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This article analyzes a previously overlooked attack surface that allows unprivileged adversaries to impact floating-point com-

putations in enclaves through the Application Binary Interface (ABI). In a comprehensive study across 7 industry-standard

and research enclave shielding runtimes for Intel Software Guard Extensions (SGX), we show that control and state registers

of the x87 Floating-Point Unit (FPU) and Intel Streaming SIMD Extensions are not always properly sanitized on enclave

entry. We furthermore show that this attack goes beyond the x86 architecture and can also affect RISC-V enclaves. Focus-

ing on SGX, we abuse the adversary’s control over precision and rounding modes as an ABI fault injection primitive to

corrupt enclaved floating-point operations. Our analysis reveals that this is especially relevant for applications that use the

older x87 FPU, which is still under certain conditions used by modern compilers. We exemplify the potential impact of ABI

quality-degradation attacks for enclaved machine learning and for the SPEC benchmarks. We then explore the impact on

confidentiality, showing that control over exception masks can be abused as a controlled channel to recover enclaved multi-

plication operands. Our findings, affecting 5 of 7 studied SGX runtimes and one RISC-V runtime, demonstrate the challenges

of implementing high-assurance trusted execution across computing architectures.
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1 INTRODUCTION

In recent years, several Trusted Execution Environments (TEEs) [36] have been developed as a new security
paradigm to provide a hardware-backed approach of securing software. Their promise is that applications can
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Fig. 1. Enclaved application binaries are transparently shielded by sanitizing untrusted ABI and API-level state.

be run in so called enclaves to be isolated and protected from the surrounding, potentially untrusted Operating

System (OS). This allows for a radical reduction of the size of the Trusted Computing Base (TCB) to the point
where only the enclave application itself and the underlying processor need to be trusted. TEEs hence offer the
compelling potential of securely offloading sensitive computations to untrusted remote platforms [6, 24, 37].
However, the isolation guarantees provided by any TEE only hold in so far as the trusted in-enclave software
properly scrutinizes the untrusted interface that is exposed to a potentially hostile environment. Especially in the
context of Intel Software Guard Extensions (SGX) [14], a state-of-the-art TEE widely available on recent Intel
processors, the last years have seen a considerable effort by academia and industry to develop shielding runtimes

that aid secure enclave development by transparently protecting application binaries inside the TEE. Besides the
canonical open-source SGX-SDK [13] reference implementation by Intel, several other mature enclave runtimes
have been developed, including Microsoft’s OpenEnclave [38], Fortanix’s Rust-EDP [18], Graphene-SGX [48],
and SGX-LKL [44]. Similarly, shielding runtimes have been developed for TEE architectures beside Intel’s SGX,
such as for the RISC-V-based Keystone enclave [29] or OP-TEE [42] for ARM TrustZone.

Attacks on enclave shielding runtimes. A recent systematic vulnerability assessment [53] of enclave run-
times has shown that shielding requirements are not sufficiently understood in today’s TEE runtimes. Particu-
larly, it was shown that popular SGX shielding systems suffered from a wide range of often subtle, yet crucial
interface sanitization oversights. From this analysis, we conclude that the complex enclave shielding responsi-
bility can be broken down into two successive tiers of interface sanitizations, as illustrated in Figure 1. In the
first tier, immediately after entering the enclave protection domain, the trusted runtime should sanitize low-level
machine state and establish a trustworthy ABI. This bootstrapping phase is typically implemented in a minimal
assembly stub that sets up a trusted stack and initializes selected CPU registers before calling second-stage code
written in a higher-level language. At this point, the trusted shielding runtime is responsible for providing a
secure Application Programming Interface (API) abstraction by sanitizing untrusted arguments, such as
pointers, before finally handing over control to the shielded application binary written by the enclave developer.
Any sanitization oversight in either of the phases of the trusted runtime, or in the application tier itself, may
nullify all of the enclave’s pursued security objectives.

This is especially apparent for a long line of confused-deputy enclave attacks [9, 28, 43, 53] that abuse untrusted
pointer passing in the shared address space to trick a victim enclave program into inadvertently dereferencing
secure memory locations chosen by the attacker. Such API-level pointer sanitization vulnerabilities have been
widely studied, both in the context of conventional user-to-kernel exploits [11] and more recently in TEE sce-
narios [9, 28, 35, 43, 53]. However, as these vulnerabilities fully manifest at the programmer-visible API level,
principled solutions have been developed to thwart this category of pointer poisoning attacks, e.g., by means
of developer annotations and automatic code generation as in Intel’s edger8r [13], a secure type system as in
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Fortanix’s Rust-EDP [18], or by automatically scrutinizing the enclave API through symbolic execution [28],
and even formal interface verification efforts [55, 57]. Furthermore, prior work exists to analyze enclave code
via symbolic execution in order to reason about API-level attack surfaces [12]. Another example of insufficient
API-level sanitization is the lack of scrubbing in uninitialized structure padding reported by Lee and Kim [31],
causing leakage of confidental data from enclave memory.

ABI-level attacks. We argue that ABI-level vulnerabilities, on the other hand, are generally more subtle and
harder to reason about as they do not manifest at the program level, but instead exploit implicit assumptions
made by the compiler regarding the integrity of the low-level machine state, which may not always hold in the
enclave’s hostile environment. Due to their low-level nature, this class of ABI-level vulnerabilities hence falls
explicitly out of the scope of established language-level security mechanisms like memory-safe type systems.
Prior work [16, 53] has for instance exploited improper stack pointer initialization or insufficient sanitization of
x86 flags to induce severe memory-safety issues in otherwise perfectly secure applications. It remains unclear,
however, whether other ABI-level attack surfaces exist, to what extent they endanger the enclave protection
model, and if they are limited to triggering evident memory-safety misbehavior or could also induce more indirect
and stealthier errors in enclaved computations.

In this article, we analyze a subtle and previously overlooked ABI-level attack surface arising from enclave
interactions with the processor’s underlying FPU and SSE vector extensions. Specifically, we show that insuffi-
cient FPU and SSE control register initialization at the enclave boundary allows to adversely impact the integrity,
and to a certain extent even the confidentiality, of enclaved floating-point operations executing under the protec-
tion of a TEE. Our analysis of this attack surface in popular Intel SGX shielding runtimes revealed re-occurring
ABI-level sanitization oversights in five different runtimes, including widely deployed production-quality imple-
mentations such as Intel’s SGX-SDK [13], Microsoft’s OpenEnclave [38], and Fortanix’s Rust-EDP [18]. Further-
more, an analysis of the ARM and RISC-V reduced instruction set architectures shows that this attack surface is
not limited to the notoriously complex x86 instruction set architecture. Specifically, while the OP-TEE [42] run-
time for ARM TrustZone properly sanitizes the FPU, we were able to reproduce the attack also in the Keystone
runtime [29] on RISC-V. This lack of secure FPU initialization allows unprivileged adversaries to influence the
rounding and possibly even the precision of enclaved floating-point operations, introduce indefinite values, and
mask or unmask selected floating-point exception types. Interestingly, in contrast to prior research [16, 53] on
ABI-level attacks, which induce direct memory corruptions in the victim program, uninitialized FPU and SSE
configuration registers pose a significantly less straightforward threat and necessitate more insightful exploita-
tion methodologies. Our work therefore contributes novel attack techniques that abuse the adversary’s control
over FPU state from two complementary angles.

First, we explore the use of rounding and precision control poisoning as an “ABI-level fault-injection” primi-
tive to silently corrupt supposedly secure enclaved floating-point operations. In several case studies that mainly
focus on the widely available Intel SGX-TEE, we show that such subtle floating-point corruptions can break the
overall security objective of enclaved applications that operate as a service in an untrusted cloud environment,
without ever breaking confidentiality. This threat is especially relevant for legacy applications that employ the
x87 FPU, which can be maliciously downgraded from 64-bit double-extended precision to a mere 24-bit single
precision mode. We illustrate that such attacks on the x87 FPU can lead to persistent misclassification in an ex-
emplary enclaved image recognition neural network, as well as subtle, yet visible quality-degradation artifacts
in 3D rendering algorithms. To the best of our knowledge, these case studies for the first time explore a new
and stealthy class of integrity-only attacks that purposefully disturb the end result of outsourced enclave com-
putations without ever breaching confidentiality, thus potentially defeating even severely reduced “transparent
enclave execution” paradigms [47]. This perspective represents a notable change in direction compared to prior
TEE attack research, which has so far only focused on abusing enclaved execution integrity flaws as a stepping
stone to ultimately breach confidentiality, e.g., through memory-safety misbehavior [7, 30, 53], undervolting [41],
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or incorrect transient-execution paths [10, 51, 52]. By contrast, our work shows that, even when the processed
data are not considered secret and the enclave binary is free from any application-level vulnerabilities, current
widely used shielding systems cannot always safeguard the correctness of outsourced computation results.

Controlled-channel attacks. In a second and complementary angle, we explore the impact of ABI poisoning
on the confidentiality of enclaved floating-point operations by showing that attacker-induced FPU or SSE excep-
tions can be abused as an innovative new type of controlled-channel attack [62]. Using this technique, we show
that attackers can deterministically detect the occurrence of x87 instructions in secret-dependent code paths and
may even partially reconstruct SSE operand values in straight-line code.

Specifically, in cases where an enclave multiplies a user-controlled input with a secret learned parameter, such
as the weights in a neural network, attackers may partially reconstruct the secret multiplier by forcefully enabling
floating-point exceptions before entering the victim enclave and abusing the mere occurrence or absence of
a subsequent “denormal operand” exception for a carefully chosen input as an unconventional side channel.
This technique is closely related to a powerful class of controlled-channel attacks that have previously abused
side-channel leakage from x86 CPU exception events to spy on memory addresses accessed by a victim Intel
SGX enclave through either page faults [62], segmentation faults [23], or alignment-check exceptions [53]. Our
ABI-level attacks, on the other hand, directly reconstruct full data operand values for selected floating-point
operations, and, hence, for the first time extend the threat of controlled-channel attacks beyond leaking address-
related metadata for memory operations.

Our contributions. In summary, we make the following main contributions:

— A novel ABI-level fault-injection attack that allows unprivileged adversaries to influence the precision,
rounding, and exception behavior of x87 or SSE floating-point operations in at least five popular Intel SGX
enclave shielding runtimes and at least one RISC-V enclave shielding runtime.

— An innovative controlled channel that abuses floating-point exceptions to recover enclaved multiplication
operands, including a proof-of-concept of weight extraction from enclaved neural networks.

— An exploration of a new class of quality-degradation attacks that stealthily compromise the integrity of
supposedly secure outsourced enclave computation results.

— A demonstration of practical FPU attacks in an end-to-end machine learning case study enclave and a
larger analysis of attacker-induced floating-point errors on the SPEC suite.

Finally, we formulate recommendations for principled ABI sanitization and we argue that this attack surface
is non-trivial to patch. Specifically, our analysis revealed insufficient FPU sanitization patches in two production-
quality runtimes [18, 38] that were explicitly aware of this attack surface. We show that, despite the initial patches
for these runtimes, it was still possible for ABI-level unprivileged attackers to silently override the outcome of
trusted in-enclave x87 computations with indefinite NaN outcomes.

Responsible disclosure. The main security vulnerabilities exploited in this work have been assigned CVE-
2020-0561 by Intel, for the sanitization oversight in the Intel SGX-SDK, and CVE-2020-15107 by Microsoft, for
the remaining attack surface after the initial mitigation attempt in OpenEnclave. While the initial mitigation
attempt in OpenEnclave served as inspiration for our work, both the issue in the Intel SGX-SDK and the re-
mediation of insufficient patches were then responsibly disclosed through the proper channels for the affected
production runtimes. Intel, Microsoft, Fortanix, and Go-TEE acknowledged the issue and applied our recom-
mended patches in the enclave entry code for the SGX-SDK v2.8, OpenEnclave v0.10.0, and the Rust compiler
v1.46.0, respectively. We provide our case studies and proof-of-concept exploits as open-source artifact for other
researchers to independently evaluate and build upon our findings.1

1https://github.com/fritzalder/faulty-point-unit.
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Fig. 2. Layout of the x87 FPU control word.

2 BACKGROUND

This section introduces the necessary background on SGX enclaves and Intel processor support for floating-
point computations through the x87 FPU and SSE vector extensions, respectively. We also briefly introduce the
necessary background for RISC-V and ARM-based TEEs.

2.1 Intel SGX

Intel SGX [14, 26], are a set of hardware instructions that allow to create trusted regions of code called enclaves

that are shielded from the surrounding, potentially untrusted Operating System (OS). The SGX promise is
that enclave applications can access almost all capabilities of the user-mode x86 instruction set, while at the
same time being provided with strong hardware-backed memory isolation and the capability of attesting code
to remote parties. SGX protects enclave memory from outside access and provides instructions to enter and exit
enclave mode. When encountering exceptions or interrupts during enclaved execution, the CPU securely saves
and scrubs the full extended register set inside the enclave, to be later restored when the enclave is resumed.
However, on initial enclave entry into registered call gates, named ecalls, the cleansing and sanitization of
registers is the responsibility of the software. Due to this challenge, multiple enclave shielding runtimes (cf.
Figure 1) have emerged that take over this sanitization on enclave entry, bring the processor into a clean state, and
then forward execution to the intended application binary inside the enclave. This not only lowers application
developer effort to adopt enclaved execution but also streamlines the mitigation of vulnerabilities on ABI-level.
While a 64-bit operation is the norm for SGX enclaves, a 32-bit compatibility mode is officially supported.

2.2 x87 FPU

The x87 FPU [26] provides an environment to perform floating-point and other math operations. For this, the
x87 FPU has eight 80-bit data registers that are used internally as a register stack during computation of FPU
instructions. The 80 bits in the registers are designed to ensure a high precision inside the FPU to minimize
floating-point errors of data that is returned back from the data registers to memory. With 1 bit used for the
sign and 14 bits used for the exponent, one 80-bit register utilizes 64 bits to store the significand of a floating-
point variable which Intel calls double-extended precision. The internal data registers of the x87 FPU by default
utilize the full 64 bits of the significand during computations. In addition, the x87 FPU also contains a control
register that can be set with the FPU Control Word as shown in Figure 2. This control register allows to specify two
additional precision formats, namely double precision with 53 bits used for the significand and single precision with
only 24 bits for the significand. These additional precision modes enable compatibility with the IEEE Standard
754 and legacy programs or older programming languages.

Besides limited precision, another important aspect of floating-point operations is the rounding mode. When-
ever a floating-point number can not be represented exactly with the given precision, the FPU needs to make a
decision whether to choose the next higher or next lower possible representation. By default the x87 FPU will
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Fig. 3. Layout of the MXCSR control/status register.

round to the nearest value, but developers can choose to override this in the control word and enforce rounding up,
rounding down, or rounding toward zero. Naturally, the impact of the rounding mode is greater for computations
in single-precision mode than for computations in double-extended precision as rounding errors accumulate
faster and the distance between two floating-point numbers that can be represented with the given precision is
larger.

Figure 2 shows those fields of the FPU control word that control the behavior of FPU operations in red. These
are the Precision Control (PC) bits 8 and 9, and the Rounding Control (RC) bits 10 and 11. Fields that control
the masking of floating-point exceptions are shown in orange in the figure. Bits 0–5 can be used to mask any of the
6 floating-point exceptions that may be triggered by the x87 FPU. Notable examples of exceptions the FPU might
encounter include underflow when a result becomes subnormal, also referred to as “denormal”, and overflow
when the result can no longer be represented in the respective floating-point type. Exceptions are masked by
default, instructing the FPU to continue with some safe default values. However, in case programmers want to
be notified about these events, individual exception types can be unmasked by clearing the respective bits in the
FPU control word, e.g., through the C library function feenableexcept(). When encountering an unmasked
exception, the FPU will stop operation and programmers can register a custom SIGFPE signal handler through
the OS. Lastly, the remaining non-relevant bits in the FPU control word are marked gray. These are bits 6,7, and
13–15 which are reserved and bit 12, which exists for compatibility reasons and is not meaningful anymore for
current versions of the x87 FPU.

Importantly, since the x87 FPU control word defines global program behavior, it is expected by the ABI to
be initialized to a predefined sane state 0x37f that should be preserved across function calls, except for pro-
cedures that have the explicit intention of globally changing the FPU configuration [17, 34]. Furthermore, on
Intel processors supporting MMX technology [26], the eight x87 floating-point registers can also be utilized as
general-purpose MMX vector registers. However, since the MMX registers are internally aliased to the x87 FPU
register stack, care should be taken when mixing MMX and x87 instructions. Specifically, any MMX instruction
marks the entire x87 stack as in-use and developers are required to issue a special emms instruction to clear the
register stack before executing any subsequent x87 operation. Failure to do so may produce unexpected results,
and compiler ABIs hence demand that “the CPU shall be in x87 mode upon entry to a function” [34].

2.3 Streaming SIMD Extensions (SSE)

In order to further speed up floating-point arithmetics, recent Intel processors include vector extensions that
operate independently of the x87 FPU and allow for high performance of parallelized calculations. The line of
Streaming SIMD Extensions (SSE) [26] supports parallel floating-point operations on 128-bit vector registers
holding either four 32-bit single-precision or two 64-bit extended-precision floating-point numbers. In contrast
to the x87 FPU, which calculates intermediate results with 80 bits of precision, SSE processes a vector of operands
in parallel with a fixed (but lower) precision that cannot anymore be dynamically degraded by the developer.

Similar to the x87 control word, SSE offers a global MXCSR control register to configure the rounding mode and
exception behavior, as shown in Figure 3. The SSE rounding control bits 13–14 (red) and floating-point exception
mask bits 7–12 (orange) work identical to those described earlier for the x87 FPU. In addition, MXCSR provides
status flags 0–5 (green) that indicate whether one of the six floating-point exceptions occurred and configuration
bits to specify the behavior when encountering subnormal numbers and underflow conditions. Specifically, bit
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15 is called the Flush-To-Zero bit and can be used to enter a mode that flushes the result to zero whenever
an underflow is encountered which slightly reduces precision of the calculations for the benefit of increased
performance. Bit 6 can be used to enter the Denormals-Are-Zeroes mode that treats all subnormal numbers as
zeroes. Neither of these two modes is compatible with the IEEE Standard 754 and both of them are disabled
by default [26]. Again similar to the x87 control word, the configuration bits in the global MXCSR register are
expected by the ABI to be initialized to a pre-defined state 0x3f80 and preserved across function calls [17, 34].

The performance gain of parallelized SSE vector floating-point operations is leveraged by most modern com-
pilers. For example gcc, the GNU Compiler Collection, defaults to the SSE when compiling for 64-bit targets [20].
Similarly, Microsoft Visual C++ defaults to the SSE for modern 64-bit applications [39]. For compatibility with
32-bit and legacy systems, both compilers also provide options to compile applications without the SSE and with
all math operations purely executed by the x87 FPU. In gcc, this compiler option is called -mfpmath=387. At
the same time, the x87 FPU remains fully supported also for modern 64-bit applications and default compilation
options. One notable example is the C data type long double which is defined as “at least as large as the float
type, and it may be larger” [20]. Some compilers as such aim to use the maximum available precision for this data
type, which means utilizing the full 80-bit precision of the x87 FPU instead of the 64-bit precision provided by
the SSE. For example, gcc will default to x87 instructions whenever a long double variable is involved and will
regularly switch data between the FPU and SSE data register stacks if the SSE was utilized by a support library
such as libm. Furthermore, gcc provides an experimental compilation option called -mfpmath=both to utilize a
combination of SSE and x87 FPU for increased performance beyond just using it for long double variables [20].
Overall, the x87 FPU, while not being the default compilation target for all platforms anymore, is still relevant
for calculations that require the high precision of long double variables or for legacy applications.

2.4 Other Processors Architectures

In addition to x86, we also briefly discuss the handling of floating-point state on two other mainstream architec-
tures, namely, ARM and RISC-V. Together with x86 (and Intel SGX), these represent all widely used processor
architectures for implementing TEEs—ARM provides the TrustZone extensions, while RISC-V is used in various
research TEEs [5, 29, 59].

RISC-V. RISC-V defines 32 registers for floating-point data [58, Section 11.1] and a control and status register
for floating-point operations, named the fcsr register [58, Section 11.2]. This register contains two main pieces:
frm which globally controls the utilized rounding mode, and fflags, which indicates the accumulated floating-
point exceptions since this register was last cleared.

Rounding modes in RISC-V are mainly controlled through three rm bits encoded into each floating-point in-
struction. This allows to set the rounding mode on a per-instruction basis if necessary. In accordance with the
C99 standard however, RISC-V also provides the global frm rounding mode setting in the fcsr register—similar
to the rounding mode settings in x87 and SSE. Instructions can either specify their own rounding mode or specify
the DYN rounding mode that defaults to the global parameters in the frm setting. In general, this makes ABI-level
attacks possible also for RISC-V architectures. We demonstrate the potential impact of this in Section 3.2.

Floating-point exceptions in the default RISC-V specification however do not result in an abortion of the
current execution flow as they are not handled by an exception handler, also called trap handler in RISC-V [58,
Section 11.2]. Instead, floating-point exceptions are marked in the fflags register and detecting that such an
exception occurred is purely the responsibility of software. This means that it is the software responsibility to
check the fflags register after utilization of the FPU and, importantly, also clear both the fcsr register and all
data registers that contain floating-point data. If an enclave does not clear the fflags before returning control to
the attacker, then the attacker can use the state of these flags as a side channel similar to the controlled channel
case study we describe in Section 4 for Intel SGX. For example, with the default RISC-V specification and a default
compilation with gcc, this side channel remains open to an attacker.
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When an enclave developer uses the gcc flags -fp-trap=all, a check for floating-point exceptions is added
after each floating-point calculation and a trap inside the enclave is executed. Even though the trap is not passed
to the untrusted code, an attacker might still be able to determine whether an exception has occurred, e.g., from
the timing behaviour or error messages. Note that the enclave shielding runtime also still needs to sanitize the
fcsr and FPU registers on every context switch to prevent the attacker from gaining information on confidential
computations inside the enclave.

ARM. Similar to the x86 architecture, ARM exposes status and control information through the ABI [3, Section
A1.5]. In 32-bit mode (AArch32), the FPCSR combines status flags (e.g., zero, carry) and control flags (e.g., rounding
mode) [4]. In 64-bit mode (AArch64), control and status information have been split into two registers, FPSR and
FPCR. In both cases, the rounding mode can be configured in a similar way to x87 and SSE, and floating-point
exceptions can be masked through certain bits in the control register. While we do not further consider ARM
processors in the following, we note that the TEE runtime OP-TEE for TrustZone appropriately handles the
floating-point state when switching between untrusted and trusted code.2 Still, this fact highlights that ABI-
level attacks are a concern beyond Intel architectures.

3 POISONING FPU STATE REGISTERS

This section first elaborates on the assumed attacker capabilities and system model. Thereafter, we analyze the
different attack avenues that may arise in case of insufficient ABI-level sanitization, and we provide a toy example
that illustrates their impact on the integrity of exemplary enclave computations. Finally, we conclude with a
systematic vulnerability assessment of this attack surface across 7 widely used SGX shielding runtimes.

3.1 Attacker and System Model

We assume the standard Intel SGX threat model [14] where only the processor and the software executing inside
the enclave are to be trusted. Notably, while Intel SGX explicitly excludes the OS from the TCB and aims at
protecting even against adversaries who have gained root access to the target platform [54], we demonstrate
our exploits with a considerably weaker attacker model. Particularly, we only assume user-space code execution
in the untrusted host application so as to invoke the enclave with custom ABI-level register settings and to
optionally install signal handlers via the OS interface. This falls within the capabilities of any unprivileged user
who has access to the enclave binary.

Following widespread industry practice [6, 8, 18, 21, 25, 38, 44, 49], we assume the use of a shielding runtime
that intervenes on enclave entry and exit to transparently protect the enclaved application binary from its un-
trusted environment. Specifically, we consider the explicit security objective of the shielding runtime to be to
(i) make sure that an enclaved application behaves exactly like on a trusted OS, and (ii) prevent any avoidable
information leakage beyond what is allowed through explicit interaction with the application. As an example of
the first requirement, previous research has shown that the shielding runtime should clear the direction flag in
the x86 status register on enclave entry to avoid unexpected memory corruption for string operations [53]. As
an example of the second requirement, runtimes should scrub low-level CPU registers that do not form part of
the calling convention before exiting the enclave to avoid leaking intermediary state [53].

We assume that the Intel SGX TEE is properly patched against microarchitectural vulnerabilities [10, 51, 52],
such that the shielding system can provide enclaved computation results to remote parties as if they were exe-
cuted on a trusted OS. In this respect, we consider it to be the objective of the shielding runtime to transparently
protect any ABI-compliant x86 application binary. The latter can include legacy libraries and can be generated
by an arbitrary compiler, as long as ABI-level calling conventions [17] are respected, that can hence make use of
the full power of the x86 instruction set permitted inside SGX enclaves. In some of our case studies, only when

2https://github.com/OP-TEE/optee_os/blob/adb776/core/arch/arm/kernel/thread.c#L1312.
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explicitly mentioned, we may emphasize this point by instrumenting the compiler to make increased use of the
x87 FPU instead of more modern SSE features by means of the -mfpmath=387 gcc compiler flag. It should be
stressed; however, that the resulting application binaries remain fully legit ABI-compliant x86 code that may for
instance also have been generated by older or more specialized compilers [20].

3.2 ABI Poisoning Attacks

While trusted code can be relied on to respect ABI calling conventions [17, 34], this does not hold anymore for
ecall functions exposed to the untrusted world. The shielding runtime hence has the crucial responsibility to
bridge this trust semantics gap by sanitizing the ABI on enclave entry. Before showing in Section 3.3 that this re-
quirement is not sufficiently understood in today’s widely used SGX shielding runtimes, we first elaborate below
on what are the exact security implications of insufficient initialization of x87 and SSE registers, respectively.

Poisoning x87 FPU state. When the shielding system does not cleanse the x87 control word, attackers may
execute the unprivileged fldcw instruction before entering the enclave to control all bits described in Section 2.2
and Figure 2. In fact, executing this instruction at any point before entering the enclave suffices to successfully
implement the attack as long as the x87 control word does not get modified in-between. Since programs rarely
modify the x87 control word as long as they are not performing floating-point operations, the attack may often
be performed in advance instead of right before the actual ecall. In the following, we assume however that the at-
tacker loads the desired x87 control word as the last instruction before switching into the enclave, which ensures
that the x87 control register is in the desired state. The immediately obvious impactful fields the attacker can
target are bits 8–9 to degrade the precision and bits 10–11 to alter the rounding mode for enclaved x87 floating-
point operations. We will show in Sections 5 and 6 that the impact of a maliciously downgraded x87 precision can
be especially devastating in larger applications. Additionally, by selectively unmasking floating-point exceptions
and registering a signal handler, attackers may be informed of certain, possibly secret-dependent, FPU events
that would otherwise pass unnoticed.

Furthermore, when the shielding runtime does not explicitly initialize the x87 register stack, it may be incor-
rectly left in MMX mode. For this, it suffices that the attacker executes any MMX operation that is not followed
by an emms instruction before entering the enclave. Since an ABI-compliant enclave application expects the CPU
to be in x87 mode with all registers available, any following attempt to load data into an x87 register will cause
an unexpected FPU register stack overflow event, as the CPU still is incorrectly in MMX mode with all eight
floating-point registers marked as in-use. The exact behavior in this case will depend on the corresponding
exception mask bit in the FPU control word. In the default case where exceptions are masked, the processor
will silently replace the intended x87 destination register with an indefinite value (NaN) and continue execution.
We experimentally confirmed that such attacker-injected unintended NaN values are silently propagated further,
which is a clear violation of computational integrity and may further cause unexpected or incorrect behavior
depending on the victim application.

Alternatively, in the case where exception bits in the x87 control word are craftily unmasked before enclave
entry, the attacker will be notified by means of an FPU exception signal whenever the enclave loads an
x87 register. This technique is somewhat similar to prior controlled-channel attacks on Intel SGX, which
have abused memory contention through page-fault exceptions [62] to spy on enclave-private page accesses.
Essentially, by adversely filling the FPU register stack with MMX instructions before enclave entry, the attacker
causes unexpected contention that can be used as side channel to learn subsequent use of the FPU by the
enclave. We experimentally verified that this technique can be abused as an innovative controlled channel to
deterministically recognize x87 instructions in a secret-dependent code path. We note that privileged attackers
could further improve the temporal resolution of this novel FPU controlled channel by relying on the SGX-
Step [54] enclave execution control framework to exactly pinpoint on which instruction the exception has been
raised. SGX-Step leverages carefully scheduled timer device interrupts and has been shown to deterministically
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Table 1. Proof-of-concept Attack Executed Inside an Enclave

FPU Rounding arccos(-1) = π 2.1 ∗ 3.4 = 7.14

Si
n

g
le
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ci
si

on

To nearest 3.1415926535897932385128089 7.1399998664855957031250000
Downward 3.1415926535897932382959685 7.1399998664855957031250000
Upward 3.1415926535897932385128089 7.1400003433227539062500000
To zero 3.1415926535897932382959685 7.1399998664855957031250000

D
ou

b
le

p
re

ci
si

on

To nearest 3.1415926535897932385128089 7.1399999999999996802557689
Downward 3.1415926535897932382959685 7.1399999999999996802557689
Upward 3.1415926535897932385128089 7.1400000000000005684341886
To zero 3.1415926535897932382959685 7.1399999999999996802557689

E
x
te

n
d
ed

p
re

ci
si

on

To nearest 3.1415926535897932385128089 7.1400000000000001156713613
Downward 3.1415926535897932382959685 7.1400000000000001152376805
Upward 3.1415926535897932385128089 7.1400000000000001156713613
To zero 3.1415926535897932382959685 7.1400000000000001152376805

MMX Any -NaN -NaN

advance production enclaves exactly one instruction at a time [40, 54]. FPU poisoning adversaries can, hence,
precisely establish the relative instruction offset of enclaved x87 operations by merely counting the number of
SGX-Step interrupts before detecting the FPU exception signal.

We finally note that the above x87 FPU poisoning attacks can even impact programs that were never explicitly
compiled as x87 FPU programs. Section 2.3 indeed explained that some compilers, including gcc, still utilize the
x87 FPU in certain scenarios such as for long double data types.

Poisoning SSE state. Compared to the x87 FPU, the more recent SSE floating-point extensions include less
configuration bits and hence also expose a smaller ABI-level attack surface. However, we found that when the
shielding system does not sanitize the control bits in the MXCSR register, attackers may execute the unprivileged
ldmxcsr instruction before entering the enclave to control all bits described in Section 2.3 and Figure 3. Similar
to the FPU attacks described above, this allows the attacker to maliciously alter the in-enclave rounding mode
through bits 13–14 and to arbitrarily unmask floating-point exceptions through bits 7–12. Unlike the x87 FPU,
the precision of SSE floating-point operations is fixed and can hence not be overridden by the attacker.

We demonstrate below that poisoning the SSE rounding mode may adversely impact the integrity ( i.e., the
expected outcome) of certain in-enclave floating-point computations. Section 4 furthermore introduces a case
study which exploits the adversary’s control over the denormal-operand SSE exception mask as an innovative
controlled channel to reconstruct secret in-enclave multiplication operands.

A toy example. We exemplify the threat of ABI-level poisoning attacks on the integrity of enclaved floating-
point computations by means of two types of math operations: one complex operation that relies on the standard
math library included in the Intel SGX-SDK, and one example of a simple multiplication of two floating-point
numbers. The complex example is an approximation of the number π by calculating arccos(−1) with the acosl
function provided by math.h and the second example is a calculation of 2.1∗3.4. To achieve a maximum pre-
cision, the code utilizes variables of the long double type, which the compiler translates to predominantly
x87 FPU instructions. For completeness, both the minimal C code and the resulting assembly instructions can
be viewed in Appendix A. The enclave was compiled with a recent gcc v7.4.0 with standard compilation flags
under Ubuntu 18.04.1 and with the Intel SGX-SDK v2.7.1. All evaluations were performed on an Intel i5-1035G1.

Table 1 shows the attack in practice by listing the results of an executed enclave with attacker-primed FPU
registers before the ecall into the enclave. For all depicted values, the FPU, CW, and the MXCSR were set to the
desired value via the fldcw and the ldmxcsr instruction, respectively, right before the enclave was entered.
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Illustrated are four FPU groups of possible attack modes available to an ABI poisoning adversary, with the
expected (unpoisoned) default mode highlighted. In the first three FPU groups, the attacker sets the x87 FPU
control word to operate in either single-precision, double-precision, or extended-precision mode. These precision
modes are then combined with each of the four available rounding modes set in both the FPU control word and
the MXCSR register to affect the operation of the x87 FPU as well as SSE instructions. The last FPU group targets
the MMX mode by marking all x87 registers as in-use, as described above, which always yields NaN independent
of the rounding mode. For readability, all computation results are listed with a precision of 10−30 and cut off after
the last digit.

As a first interesting observation, the results of the calculation of π listed in the middle column remain unaf-
fected by the choice of the x87 precision mode. Up to the order of 10−19, the calculated approximation is identical
with the actual value of π across all possible x87 precision modes. Only the rounding mode can degrade the pre-
cision of this single math library calculation in the order of 10−19. Specifically, the rounding modes to nearest
and upward both achieve the baseline precision, while the rounding modes downward and toward zero have a
degraded performance. This example shows that even when relying on standard math libraries, the attacker can
partly degrade the quality of calculations. At the same time, it is evident that although the compiler relied on the
x87 FPU to satisfy the precision requirements of the long double data type, the results remain unaffected by the
modified precision mode. The reason for this is the fact that the acosl library function is internally implemented
using SSE instructions, and hence the actual computation is not performed by the x87 FPU in this case. Listing 3
in Appendix A shows that the compiler-generated code transfers the x87 data into the SSE registers and similarly
retrieves the data after acosl has returned. In summary, the attack surface is somewhat limited whenever the
victim code utilizes library functions that are not compiled to x87 instructions.

The capabilities of an attacker that target victim code. which solely relies on x87 calculations; however, can
be seen in the right column of Table 1. The right column of the table lists the results of the calculation 2.1 ∗ 3.4
which is performed without any external libraries and is, as such, by default compiled into pure x87 instructions
due to its long double data type. Notice that this simple multiplication already experiences a floating-point rep-
resentation error in the highlighted-base mode, which is an inherent consequence of limited-precision numerical
representations. However, the table clearly shows that ABI attackers can significantly magnify the error with
several orders of magnitude. While in the default extended-precision mode, the error for our exemplary multi-
plication lies in the order of 10−19, this error increases to the order of 10−16 in double-precision mode and lastly
to the order of 10−7 in single-precision mode. Observe that for each precision mode, rounding upward yields
the next higher floating-point number that can be represented in the given precision, whereas the other three
rounding modes yield identical results for this particular example. It is important to note that any successive
calculation on the corrupted result in larger applications would be exposed to an ever increasing floating-point
error. In this respect, our example also highlights a remarkable discrepancy: while attentive enclave developers
would aim at utilizing the maximum available precision and minimize the effects of inherent floating-point im-
precisions, the usage of the long double data type for this purpose also exposes the enclave to increased attack
surface for x87 ABI attackers.

The last row finally shows the impact of the MMX attack that always silently replaces the expected outcome
with an incorrect -NaN result. As discussed previously, this error results from the x87 FPU not being able to
determine a usable floating-point register on the register stack and aborting the calculation.

Poisoning RISC-V FPU state. As mentioned in Section 2.4, similar to SSE/x87, the RISC-V FPU has a global
frm control of the rounding mode for C99 compatibility. However, individual floating-point instructions can
also specify the preferred rounding mode. We verified that the Keystone [29] RISC-V research TEE does not
sanitize the state of frm on enclave entry. Furthermore, the respective compiler (gcc 10.2.0) emits instructions
(e.g., fmul.d) that respect the global rounding mode for computations with double values. We developed a
proof-of-concept (using Keystone’s QEMU RISC-V emulation) that performs the multiplication 2.1 ∗ 3.4 inside
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Table 2. Marked Runtimes Were Demonstrated to Not (�) or Only Partially (�) Sanitize

FPU/SSE State, Whereas Empty Symbols (�) Indicate that the Runtime was

Not Vulnerable at the Time of Our Initial Analysis (Nov 2019)

SGX-SDK
∗

OpenEnclave

Graphene

SGX-LKL

Rust-E
DP

Go-TEE
Enarx

Keysto
ne

Exploit � � � � � � � �

Patch 1 xrstor ldmxcsr/cw fxrstor – ldmxcsr/cw xrstor xrstor –∗∗

Patch 2 xrstor xrstor

When applicable, applied and potentially remediated patches are provided
∗Includes derived runtimes such as Apache Teaclave’s Rust SGX SDK [45] (formerly Baidu Rust-SGX

[57]) and Google’s Asylo [22].
∗∗as of April 2021.

a Keystone enclave. The untrusted host sets different rounding modes as for x87/SSE. With this, we reproduced
the results of Table 1 (for “double precision” only).

Furthermore, Keystone also does not cleanse the fflags status bits that indicate whether floating-point ex-
ceptions have been raised: the untrusted host can clear the exception flags, run the enclave, and then test if any
exceptions (e.g., underflow or overflow) were asserted due to the enclaved computations. Thus, if the compiler
does not explicitly check for and trap on floating-point exceptions (the default for RISC-V gcc), this can be abused
as controlled channel, cf. Section 4.

3.3 TEE Runtime Vulnerability Assessment

In order to methodologically assess the prevalence of ABI-level FPU poisoning attack surface in real-world SGX
shielding runtimes, we performed a comprehensive vulnerability assessment of the seven open-source projects
summarized in Table 2. Our selection was motivated by a recent extensive study [53] of popular Intel SGX shield-
ing runtimes, which we extended with two newer runtimes [8, 21] that were not analyzed before. Particularly, we
examined all predominant SGX shielding solutions in use by industry, namely, Intel’s SGX-SDK [25], Microsoft’s
OpenEnclave [38], Fortanix’s Rust-EDP [18], and RedHat’s Enarx [8], as well as three relevant runtimes that were,
at least initially, developed as research projects, namely, Graphene-SGX [48], SGX-LKL [44], and Go-TEE [21].
In addition, as a non-SGX example, we also considered the RISC-V TEE Keystone [29]. This wide selection high-
lights that our ABI-level vulnerabilities apply to both research and production code, emerging safe languages
like Rust and Go as well as traditional unsafe languages like C or C++, and SDK-based secure function interfaces
as well as library OS-based system call shielding systems. Furthermore, the discovered vulnerabilities are not
unique to x86, but can also emerge in other CPU architectures like RISC-V, albeit to a smaller extent due to the
reduced amount of ABI state.

A first conclusion from Table 2 is that prior to October 2019, i.e., before the initial Patch by Microsoft Open-
Enclave, all 7 SGX runtimes were originally vulnerable to the ABI poisoning attacks described in this work.
Indeed, our initial analysis was motivated by a partial ABI hardening patch in OpenEnclave in October 2019,
which subsequently appears to have been picked up by Graphene-SGX developers as well. For the remaining
runtimes, we then performed our initial analysis in November 2019 where we experimentally demonstrated that
the SGX-SDK, Rust-EDP, SGX-LKL, and Go-TEE all similarly lacked any form of FPU or SSE register sanitiza-
tion. We reported these issues and in the case of the SGX-SDK, this can be tracked via CVE-2020-0561/Intel-
SA-00336, which also affects derived runtimes, such as Apache Teaclave’s Rust SGX-SDK [45] (formerly Baidu
Rust-SGX [57]) and Google’s Asylo [22], that build on top of the SGX-SDK.

A second tendency in Table 2 relates to the mitigation strategies applied in the different runtimes. Particularly,
following our recommendations for more principled ABI sanitization, Intel responded to our disclosure by
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patching the shielding runtime with an explicit xrstor instruction that fully initializes the entire processor-
extended state on every enclave entry. This is also the mitigation applied by Enarx3 and Go-TEE. Note that
SGX-LKL is depicted in Table 2 as not to sanitize the FPU/SSE state because of their unmaintained assembly
entry code into the shielding enclave. However, SGX-LKL has been in a migration process in order to utilize
the code base of Microsoft OpenEnclave in favor of self-written assembly stubs. As such, once SGX-LKL is fully
migrated to utilize OpenEnclave, it will inherit the mitigations implemented there.

In response to our disclosure, Rust-EDP adopted the original mitigation strategy of OpenEnclave, which merely
sanitizes the SSE configuration register and the x87 control word through the ldmxcsr and fldcw instructions,
respectively. While this approach appears sufficient at first sight, and avoiding a full xrstor may indeed be
motivated from a performance perspective, we make the crucial observation that fldcw does not clear the x87
register stack and hence cannot protect the enclave against the MMX poisoning attack variants described above.
Specifically, we experimentally demonstrated that on the initially patched Rust-EDP and OpenEnclave runtimes,
we can still forcibly put the processor in MMX mode before entering the enclave and cause the outcome of trusted
in-enclave x87 FPU operations to be incorrectly replaced with NaN values, which are further propagated silently
and may cause application-specific misbehavior. Hence, while the initial patches in these runtimes do severely
reduce the attack surface by cleansing MXCSR and the FPU control word, they fail to fully shield the enclave
application binary from our attacks. To fully rule out MMX attack variants as well, the runtime should minimally
execute an additional emms instruction to place the FPU in the expected x87 mode. The mitigation implemented by
the Graphene developers who used an fxrstor instruction is sufficient to also rule out this followup MMX attack
as it cleanses all state related to the FPU, MMX, XMM, and MXCSR registers. However, in light of our findings, we
explicitly recommend that shielding runtimes adopt the more principled and future-proof strategy of cleansing
the entire processor-extended state through xrstor on every enclave entry. Both OpenEnclave and Rust-EDP
acknowledged the remaining attack surface of an insufficient ldmxcsr/cw mitigation, and our recommended
full xrstor approach was integrated into their respective projects. Microsoft additionally assigned this followup
issue CVE-2020-15107.

Finally, we found and reported4 the issue in Keystone in April 2021. As Keystone is currently a research
prototype and not used in production environments, we included the vulnerability in this article, even though a
patch is not available yet. We note that this issue may not be specific to Keystone only, as any alternative enclave
runtimes on RISC-V would have to properly sanitize the fcsr register as well. Hence, similar to the situation in
the Intel SGX landscape, any additional (closed-source) RISC-V enclave runtimes [33] may be vulnerable to our
attacks as well.

4 CASE STUDY: FLOATING-POINT EXCEPTIONS AS A SIDE CHANNEL

Background. Apart from compromising computations, an adversary can also use the FPU state registers
to obtain side-channel information about floating-point computations inside SGX enclaves. Notably, this side
channel also applies to floating-point operations carried out using the SSE extensions, i.e., with standard compiler
settings and without the special requirement to use the x87 FPU. The base for this side channel are the exception
mask bits that can be set in the MXCSR register right before entering the enclave and the fact that an attacker
can register a custom signal handler for floating-point exceptions (SIGFPE). Crucially, for SGX enclaves, the
signal handler is untrusted code. This is similar to other controlled-channel attacks, e.g., attacks based on page
faults [62], segmentation faults [23], or alignment-check exceptions [53]. Note that in contrast to user-space
code, the exact reason for the exception (e.g., underflow or overflow) is not passed on to the signal handler when

3Enarx is an ongoing project, still under active development, which is only included for completeness here. The specific runtime entry

sanitization code was committed in March 2020, in completion of a longer-standing documented issue.
4https://github.com/keystone-enclave/keystone-sdk/issues/72.
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1 void secret_mul (double input) {

2 double internal = secret * input;

3 // further computations on internal value ...

4 }

Listing 1. Example enclave code vulnerable to secret extraction through a floating-point exception side channel.

triggered from within SGX. However, we show that this can be overcome by only unmasking one exception at
a time and executing the enclave multiple times with the same input operands.

In this section, for the sake of simplicity, we focus on double operands, i.e., the 8-byte IEEE
754 double-precision binary floating-point format [60]. In this case, the smallest normal number is
nmin ≈ 2.2250738585072014 · 10−308 (hex 0x0010000000000000), while the largest subnormal is dmax ≈

2.2250738585072009 · 10−308 (hex 0x000FFFFFFFFFFFFF). Whenever the result of a computation is ≤dmax , an
underflow exception will be triggered. A similar upper bound exists above nmax (≈1.7976931348623157 · 10308)
where overflow exceptions will be thrown. As described in the following, forcing the calculation of a denor-
mal number can be used as a side channel to infer one possibly secret operand of an enclaved floating-point
computation (in this particular example a multiplication) if the other operand is attacker-controlled.

Attack scenario. For simplicity, we first focus on a single multiplication of two floats secret * input, but
note that the method can be extended to multiple such multiplications by recovering the secret operand one-by-
one. We subsequently also show how our technique can be used to partially recover the weights of an in-enclave
neural network implementation.

For our initial proof-of-concept, we created an ecall on Intel SGX-SDK v2.7.1, which multiplies a secret value
with an input. The gcc compiler by defaults generates the SSE instruction mulsd for the multiplication in Listing 1.
Note that the enclave API does not expose the internal result value to the attacker and we merely focus on the
side-channel signal whether an exception was raised or not.

Secret recovery. To recover secret, in the first step, we determine if its magnitude is ≤ 1. This can be achieved
by passing nmin as input: if an underflow exception is raised, |secret| <1, because the result of the multiplication
is less than nmin . In the following, we describe an attack for the case that |secret| < 1, but we verified that a
similar procedure can be used for the other case where |secret| ≥ 1 by leveraging the overflow exception (cf.
Algorithm 2 in Section B). Next, knowing that |secret| < 1, we use binary search to gradually approximate the
secret. More precisely, the attack proceeds as in Algorithm 1: the input is set to 0.5, and if no underflow occurred,
the search continues in the lower half [0, 0.5] and otherwise in the upper half [0.5, 1]. This process is repeated
until the difference between the upper and lower bound is below an attacker-chosen minimal value epsilon.

For our experiments, we set epsilon = 0.00001 · 10−308. For this bound, Algorithm 1 requires a fixed number
of 1,040 invocations of the ecall to recover a secret operand. We ran this algorithm for 1,000 random, uniformly
distributed secrets in the interval [0, 1[, and computed the difference between the actual and the recovered secret.
The histogram of the error is shown in Figure 4. The maximum observed error was 3.667689888908754 · 10−6,
with the average error being 6.2648851729085662 · 10−7.

Neural network weight extraction. Extending the previous example, we can leverage this controlled channel
to recover multiple enclaved multiplication operands, for example, the weights of a simple neural network. Con-
sider an implementation where the weights of the network are secrets stored securely inside an SGX enclave.
The first layer of the network involves multiplying n attacker-controlled inputs xi with secret floating-point
weights wi , where f () is the activation function and b is the bias, to compute an output z of the layer:

z = f

(
b +

n∑
i=1

xi ∗wi

)
.
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Fig. 4. Histogram over the error of the recovered secret for 1,000 samples (x-axis in log scale).

ALGORITHM 1: Binary search algorithm to recover a secret value based on underflow exceptions for operands <1

Result: recovered_secret

low = 0;

high = 1;

while abs(high - low) >= epsilon do

mid = (low + high) / 2;

secret_mul(mid);

recovered_secret = nmin / mid;

if underflow exception raised then
// continue search in upper half

low = mid;

else
// continue search in lower half

high = mid;

end

end

We demonstrate the (partial) extraction of weights for two pre-trained feed-forward neural networks, which
both use a version of the Genann Neural Networks Library [61] modified to run inside an SGX enclave. The
enclave code includes two simple networks—a network that replicates a binary AND operation (cf. Figure 5) and
a classifier based on the iris dataset [15]—with slightly different topologies. The AND network has two inputs, a
single hidden layer with two nodes, and a single output node. The iris network has four inputs, a single hidden
layer with four nodes, and three outputs corresponding to confidence in the three output classes.

Separately, we developed a userspace program that collects user input, instantiates the enclave, and (via the
ecall interface) executes secure inference on the network using the provided arguments. This program also
registers the floating-point exception handler and exits with a non-zero error code if a floating-point exception
is raised within the enclaved code.

An attacker can go input-by-input for the network and execute the binary search procedure downwards (from
an overflow state) and upwards (from an underflow state). By monitoring for raised exceptions and scanning in
the appropriate direction, the threshold between “exception raised” and “valid calculation” again leaks the hidden
operand, i.e., the secret weight. Due to the nature of the two exception sources (underflow and overflow), only
the largest and smallest weights can be recovered using this method, as the program exits as soon as the first
floating-point exception is raised on the largest or smallest weight, respectively.

Special care must be taken for weights that are less ≤ 1, because the underflow binary search only converges
on the nearest order of magnitude and not the true value. The attack is able to adapt to this circumstance by
re-running the scan recursively with a lower bound that grows by powers of 10. Using this method, the weights
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Fig. 5. Structure of the AND network: the green weights are recoverable via our attack, because they are connected to the

inputs and there are only two weights per input. Red weights cannot be recovered.

with largest and smallest magnitude in the input layer can be reliably recovered. A proof-of-concept script that
leverages the userspace program to perform this attack is included in the paper artifact.

In the case of the AND network, the recovery of the largest and smallest weight between each input and each
of the two nodes in the first hidden layer is enough to recover all input weights, as depicted in Figure 5. However,
in the case of the iris network, each input is connected to four nodes in the hidden layer, meaning that only eight
of 16 input weights are recovered. It is worth noting that even though the precise value of any unrecovered
weights remains unknown, it is known that they are all bounded by the largest and smallest weights.

Applicability to real-world models. While stealing an entire network would allow an adversary to perform
unlimited inference, it might also allow them to craft adversarial examples, e.g., in the context of spam filtering,
or, via a model inversion attack [19], recover training data such as private medical data. Though we demon-
strated our attack on a small feed-forward neural network, any topology that directly (without normalization)
connects input nodes to hidden layers (such as Recurrent (RNN), Residual (ResNet), or Long Short Term Mem-

ory (LTSM) networks) is vulnerable to this attack. Depending on the complexity of the architecture, the min/max
of each input weight may not represent a sizeable percentage of the overall weights in the network though this
information could still reduce the task of duplicating or “stealing” a model.

Tramèr et al. [46], propose a so-called “equation-solving attack” for learning the parameters (weights) of a
neural network classifier from API outputs, which include a class labels and confidence scores. As our adversary
has direct access to the network; however, there is no need to interact via an API and the full output of the
model can be obtained directly. Using stochastic gradient decent and a number of queries equal to two times
the number of unknown parameters, Tramèr et al. were able to produce a duplicate model which is over 99.8%
accurate. By leaking weights using our method, the number of unknowns could be reduced, which would both
reduce the time needed to resolve a model and help it converge on a network that is more similar to the original.
Alternatively, assuming the architecture and hyperparameters of the model are known (or recoverable [56, 63]),
it might be possible to train a new model on a similar set of input data with the recovered weights locked, in
effect a shallow form of transfer learning.

Limitations. The attack has certain limitations. First, there is no way to recover the bias weights, because
these are not connected to inputs and thus can not be intentionally over or underflowed by providing chosen
inputs. Therefore, even if the activation function for a node can be ascertained, it is impossible to estimate that
node’s output without the bias’ contribution, which makes propagating this attack deeper into the network
difficult. Another issue is normalization: if the inputs to the network are normalized in any way, it may be
impossible to choose the proper inputs to cause overflow and/or underflow exceptions. Finally, the sign of the
weight is not recovered; only its magnitude is discovered.
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Fig. 6. MLaaS system model with enclaves.

In addition, the position of the recovered largest/smallest weight (in cases where there are more than two per
input) remains unknown. However, note that for SGX, the enclave code can be single-stepped [54], which allows
to exactly pinpoint on which instruction an exception has been raised. This allows us to determine at which
position a recovered weight is located.

5 CASE STUDY: ATTACKING MACHINE LEARNING PREDICTIONS

Background and system model. The core attributes of TEEs are ideally suited for offloading sensitive com-
putations into the cloud. With conventional systems, a sensitive workload needed to either be self-hosted or
entrusted to an external cloud provider that is bound by contracts and confidentiality clauses. Both solutions
require extensive (legal) planning and are attributed with an increased cost compared to the benefit of conven-
tional cloud computing. When utilizing TEEs, on the other hand, a customer can place her sensitive computation
inside an enclave that is executed on the cloud provider’s premises. The TEE will guarantee the confidentiality
and integrity of the performed workload, while the cloud provider will do his due diligence to achieve a high
availability of the paid service to preserve his reputation. Additionally, customers that utilize the service can be
ensured that the cloud provider will not learn the potentially confidential inputs or outputs.

Figure 6 illustrates such a TEE-based cloud computing service: A Machine Learning as a Service (MLaaS)
example of a model provider who gives paid access to his model to customers. In this case study, we assume
that the model provider has spent enough resources on the training of the model to make a direct access of
customers to the model undesirable. The model provider is assumed to train the model in a trusted setting and
then pushes the trained model directly into the enclave that provides the service to customers. Customers then
communicate with the enclave and perform evaluations and predictions of their input without learning the
machine learning model. Additionally, the enclave can guarantee privacy such that neither the model provider
nor the cloud provider learn the customer’s input.

We assume that the cloud provider can behave maliciously as long as his actions stay hidden from the model
provider and the customer.

Experimental evaluation. We base our case study on earlier work from Alder et al. [1] who placed the
Duktape Javascript engine [50] in an Intel SGX enclave and utilized it to provide Machine Learning with the
ConvNetJS Javascript library [27]. This setup allows to provide machine- learning predictions from Javascript
code executed inside an Intel SGX enclave. We adjust this system to prototype a simple service where a user
requests evaluations of her input from a machine- learning model inside the enclave. As a platform for this
service, we utilize a standard exemplary convolutional neural network from the ConvNetJS library that classifies
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Table 3. MNIST Data Set Predictions with the x87 FPU and with SSE for Different Rounding Modes and Precisions

Prediction class count (predicted digit) Average error compared to baseline

Rounding mode Accuracy 0 1 2 3 4 5 6 7 8 9 (SSE, rounding to nearest)

x
87

Si
n

g
le

p
re

ci
si

on

Round to nearest 4% 0 12 14 2 10 32 0 30 0 0 0.176046466527088413256407761764
Rounding down 8% 0 0 100 0 0 0 0 0 0 0 0.167963971736379585886211884826
Rounding up 4% 0 12 14 2 10 32 0 30 0 0 0.176046434092910736302073360093
Round to zero 8% 0 0 100 0 0 0 0 0 0 0 0.167963875521444400140680386357

x
87

E
x
te

n
d
ed

p
re

ci
si

on

Round to nearest 100% 9 14 8 10 14 8 9 14 3 11 0.000000000000000000554406357383
Rounding down 100% 9 14 8 10 14 8 9 14 3 11 0.000000000000000330733402271493
Rounding up 100% 9 14 8 10 14 8 9 14 3 11 0.000000000000000314522247559579
Round to zero 100% 9 14 8 10 14 8 9 14 3 11 0.000000000000000524157807065445

SS
E

Round to nearest 100% 9 14 8 10 14 8 9 14 3 11 0.0
Rounding down 100% 9 14 8 10 14 8 9 14 3 11 0.000000000000000330733402271493
Rounding up 100% 9 14 8 10 14 8 9 14 3 11 0.000000000000000314522247559579
Round to zero 100% 9 14 8 10 14 8 9 14 3 11 0.000000000000000524157807065445

images of handwritten digits from the MNIST dataset into their machine counterpart of 0– 9. We utilize the demo
example to perform the training of a neural network on a trusted machine outside of the enclave and export the
trained classifier to be used by our MLaaS enclave to classify future inputs. Such a training step is equivalent to a
model provider training the neural network in a trusted environment, as it has not been subject to ABI-level fault
injection by our attack yet. With the exported neural network and the ConvNetJS library, the enclave aims at
evaluating customer inputs in a trusted environment. Finally, we simulate the customer with repeated requests
with MNIST input digits to the enclave and measure the reported class and the reported confidence of the neural
network associated with each class. Again, we perform the attack by modifying the FPU, CW, and the MXCSR
directly before entering the enclave. To showcase the potential worst-case impacts of our attack, we consider
two distinct scenarios with different victim enclave binaries created using Intel SGX-SDK v2.7.1: one binary was
generated with default compilation flags and hence uses primarily SSE instructions, whereas the other binary
was generated by additionally passing the -mfpmath=387 compilation flag to explicitly instruct gcc to use the
x87 FPU for floating-point computations.

Table 3 shows the results of 100 input evaluations for all rounding modes when using the SSE, or the x87
FPU in extended or single-precision mode. Evaluations with the x87 double-precision mode are not shown as
we found these results to be identical to runs with the x87 extended-precision mode. All depicted configurations
were executed on the same set of inputs to ensure repeatability. For the highlighted baseline scenario, i.e., SSE
and the default rounding mode of rounding to the nearest value, the trained model expectedly predicts 100%
of the provided digits correctly. When adversely changing rounding modes through the untrusted ABI, small
errors in the order of 10−16 are clearly introduced. Importantly, however, the results indicate that such small per-
turbations are insufficient to affect the predicted digit class and the model still holds the same overall accuracy.
This observation also holds for the x87 victim enclave binary when utilizing the x87 FPU in extended-precision
mode. However, when ABI-level attackers maliciously reduce the FPU to a single-precision mode, the x87 vic-
tim enclave binary can interestingly be coerced into one of two roles. When rounding to nearest or rounding
up, the trained model will simply have a gravely decreased accuracy with only 4% of the given input classi-
fied with the correct digit. Alternatively, when forced to round down or toward zero, the trained model will
predict every given input as the digit 2, regardless of the actual input. The average error in single-precision
mode lies in the range of 10−1, which easily scrambles and rearranges the prediction percentages of each input
evaluation.

Discussion. While the overall effectiveness of this attack was shown to heavily depend on the way in which
the enclave application was compiled, which may not always be under the control of the attacker, the case
study clearly highlights the fallacy of the shielding runtime to protect an ABI-compliant enclaved application
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binary from its untrusted environment. The results especially underline the threat for larger legacy 32-bit [23]
or specialized applications that heavily rely on the x87 FPU, or even just require high precision via the long
double data type that might get compiled to utilize the x87 FPU. Our example MNIST attack illustrates that, for
certain enclaved application binaries, an ABI-level adversary has the potential to inject faults that purposefully
and stealthily disrupt the overall security objective of the outsourced application, without needing to break
any confidentiality or availability guarantees. Furthermore, this attack can stealthily target specific customers
to allow a malicious cloud provider to degrade the neural network performance for specific victims. Such a
degradation in performance may for instance allow the adversary to shift the customer’s favor greatly toward
a competing product or drive away customers from the model provider while the adversary at the same time
would have little to no risk of being detected.

6 CASE STUDY: SPEC BENCHMARKS

To evaluate the theoretical impact of our ABI-level fault-injection attacks on larger and more varied applications,
we perform a larger-scale synthetic attack evaluation on the SPEC-CPU 2017 benchmark programs outside of
Intel-SGX. While it is not straightforwardly possible to run the SPEC benchmark programs inside an SGX enclave,
we argue that the induced faults into floating-point computations are independent of the surrounding execution
environment and a common benchmark will help to better understand the possible impact of our attacks on an
objective baseline computation.

Experimental evaluation. Our experimental setup runs outside Intel SGX and compiles the SPEC suite twice
with gcc v6.2.0, one time with default settings and one time with an additional -mfpmath=387 flag to enforce the
usage of the x87 FPU for a maximum demonstration of the attack’s impact. We then run the reference workload
of the fprate class to generate meaningful evaluation results. The fprate class of benchmarks is explicitly
designed around floating-point calculations and as such forms a relevant candidate to evaluate the impacts of
our attack. It is important to note, that the SPEC benchmark evaluation scripts already account for floating-
point errors by allowing a workload-specific error margin before a benchmark is marked as failed. Similar to
the previous case studies, we perform the attack by executing fldcw and ldmxcsr instructions before executing
the SPEC benchmarks. As such, the attacker performs the same steps as when attacking enclave code as the
execution of the SPEC benchmark can be seen as equivalent to entering the enclave in this respect.

Table 4 shows the benchmarks in the fprate class and a marker indicating whether the benchmark succeeded
or failed for both the default SSE binary, as well as for the x87 binary in single-precision mode. In the highlighted
baseline mode of to-nearest rounding with the SSE, all SPEC benchmarks succeed. When maliciously changing
the rounding mode before execution of the SPEC benchmark; however, multiple tests already fail due to a too
high accumulation of floating-point errors. Furthermore, when considering a simulated maximum-impact attack
on an x87 binary in single-precision mode, the attacker can, depending on the rounding mode, further degrade
floating-point computations and cause even more benchmarks to fail. Under this attack, only four benchmarks
in to-nearest rounding mode or one benchmark in to-zero rounding mode still succeed.

Discussion. To better understand the nature of the induced floating-point errors, we performed an additional
manual analysis of two benchmarks: the 526.blender_r image rendering benchmark and the 511.povray_r ray-
tracing benchmark.

526.blender_r image rendering. Blender5 is an open-source content creation suite which includes the
entire 3D production pipeline. The blender benchmark in Spec 2017 renders a single frame of a scene
from a short film. While the blender benchmark is designed to be resilient against expected floating-point

5https://www.blender.org/.
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Table 4. Benchmarks with SPEC-CPU 2017 Under Compilation with the x87 FPU and with the SSE, both Shown for

Different Rounding Modes

Rounding mode bwaves cactuBSSN namd parest povray lbm wrf blender cam4 imagick nab fotonik3d roms specrand

Si
n

g
le

p
re

ci
si

on

To nearest � � � � � � � � � � � � � �
Downward � � � � � � � � � � � � � �
Upward � � � � � � � � � � � � � �
To zero � � � � � � � � � � � � � �

SS
E

To nearest � � � � � � � � � � � � � �
Downward � � � � � � � � � � � � � �
Upward � � � � � � � � � � � � � �
To zero � � � � � � � � � � � � � �

Listed are all workloads in the fprate test class and their result in the given configuration.

Fig. 7. Composite image of the Blender benchmark in Spec-CPU 2017 under attack by our FPU attacker in x87 single preci-

sion mode when rounding toward zero. Areas in red differ from the expected render image with the zoomed-in area showing

differences visible to the human eye.

perturbations that do not exceed the internal error threshold, we found that the x87 binary in single-precision
mode and with rounding toward zero can lead to subtle-yet-visible quality degradations in the rendered 3D
images.

Figure 7 shows an example rendering with the difference between the expected original and an attacked scene
marked in shades of red. While most of the scene is colored in a light shade of red that already stands for a small
difference between the expected and calculated output, some parts of the screenshot are marked more clearly
such as the framed mountain scenery or the hills to its left. In the zoomed in portion of the framed scenery, it can
be seen that the expected baseline image (left) shows a tree shadow and snow cover on the mountains. With the
attack (right), however, the shadow is missing and the contours of the mountains are lower, making the snow
cover appear to float. It is evident that the visual perturbations between the baseline and attacked rendering
are small, yet the fact that they are visible even for human observers clearly illustrates the potential impact of
insufficient ABI shielding on the integrity of an outsourced enclave rendering service. If these perturbations are
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Fig. 8. Composite image of the Povray benchmark in Spec-CPU 2017. The image shows a comparison of the baseline result

to the result under attack by our FPU attacker in x87 single precision mode when rounding up. The zoomed-in areas highlight

a region where the quality of calculated reflections and raytracing has been visibly degraded.

inserted into a each frame of a sequence of images played back at multiple frames per second, the impact of the
degradation are even more noticeable due to irregularities between frames, visible as a flickering effect. Such an
attack may for instance be relevant when an untrusted cloud rendering provider has an economic incentive to
stealthily degrade the quality of rendered images from a client or when an attacker aims at stealthily inserting
quality degradation for monetary gain such as blackmail.

511.povray_r ray-tracing. POV-Ray6 is an open-source ray-tracing application, which renders 3D images.
The povray benchmark of SPEC 2017 renders a chess board with realistic reflections of other pieces and of
the surrounding environment, including lights. Figure 8 shows a comparison of the original rendered image
with default benchmark settings to the attacked scene under influence of a single precision attacker that rounds
upwards.

Under the influence of the attack, especially in the zoomed-in portion of the benchmark, it is visible that
multiple reflections and specular highlights are non-existent or severely degraded. This is most evident for the
chess pieces of the king and queen, but is also visible for the middle part of the pawns. In all these instances, the
reflection and highlights are almost completely degraded or lost, making this attack arguably more noticeable to
the human eye than the perturbations in the previous benchmark. Similar to the previous blender benchmark,
these perturbations will become more noticeable if they are part of a sequence of images played back at a constant
frame rate.

From the SPEC analysis, we conclude that common applications may widely fail when unexpectedly interfaced
with a malicious ABI and that attacker-induced floating-point errors in larger applications may propagate into

6http://www.povray.org/.
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subtle corruptions of the expected result. The exact impact of such attacks will always be application-specific,
however, and require careful analysis by the attacker depending on the x87 or SSE processor features used in the
victim application.

7 CONCLUSIONS AND LESSONS LEARNED

With the wide availability of SGX in mainstream Intel processors, an emerging software ecosystem of enclave
shielding runtimes has developed in recent years to ease the adoption process and enable developers to largely
transparently enjoy SGX protection guarantees. But despite the considerable advances and developer efforts be-
hind these runtimes, API and ABI-level issues continue to pose a threat to the promise of transparently shielding
enclave applications [28, 53].

In this work, we presented novel ABI-level attacks on the largely overlooked x87 FPU and SSE state that allow
an unprivileged adversary to impact the integrity of enclaved floating-point operations, in terms of the rounding
mode, precision, and silently introduced NaN values. We furthermore explored an innovative controlled-channel
attack variant that abuses attacker-induced floating-point exceptions to partially breach the confidentiality of
otherwise private enclaved floating-point operations. In a comprehensive analysis of this vulnerability space in
seven popular Intel SGX runtimes, developed by both academia and industry, we were able to provide a proof-of-
concept attack for five of them. Moreover, our analysis revealed that two previously patched production runtimes
remained vulnerable to NaN injection, further highlighting the intricacy of fully mitigating this ABI-level attack
surface. While the eventual impact of our FPU poisoning attacks remains intrinsically application-dependent,
we have presented several case studies that illustrate the potential exploitability in selected application
binaries.

The fundamental issue can be mitigated by simply setting the x87 FPU control word as well as the SSE MXCSR
register into known states when entering enclaved execution. Mitigating the followup MMX issue requires an
additional emms instruction to place the FPU in the expected x87 mode. Regarding more principled mitigation
strategies, however, we explicitly recommend that shielding runtimes perform a full xrstor to initialize the
complete processor-extended state whenever the enclave is entered. Although this may come with a slightly
increased cost in performance, we believe that our findings underscore the need for shielding runtimes to move
away from selective register cleansing on an ad-hoc case-by-case basis, in order to more systematically prevent
any orthogonal ABI-level issues that may arise in current or future processor extensions. Six of the seven in-
vestigated enclave shielding runtimes have now opted to perform such a full xrstor or in the case of Graphene
perform an equivalent fxrstor, while SGX-LKL will inherit the xrstor mitigation from Microsoft OpenEnclave
in the future.

In the wider perspective, we were also able to reproduce the attack for the Keystone TEE on RISC-V, despite
its simpler architecture with a reduced instruction set. Our work highlights the challenges of implementing a
high-assurance TEE on top of complex instruction set architectures like x86, with arguably too many neglected
legacy features and strict backwards compatibility. Counterintuitively, however, our work also highlights that
these challenges are not unique to complex instruction set architectures, but that they remain even when utilizing
modern reduced instruction set architectures like RISC-V. In the context of floating-point operations, this can be
attributed to the C99 convention to treat the FPU state as global and controlled by a number of functions—CPU
designs that seek compatibility to C99 are likely to map this into FPU state and control registers.

We argue that, in an era where the research community is increasingly looking into subtle microarchitectural
CPU vulnerabilities [10, 32, 51, 52], the strictly architectural attack surface of today’s complex processor features
remain not sufficiently understood—even if the underlying architectures are using a reduced instruction set. As
such, an important avenue for future work is to further extend and apply specialized symbolic execution tools,
such as TeeRex [12] or Guardian [2], to safeguard against ABI-level vulnerabilities in enclave runtimes.
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APPENDICES

A PROOF-OF-CONCEPT ENCLAVE CODE

This appendix lists the C source code (Listing 2) and compiled assembly (Listing 3) for the benchmark toy example
enclave discussed in Section 3.2 and Table 1. The assembly code in Listing 3 was output by gcc v7.4.0 under
Ubuntu 18.04.1 and the Intel SGX-SDK v2.7.1 using the default compilation flags.

1 #include <stdint.h>

2 #include <math.h>

3

4 long double ecall_acosf(int a) {

5 return acosl(a);

6 }

7 long double ecall_mul(long double a, long double b) {

8 return a*b;

9 }

Listing 2. Code to perform basic floating-point operations inside the enclave.

1 <ecall_acosf >:

2 push %rbp

3 mov %rsp ,%rbp

4 sub $0x20 ,%rsp

5 mov %edi ,-0x4(%rbp)

6 fildl -0x4(%rbp)

7 lea -0x10(%rsp) ,%rsp

8 fstpt (%rsp)

9 callq 4450 <acosl >

10 add $0x10 ,%rsp

11 fstpt -0x20(%rbp)

12 mov -0x20(%rbp) ,%rax

13 mov -0x18(%rbp) ,%edx

14 mov %rax ,-0x20(%rbp)

15 mov %edx ,-0x18(%rbp)

16 fldt -0x20(%rbp)

17 leaveq

18 retq

19

20 <ecall_mul >:

21 push %rbp

22 mov %rsp ,%rbp

23 fldt 0x10(%rbp)

24 fldt 0x20(%rbp)

25 fmulp %st ,%st(1)

26 pop %rbp

27 retq

Listing 3. Compiled assembly of Listing 2.
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B SEARCH ALGORITHM BASED ON OVERFLOW EXCEPTIONS

This appendix lists the additional Algorithm 2 to recover secrets for operands >1. It functions analogous to
Algorithm 1 described in Section 4. We note that for brevity, both Algorithms 1 and 2 use standard floating-point
variables for secret recovery. However, if desired, these algorithm could be likely re-written (although in a less
clear manner) using the binary representation of the double operands instead.

ALGORITHM 2: Binary search algorithm to recover a secret value based on overflow exceptions for operands >1

Result: recovered_secret

// Maximum representable double

max_double = 1.7976931348623157e308;

low = 1;

high = max_double;

cnt = 0;

while cnt < 100 do

mid = low / 2 + high / 2;

secret_mul(mid);

recovered_secret = max_double / mid;

cnt++;

if overflow exception raised then
// continue search in lower half

high = mid;

else
// continue search in upper half

low = mid;

end

end
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