✓

’18 CHES CacheQuote [DDME
+
18] ✗ >1 Probe (L1 cache) ✓

’18 ICCD SGXlinger [HZDL18] ✗ >1 Probe (IRQ latency) ✗

’18 CCS Nemesis [VBPS18] ✓ 1 Probe (IRQ latency) ✓

’19 USENIX Spoiler [IMB
+
19] ✓ 1 Probe (IRQ latency) ✓

’19 CCS ZombieLoad [SLM
+
19] ✓ 0 - 1 Probe (transient exec) ✓

’19 CCS Fallout [CGG
+
19] – Probe (transient exec) ✓

’19 CCS Tale of 2 worlds [VBOM
+
19] ✓ 1 Exploit (mem safety) ✓

’19 ISCA MicroScope [SYG
+
19] ∼ 0 - Page Framework ✗

’20 CHES Bluethunder [HMW
+
20] ✓ 1 Probe (BPU) ✓

’20 USENIX Big troubles [WSBS19] ∼ Page Probe (page fault) ✓

’20 S&P Plundervolt [MOG
+
20] – Exploit (undervolt) ✓

’20 CHES Viral primitive [AB20] ✓ 1 Probe (IRQ count) ✓

’20 USENIX CopyCat [MVBH
+
20] ✓ 1 Probe (IRQ count) ✓

’20 S&P LVI [VBMS
+
20] ✓ 1 Exploit (transient) ✓

Yr Venue Paper Step Use Case Drv

’20 CHES A to Z [AGB20] ∼ Page Probe (page fault) ✓

’20 CCS Déjà Vu NSS [uHGDL
+
20] ∼ Page Probe (page fault) ✓

’20 MICRO PTHammer [ZCL
+
20] – Probe (page walk) ✓

’21 USENIX Frontal [PSHC21] ✓ 1 Probe (IRQ latency) ✓

’21 S&P CrossTalk [RMR
+
21] ✓ 1 Probe (transient exec) ✓

’21 CHES Online template [AB21] ✓ 1 Probe (IRQ count) ✓

’21 NDSS SpeechMiner [XZT20] – Framework ✓

’21 S&P Platypus [LKO
+
21] ✓ 0 - 1 Probe (voltage) ✓

’21 DIMVA Aion [HXCL21] ✓ 1 Probe (cache) ✓

’21 CCS SmashEx [CYS
+
21] ✓ 1 Exploit (mem safety) ✓

’21 CCS Util::Lookup [SBWE21] ✓ 1 Probe (L3 cache) ✓

’22 USENIX Rapid prototyping [ESSG22] ✓ 1 Framework ✓

’22 CT-RSA Kalyna expansion [CGYZ22] ✓ 1 Probe (L3 cache) ✓

’22 SEED Enclyzer [ZXTZ22] – Framework ✓

’22 NordSec Self-monitoring [LBA22] ∼ Page Defense (detect) ✓

’22 AutoSec Robotic vehicles [LS22] ✓ 1 - >1 Exploit (timestamp) ✓

’22 ACSAC MoLE [LWM
+
22] ✓ 1 Defense (randomize) ✓

’22 USENIX AEPIC [BKS
+
22] ✓ 1 Probe (I/O device) ✓

’22 arXiv Confidential code [PSL
+
22] ✓ 1 Probe (IRQ latency) ✓

’23 ComSec FaultMorse [HZL
+
23] ∼ Page Probe (page fault) ✓

’23 CHES HQC timing [HSC
+
23] ✓ 1 Probe (L3 cache) ✓

’23 ISCA Belong to us [YJF23] ✓ 1 Probe (BPU) ✓

’23 USENIX BunnyHop [ZTO
+
23] ✓ 1 Probe (BPU) ✓

’23 USENIX DownFall [Mog23] ✓ 0 - 1 Probe (transient exec) ✓

’23 USENIX AEX-Notify [CVBC
+
23] ✓ 1 Defense (prefetch) ✓

21



SGX-Step: A Versatile Open-Source Attack Toolkit

[CCS'18, USENIX'21]

[CCS'19, CHES'20-21, USENIX'20]

[USENIX'18, CCS'19, S&P'21]

[CCS'19/21, CHES'20, S&P'20-21, USENIX'17/18/22]

[AsiaCCS'18, USENIX'18-23, CCS20, CHES'20, NDSS'21]
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Nemesis: Extracting Interrupt Latency Traces with SGX-Step

Enclave x-ray: IRQ latency leaks instruction-level µ-arch timing!

Instruction (interrupt number)

IR
Q

 l
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 (
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s
)

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018..
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Nemesis: Extracting Interrupt Latency Traces with SGX-Step

Enclave x-ray: Spotting high-latency instructions

Instruction (interrupt number)
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 l
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rdrand (generate stack canary on enclave entry)

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018..
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Nemesis: Extracting Interrupt Latency Traces with SGX-Step

Enclave x-ray: Zooming in on bsearch function
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Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018..
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De-Anonymizing Enclave Lookups with Interrupt Latency

Binary search: Find 40 in {20, 30, 40, 50, 80, 90, 100}

24



De-Anonymizing Enclave Lookups with Interrupt Latency

Adversary: Infer secret lookup in known array

left

right

hit
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De-Anonymizing Enclave Lookups with Interrupt Latency

Goal: Infer lookup → reconstruct bsearch control flow
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De-Anonymizing Enclave Lookups with Interrupt Latency

Goal: Infer lookup → reconstruct bsearch control flow
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De-Anonymizing Enclave Lookups with Interrupt Latency

⇒ Sample instruction latencies in secret-dependent path
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Idea #3: Interrupt Hardening



Hardening Enclaves against Interrupt-Driven Attacks

SGX-Step sets the bar for adequate side-channel defenses!

SGX-Step inspired several dedicated hardware-software mitigations

→ Several research prototypes on in-house secure Sancus processor

→ Collaboration with Intel on AEX-Notify: Included in recent processors

Busi et al., “Provably Secure Isolation for Interruptible Enclaved Execution on Small Microprocessors”, CSF 2020..

Bognar et al., “MicroProfiler: Principled Side-Channel Mitigation through Microarchitectural Profiling”, EuroS&P 2023..

Constable et al., “AEX-Notify: Thwarting Precise Single-Stepping Attacks through Interrupt Awareness for Intel SGX Enclaves”, USENIX 2023..
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Root-causing SGX-Step: Aiming the timer interrupt
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Root-causing SGX-Step: Microcode assists to the rescue!

ERESUME NOP1Arm timer

2. TLB flush1. Clear PTE A-bit

3. Assisted PT walk

page walk ($RIP) exec

PTE A-bit Mean (cycles) Stddev (cycles)

A=1 27 30

A=0 666 55
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Root-causing SGX-Step: Microcode assists to the rescue!

ERESUME NOP1Arm timer

2. TLB flush1. Clear PTE A-bit 3. Assisted PT walk

4. Filter zero-step (PTE A-bit)
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AEX-Notify ISA 
Extension

Enclave

Enclave App

Attacker

Interrupt or 
Exception

Legend:

AEX-Notify solution overview

Enclave

Enclave App

Attacker

Interrupt or 
Exception

AEX Handler ERESUME

EDECCSSA

Enclave App

.page1:  

  …

  NOP1

 …

  RET    # (C3 byte)

page walk (.page1) exec

AEX Handler

AEX-Notify 
behavior

N
O

P
1

ERESUME

AEX Handler

1. Call a C3 byte 
on .page1

2. Load all cache 
lines in .page1

3. JMP [&NOP1]

AXD

AEX

ERESUME



SGX-Step led to new x86 processor instructions!

→ shipped in millions of devices ≥ 4th Gen Xeon CPU



Conclusions and Takeaway

⇒ Trusted execution environments (Intel SGX) ≠ perfect!

⇒ Subtle side channels can go a long way. . .

⇒ Scientific understanding driven by attacker-defender race

Thank you! Questions?
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