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Abstract. Enclaved execution environments, such as Intel SGX, en-
able secure, hardware-enforced isolated execution of critical application
components without having to trust the underlying operating system
or hypervisor. A recent line of research, however, explores innovative
controlled-channel attacks mounted by untrusted system software to par-
tially compromise the confidentiality of enclave programs. Apart from
exploiting relatively well-known side-channels like the CPU cache and
branch predictor, these attacks have so far focused on tracking side-
effects from enclaved address translations via the paging unit.
This paper shows, however, that for 32-bit SGX enclaves the unacclaimed
x86 segmentation unit can be abused as a novel controlled-channel to
reveal enclaved memory accesses at a page-level granularity, and in re-
stricted circumstances even at a very precise byte-level granularity. While
the x86 paging unit has been extensively studied from both an attack as
well as a defense perspective, we are the first to show that address trans-
lation side-channels are not limited to paging. Our findings furthermore
confirm that largely abandoned legacy x86 processor features, included
for backwards compatibility, suggest new and unexpected side-channels.
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1 Introduction

Most popular operating systems and virtual machine managers have now been
around for multiple decades. During this period, a steady stream of critical vul-
nerabilities has been found in their expansive code bases. These vulnerabilities
continue to be problematic for any application that wishes to do secure compu-
tations on such a platform. In order to shield applications from potentially mali-
cious or compromised system software, a significant research effort has recently
been put into creating Protected Module Architectures (PMAs) [17,23,7,18].
These architectures offer isolated execution for security sensitive application
components, while leaving the underlying system software explicitly untrusted.
With the introduction of its Software Guard Extensions (SGX) [18,1,6], Intel
brought their implementation of a PMA to the mass consumer market. Conceived
as an extension to the x86 instruction set architecture, SGX provides strong
trusted computing guarantees with a minimal Trusted Computing Base (TCB),
which is limited to the protected module or enclave, and the processor package.



Recent research [28,22,26,16,27,19,25] has shown, however, that the combi-
nation of SGX’s strong adversary model and reduced TCB allows a privileged
attacker to create high resolution, low-noise controlled-channels that leak in-
formation about the enclave’s internal state. More specifically, enclave programs
still rely on the untrusted operating system to manage shared platform resources
such as CPU time or memory. Within SGX’s adversary model, an attacker may
attempt to leverage control over these resources to infer enclave secrets. Notably,
Xu et al. [28] first showed how to recover rich information such as full images
and text from a single enclaved execution by carefully restricting enclave page
access rights and observing the resulting page fault sequences. Since their semi-
nal work, more conventional side-channels such as the processor cache [11,19,2]
and branch prediction unit [16] have also been improved in the context of SGX.

Considering that innovative page fault attacks [28,22] only recently became
relevant in a kernel-level PMA adversary model, they have received considerable
attention from the research community. A good level of understanding of page
table attack surface has since been built up by (i) exploring stealthy attack vari-
ants [26,27] that abuse other side-effects of the page table walk, (ii) developing
software-based defense mechanisms [21,5,24,4] for off-the-shelf SGX processors,
and (iii) designing fortified PMAs [7,9] that rule out these attacks at the hard-
ware level. This paper shows, however, that enclaved memory accesses in 32-bit
mode not only leak through page tables, but also through the largely overlooked
x86 memory segmentation unit. A feature that is for the most part disabled on
64-bit systems, but regains relevance when considering 32-bit enclaves. We ad-
vance the understanding of address translation controlled-channels by showing
that under certain assumptions, attackers can leverage control over segment lim-
its to infer byte-granular memory access patterns from an enclaved execution.
Furthermore, our findings illustrate that the backwards compatibility require-
ment of modern x86 processors suggests new and unexpected side-channels stem-
ming from largely abandoned legacy features. In summary, the contributions of
this paper are:

– We show how for 32-bit enclaves the x86 segmentation unit can be abused as
a novel, noise-free side-channel to reveal precise byte-granular control flow
and instruction sizes in the first megabyte of a victim enclave.

– We explain how for the remainder of the enclave address space, segmentation
attacks can infer memory accesses at a conventional page-level granularity.

– We implement our attacks and practically demonstrate their enhanced pre-
cision by defeating a recently proposed branch obfuscation defense.

– We reveal an undocumented Intel microcode update that silently blocks our
attacks without updating the processor’s security version number. Only the
very recent Spectre CPU updates can adequately prevent our attacks.

2 Background

We first present Intel SGX and our attacker model, before introducing the nec-
essary background on x86 memory organization.
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Fig. 1: On x86 logical addresses pass through the segmentation and paging units
respectively. The resulting physical address is additionally sanitized by SGX.

2.1 Intel SGX and Adversary Model

Recent Intel processors include an architectural extension called the Software
Guard Extensions (SGX) [18,1,12] which bring strong, processor-enforced con-
fidentiality and integrity guarantees for protected software modules called en-
claves. SGX enclaves live inside a conventional OS process, and span a contiguous
virtual address range (ELRANGE) for their protected code and data. The proces-
sor’s memory access control logic takes care to block any access to ELRANGE
from outside the corresponding enclave, regardless of the current CPU privilege
level. Furthermore, to prevent active memory mapping attacks [6] performed by
a kernel-level attacker in control of page table mappings, the processor verifies
that every physical enclave address is accessed via the expected virtual address.

SGX includes several new x86 instructions to switch the processor in and
out of enclave mode. EENTER allows to transfer control to a specific point in the
enclave, while its counterpart EEXIT returns control flow back to untrusted mem-
ory. In case of an interrupt or fault during enclaved execution, an Asynchronous
Enclave eXit (AEX) occurs. Much like leaving an enclave, AEX saves the en-
clave’s state to later be resumed, while again clearing any processor state that
may leak information. After the reason for the interrupt has been serviced, the
enclave can be resumed using the ERESUME instruction.

SGX considers even the kernel as potentially malicious. Our attacks assume
a less powerful attacker; we show that user-level capabilities suffice to control
the segmentation unit. However, as will be indicated in our attack descriptions,
we make use of a secondary framework to execute our attacks. While these are
often interchangeable, some require a more privileged attacker. In case such a
secondary framework is chosen, the attacker model should be upgraded accord-
ingly. In general, we also assume the attacker has access to the enclave’s object
code, unless explicitly stated otherwise.

At the system level, we focus exclusively on 32-bit enclaves, for segmentation
is practically disabled in 64-bit mode. Furthermore, as discussed in more detail
in Section 5, we assume the processor runs one of the vulnerable microcode
versions listed in Appendix A.

2.2 x86 Memory Management

To enable SGX enclaves to be easily integrated in legacy applications, they live
in the same address space. Unfortunately this implies that the architectural com-
plexities of x86 memory organization play a crucial role in assessing SGX’s isola-
tion properties [6]. Memory management in the IA-32 architecture [12] proceeds
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Fig. 2: The segmentation unit checks that each referenced segment adheres to
the segment’s limitations described in the descriptor table

via two distinct hardware components, visualized in Fig. 1. Application software
uses logical addresses, which are first passed through a dedicated segmentation
unit to yield linear addresses as an input to the paging unit. SGX finally enforces
some (limited) additional checks on the resulting physical addresses.

The Segmentation Unit. Segmentation serves as a way to divide the logi-
cal address space into segments. The x86 hardware provides 6 segment registers
(%CS, %DS, %SS, %ES, %FS and %GS) to directly reference segments. Each ma-
chine instruction either explicitly references a segment register, or one is im-
plied. Pushing or popping data from the stack, for example, always references
the stack segment (%SS). Similarly, the instruction pointer (%eip) is always rel-
ative to the code segment (%CS). Move instructions to memory always imply the
data segment (%DS). Segments %FS and %GS are typically used for thread-local
storage.

Figure 2 displays how the segmentation unit operates during the execution
of an instruction. For each segment referenced, its segment descriptor is located
in the Local Descriptor Table (LDT) or Global Descriptor Table (GDT). Each
descriptor records the base (linear) address of the segment, its limit and the
associated access rights (i.e., read, write, execute). When the instruction does not
violate the access rights to the segment, and the logical address remains within
the segment limits, the linear address is calculated by adding the segment base
to the logical address. Otherwise a General Protection fault (#GP) is issued.

In 32-bit mode segment descriptors measure only 64 bits in size. This is too
limited to store 32-bit base and limit addresses, plus other attributes (e.g., access
rights). To resolve this issue, only a 20-bit limit field is used in combination with a
special granularity bit. When this bit is clear, limits can be specified up to 220−1
(1 MiB) at byte granularity. Otherwise the limit field is interpreted at 4 KiB
granularity, allowing the logical address space to reach (220 − 1) ∗ 4096. As the
12 least significant bits of this limit are not checked, the full 232 address space
can be accessed [12, §5.3].

Over time, segmentation has evolved to become more and more obsolete. In
64-bit mode, the processor ignores the segment descriptor registers for %DS, %SS
and %ES, limit checks are no longer performed and the base of %CS is always
treated as zero. [12, §3.4]



The Paging Unit. After the segmentation unit translated a logical address to a
linear one, the paging unit translates it in turn to a physical address. It does so by
dividing the linear address space in fixed memory regions called pages. The base
address of each referenced page is located in an in-memory page table structure
maintained by the operating system. After the page table walk, the processor
obtains the physical page base address, plus the associated access rights and
other attributes (e.g., whether the page is present or has been accessed before).

3 Segmentation-based attacks

Intel SGX enclaves execute in the same logical address space as their host pro-
cess. Just like logical addresses used in the untrusted (legacy) part of a process
pass through the segmentation and paging unit, so do the addresses referenced
during SGX enclave execution. These address translation units are under com-
plete control of the potentially malicious kernel. To prevent an attacker from
mistranslating enclave addresses, Intel SGX applies additional checks as a final
step (see Fig. 1). During enclave creation, the processor records for every enclave
page the logical address they should be loaded at and to which physical address
they should be translated to. The kernel is still in control over all memory al-
location decisions. She can for example decide to evict enclave pages from main
memory, but the hardware will check whether the memory translation units have
been set up correctly.

Unfortunately, SGX’s untrusted page table design also opens up powerful
controlled-channel attacks. Early page fault-driven attacks [28,22] and more re-
cently improved fault-less page table-based attacks [26,27] show that paging
mechanisms can be abused by an attacker to leak enclave memory accesses at
page-level granularity. When these memory accesses are secret-dependent, they
may reveal sensitive information. To the best of our knowledge, academic re-
search has only looked into leveraging the paging unit. For an SGX-capable pro-
cessor in 32-bit mode however, the segmentation unit also interposes on every
enclaved address translation.

3.1 Interaction Between Segmentation and SGX

The Intel Programming Reference Manual [13] states that “enclaves abide by
all the segmentation policies set up by the OS”, but several sanity checks on
the segmentation policy have been put in place. For example, it is enforced
that the %CS, %DS, %SS and %ES registers point to segment descriptors which
have their base address set to zero, as any other value could maliciously change
the interpretation of enclaved code. Trusted in-enclave segment selectors and
descriptors for the %FS and %GS segments are saved and replaced on enclave
entry to facilitate access to the enclave’s thread local storage. This means that
the %FS and %GS segments are immune to the attacks described in this paper, for
any modifications made by an attacker will not propagate to enclaved execution.



1 void vote(enum candidate c) {
2 if (c == candidate_a)
3 handle_candidate_a();
4 else
5 handle_candidate_b();
6 handle_total_votes();
7 return;
8 }
9

10 void handle_candidate_a() {
11 candidate_a_votes++;
12 }
13
14 void handle_candidate_b() {
15 candidate_b_votes++;
16 }
17
18 void handle_total_votes() {
19 total_votes++;
20 }

Fig. 3: Example enclave with secret dependent control transfer.

We make the crucial observation that, while the Intel SGX hardware forces
segment descriptor base addresses to be 0x0, their limit is still under the control
of an attacker. Reducing the limit of a segment, will cause a general protection
fault whenever an attempt is made to cross it. In Section 2.2 we have discussed
that segment limits can be specified at byte-granularity up to the 1 MiB bound-
ary. Limits past this bound can only be specified at 4 KiB granularity.

3.2 Attack #1: Page Granular Attacks

We will first explore the possibilities when the granularity flag is set. As said
before, this will allow to leak information about memory accesses at page gran-
ularity. When compared to the earlier explored page fault-driven attacks, there
is one fundamental difference. Restricting page access rights makes small chunks
of memory inaccessible for the processor, while leaving others completely un-
affected. Segmentation presents a rougher, binary condition; either a memory
location is within the segment or it is not. In other words, moving the segment
limit not only influences a single page, but all pages that are now above the
segment limit.

It is this difference that presents an interesting challenge. We present a run-
ning example code snippet in Fig. 3 with some sample enclave code that re-
presents a simple voting mechanism. We assume the vote being cast is secret
and that the attacker wishes to derive its value. For simplicity we assume all
functions of interest are aligned on their own pages. To illustrate the problem,
imagine the vote function being executed, with the segment limit taken as in-
dicated on Fig. 3. Now assume that the attacker observes a general protection



fault. Clearly, this may occur when the vote function was called for candidate
B, as the handler for that candidate is outside of the segment. However, a sec-
ond possibility also exists where the vote is for candidate A. Here, control will
be passed back to the vote function, which in turn calls the total vote handler,
causing a general protection fault as well. The two general protection faults will
be identical to an attacker, who is now unable to derive any information. To
solve this, we combine the segmentation unit with a secondary framework. In
most of our examples, we use the page-fault side-channel as an extra layer of
information for simplicity of illustration. This side-channel then functions as an
oracle to indicate to the attacker whether the memory access has passed the seg-
mentation stage. The exact same can also be achieved by monitoring the page
accessed bit [26,27]. Alternatively, we can make sure the enclave takes just one
step, for which a single stepping interrupt framework such as SGX-Step [25] can
be used.

Since this first attack has the same granularity as the original page fault
driven attacks, it would not be useful in this context to use that same side-
channel as the secondary framework. At the same time, replicating previous page
table-based attacks results [28,22,26,27] without using the paging unit demon-
strates that state-of-the-art defenses that move the page tables into enclave
memory [8,9] may not suffice for 32-bit enclaves. Because of this, we illustrate
how we can replicate page fault-driven attacks using solely the segmentation
unit and SGX-Step, without the need to alter page table entries.

Reconsider the running example of Fig. 3, where we wish to extract which
candidate was voted for. Initially, we set the limit of %CS at 0x3000, making
pages of both candidate handlers inaccessible. The attacker is then guaranteed
to observe a general protection fault when the enclave is single stepped until one
of the handlers is called. At this point, the attacker can move the segment limit
to also include the handler for candidate A (limit at 0x4000). When the enclave
is resumed, the single-stepping framework makes sure at most one instruction is
executed, after which two situations can be distinguished:

1. No fault is observed, which indicates that the vote was for candidate A.
Control is successfully passed to the handler for that candidate, which is
located within the segment.

2. A second general protection fault is observed. This indicates that the vote
was for candidate B, as only a call to this function crosses the segment
boundary.

3.3 Precise Byte Granular Attacks

In this section, we present the most fine-grained attacks that are possible using
the segmentation unit. Keep in mind that these are also the attacks with the
most limitations. Again, they are applicable to 32-bit enclaves only, where the
region of interest to the attacker is located within the first megabyte of the
victim enclave’s memory layout.

The segmentation and paging unit are closely integrated. While conceptu-
ally they can be regarded as executing one after the other at the architectural



Table 1: Segmentation plus paging configurations and whether they generate a
General Protection fault (#GP) or Page Fault (#PF).

eip ≤ limit page access rights (eip + inst size) ≤ limit Fault type

7 - - #GP1

3 3 7 #GP2

3 7 - #PF

level (see Fig. 1), we found this to be inaccurate at the microarchitectural level.
We will show that by carefully setting segment limits and page rights, detailed
information about the control flow and even instruction sizes leak to an attacker.

Combining the Segmentation and Paging Units. Only when an instruc-
tion is completely contained within the limits of the code segment, it may ex-
ecute. When the instruction falls outside the code segment’s limit, a #GP is
generated. An interesting edge case occurs, however, when a multi-byte instruc-
tion starts within the code segment, but passes its boundaries. In that case, the
fault thrown depends on the paging unit: only when the page the instruction
is located on has execute permissions, a #GP is thrown. Otherwise, the paging
unit generates a Page Fault (#PF). This behavior is summarized in Table 1.

We conclude that the segmentation and paging units verify access rights
and limits in parallel at the microarchitectural level. We suspect that the exact
outcome may differ between different processor generations and models, but
always found stable outcomes on a single machine.

Attack #2: Inferring Instruction Sizes. Previous enclaved execution side-
channel attacks [28,26,16,19,2] rely on static analysis of the victim enclave’s
source code. In some cases however, the object code of the enclave may not
be available to the attacker or it may be randomized on enclave load [20]. If
so, it may be of interest to the attacker to learn as much as possible about the
instructions that are being executed [15]. For example, when code is randomized,
this information may reveal the location of crucial functions by comparing the
leaked outline to the non-randomized object code. To this end, we contribute a
novel approach to infer enclaved instruction sizes by leveraging the segmentation
and paging units and applying the techniques mentioned before.

To infer instruction sizes, we retake the idea of having two layers of infor-
mation: the segmentation and the paging unit. An intuitive approach would be
to take the segment limit at the start of an instruction, while revoking the ac-
cess rights to the underlying page. Surely, this leads to a first general protection
fault, as the instruction falls outside of the segment. In consecutive steps, we
may gradually increase the segment limit with a single byte, until we observe
a page fault. This would imply that the whole instruction is now within the
segment, thus also revealing the instruction size. However, as explained above,
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Fig. 4: Fault sequence attack to infer instruction size (three vs. two bytes).

the x86 segmentation and paging units work in parallel at the hardware level.
We experimentally confirmed that including the first byte of an instruction into
the segment is enough to activate the paging unit. As a result, as long as the un-
derlying page access rights are revoked, a page fault will be reported regardless
of instruction size.

Our practical attack therefore combines information leakage from both the
paging and segmentation units. Figure 4 illustrates how an attacker can distin-
guish an exemplary three-byte instruction from a two-byte one. Initially, after
interrupting the enclave before the instruction of interest, we set the code seg-
ment limit to include two bytes of the instruction about to be executed, and
assign read/write/execute permissions to the underlying page. Next, the en-
clave is continued through the ERESUME instruction, and we observe a general
protection fault #GP1 or #GP2, depending on whether the code segment limit
violation was caused by either the current or the next instruction.1 At this point,
however, the attacker has no way of distinguishing #GP1 and #GP2, as both
show up as identical general protection faults raised by the segmentation unit.

To overcome this challenge, we introduce the notion of fault sequence attacks
as a novel generalization of the page fault sequences originally presented by Xu et
al. [28]. That is, before resuming the victim enclave a second time, we configure
the code segment limit to include the first byte of the instruction of interest and
revoke access rights to the underlying page. According to Table 1, we now only
observe a #GP when the secret in-enclave instruction pointer falls outside of
the code segment. In case the enclaved instruction was larger than two bytes, on
the other hand, the instruction pointer was not incremented and a #PF will be
observed since the first byte of the instruction is included in the code segment.
As such, our approach observes the combined sequence of general protection and
page faults to infer the secret in-enclave instruction pointer.

1 Note that we assume here that the next instruction is located immediately after
the current one in memory. We explain in the next section how segmentation-based
attacks can infer secret target addresses in case of jump instructions.



void foo(unsigned int secret) {
if (secret)

asm __volatile__("nop");
else

asm __volatile__("nop");
}

1 push %ebp
2 mov %esp,%ebp
3 cmp $0x0,0x8(%ebp)
4 je 7 <foo+0xc>
5 nop
6 jmp 8 <foo+0xd>
7 nop
8 pop %ebp
9 ret

Fig. 5: Using byte-granular segment limits, we can infer very precise control flow.

Attack #3: Inferring Branch Target Addresses. When we are able to set
segmentation limits with a byte-level granularity, we can infer much more fine-
grained control flow than page-unit-based attacks [28,22,26,27]. Consider the C
code of Figure 5 and its translation to assembly. Even though the condition of
secret results in the execution of only a few different instructions, we are able
to infer which branch is taken and thus the boolean value of secret.

An attacker could first interrupt enclave execution by retracting the access
rights of the page on which the “foo” function is located. Next, the page ac-
cess rights can be restored, while lowering the segment limit to exclude any
instruction past line 4 in the assembly listing. Placing the segment limit at this
address excludes both control flow branches while just including the je (i.e.,
“jump equal”) instruction.

Regardless of the value of secret, a general protection fault will occur when
the enclave is resumed. When secret evaluates to false, the cmp (i.e., “compare”)
instruction on line 3 will have set the equal flag. Executing the je instruction
on line 4 will then result in a #GP fault as the jump destination crosses the seg-
ment boundary. When the enclave is resumed after the fault is handled, another
attempt will be made to execute the je instruction.

Alternatively, the secret evaluates to true. In that case the jump will not be
taken. A general protection fault is issued as line 5’s nop (i.e., “no-operation”)
instruction is (completely) located past the code segment’s bounds.

To distinguish the two cases, we again rely on the paging unit and leverage
the differences in microarchitectural behavior when an instruction is located in-
or outside of the code segment on a non-executable page. Specifically, we revoke
access rights to the underlying page, while leaving the segment limit untouched.
When the enclave is resumed, two cases can occur:

– General protection fault is issued: This implies that the instruction
must be located past the limits of the code segment. Hence, the enclave
attempted to execute the nop instruction on line 5. This could only occur
when secret was true and the cmp instruction cleared the equal flag.

– Page fault is issued: This is similar to non-branching instructions that are
located on a non-executable page within the code segment. Conditional jump
instructions will also lead to a #PF when they are located within the code



segment, even when their target points outside the code segment. Hence,
we can derive that the je instruction attempts to continue execution at its
specified target. This implies that the cmp instruction cleared the equal flag,
and thus secret was false.

The above mechanism only works when targeting forward jump instructions.
With backward jumps, execution will branch within the segment and another
approach is required. We discuss this in more detail in the following section.

4 A Practical End-to-End Attack Scenario

In this section, we present a practical attack scenario that exploits the increased
attack surface stemming from the x86 segmentation unit. Specifically, we show
how the ability to infer precise byte-granular control flow information (attack
variant #3) defeats state-of-the-art branch prediction hardening techniques.

Recent research on branch shadowing attacks [16] demonstrated that fine-
grained enclave-private control flow leaks through the CPU-internal branch tar-
get buffer. This work also included a compile-time defense scheme called Zigzag-
ger. The key idea, illustrated in Fig. 6, is to obfuscate secret-dependent target
addresses via an oblivious cmove (i.e., “conditional move”) instruction,2 fol-
lowed by a tight trampoline sequence of unconditional jumps that ends with a
single indirect branch instruction. Zigzagger’s security argument relies on the
observation that (i) the branch shadowing attack in itself cannot directly in-
fer the target address of the indirect branch at zz4, plus (ii) recognizing the
unconditional jumps zz1 to zz3 becomes considerably more challenging when
rapidly jumping back and forth between the instrumented code and the tram-
poline. Previous research on precise interrupt-driven attacks [25] has shown that
condition (ii) is insufficient for an SGX attacker that can reliably single-step
enclaved execution. To date, however, no practical attack demonstration against
Zigzagger-instrumented code has been presented. We show that, when the hard-
ened code lives in the first megabyte of a 32-bit victim enclave, condition (i)
additionally does not hold, for general protection faults deterministically reveal
the secret-dependent indirect branch target address.

We attack the Zigzagger defense by combining our segmentation attacks with
SGX-Step [25]. We first revoke access rights for the page on which the Zigzag-
ger code is located. This provides us with a starting point where we can set
up our attack. Initially, we want the instrumented code to execute up to the
secret dependent jump in zz4. As the Zigzagger trampoline is located above the
instrumented code in memory, we can achieve this by lowering the code segment
limit to exclude zz4 (limit A in Fig. 6). Once page access rights have been re-
stored, the enclave is resumed, after which a general protection fault is observed
when execution reaches zz4. At this point a secret dependent jump is about to
be made. Note that with segmentation alone, determining which branch will be

2 The cmove instruction packs a condition and move into a single instruction. The
move is only performed when the equal flag in the processor’s status register is set.



b0:   lea b1, %edx
      lea b2, %ecx
      cmp $0, a
      cmove %ecx, %edx
b0.j: jmp zz1
b1:   nop #<code1>
      lea b5, %edx
b1.j: jmp zz2
b2:   lea b3, %edx
      lea b4, %ecx
      cmp $0, b
      cmove %ecx, %edx
b2.j: jmp zz3
b3:   nop #<code2>
      lea b5, %edx
b3.j: jmp zz4
b4:   nop #<code3>
b5:   nop #<code4>

zz1: jmp b1.j

zz2: jmp b2.j

zz3: jmp b3.j

zz4: jmpq *%edx

Zigzagger
trampoline

if (a!=0){
  <code1>
}
else if (b!=0){
  <code2>
}
else{
  <code3>
}
  <code4>

Original code

limit A

limit B

Fig. 6: Example code snippet [16] protected by Zigzagger. The secret branch
address in edx is obfuscated with cmov and a tight jmp trampoline sequence.

taken is not possible, as lowering the segment limit to exclude any of the two
secret dependent branches also excludes the jump instruction. This is where we
require a secondary framework. By using SGX-Step’s precise interrupt capabili-
ties we can make sure that if we reset the segment limit and resume the enclave,
at most one instruction is executed. The interrupt can also arrive early, however,
after which a zero-step is taken meaning no enclaved instructions are executed.
Because of this, the attacker should verify on the next interrupt whether the
jump in zz4 has executed. To do this, we revoke access rights to the page on
which the Zigzagger code is located, as well as lowering the segment limit to
exclude zz4 (limit A in Fig. 6). Next, two types of faults can occur:

– #PF: The current instruction is within the segment, as we can pass the
segmentation stage. A page fault occurs because the access rights for the
underlying page have been revoked.

– #GP: zz4 is still being executed, the indirect branch instruction is outside
of the code segment, causing a general protection fault. This indicates that
the interrupt arrived too early, causing a zero-step. In this case, we can
simply retry the single-stepping process above.

Once it has been established that the jump has been executed, we can execute
a final test to see which one of the branches has been jumped to. We keep
page access rights revoked, but lower the segment limit to now also exclude all
Zigzagger code from b2 on (limit B in Fig. 6). When the enclave is resumed,
again two types of faults may occur, following the same pattern as above:

– #PF: The current instruction is within the code segment. Execution is at
b1, also indicating that a is not equal to 0.

– #GP: The current instruction is now outside of the code segment. This
indicates that execution is at b2 and a is equal to 0.



To evaluate our attack, we create an experimental setup where the enclaved
Zigzagger code is executed 1000 subsequent times, with random values for the
secret a. Our attack was able to correctly infer the secret branch target address
in the vast majority (98%) of those runs. For the other runs, our 32-bit SGX-
Step port did not interrupt the victim enclave early enough. We are confident,
however, that our 32-bit port could be further fine-tuned to uphold the guarantee
that no more than one instruction is executed before an interrupt. This would
eliminate misses of the attack window to achieve a 100% success rate, at the
expense of more interrupts arriving too early.

5 Discussion and Mitigations

Our work shows that for 32-bit enclaves, the attack surface from address trans-
lation is not limited to paging, but also encompasses the often overlooked x86
segmentation unit. This finding may have profound consequences for state-of-
the-art defenses [8,9] that move page table memory out of reach of an attacker.
Indeed, we showed that page-granular access patterns can be revealed without
altering page table entries (attack variant #1). Moreover, we demonstrated that
memory accesses in the first megabyte of a 32-bit enclave are additionally vul-
nerable to very precise byte-granular segmentation-based attacks. We showed
how this ability (variant #3) can be abused to directly circumvent innovative
control flow obfuscation hardening techniques [16], and can be leveraged to in-
fer instruction sizes (variant #2). The latter may in turn break fine-grained,
in-enclave address space layout randomization techniques [20].

Our attacks are restricted to 32-bit enclaves only, as x86 processors prac-
tically disable segmentation in 64-bit mode. At this point in time, it is hard
to estimate how wide-spread 32-bit enclaves are, or eventually will be. SGX is
still a developing technology and only time will tell whether people wish to en-
clave their legacy 32-bit software. While this assuredly limits the applicability of
segmentation-based attacks, it also confirms an important hypothesis. Namely,
that supporting 32-bit enclave software in the interest of backwards compatibility
may introduce unexpected security vulnerabilities – as has been suggested be-
fore [6]. Exploring such legacy aspects could furthermore bring valuable insights
for the design and verification of novel hardware-software PMA co-designs [7,10].
As such, we encourage further research to explore the additional attack surface
stemming from enclave interaction with legacy x86 features.

While developing our attack framework, we found that recent Intel microcode
updates silently address segmentation-based attacks against 32-bit enclaves. Re-
markedly, we could not find any official Intel reference that documents this
behavior, and can only hypothesize on the extra security checks. Specifically,
we found that the patched EENTER/ERESUME instructions now immediately fault
whenever any of the segment limits fall within ELRANGE. While this effectively
prevents all attack variants #1 to #3, we confirmed that the current solution still
leaves (limited) segmentation-based attack surface. That is, an adversary can
still detect the use of a particular segment by setting the segment limit to ex-



clude the enclave base address, and observing a general protection fault whenever
the segment is accessed during the enclaved execution. Since %CS/DS are always
referenced on enclave entry, and %FS/GS are loaded from a trusted in-enclave
data structure, only the use of %SS/ES can be established in this manner.

We had to fall back to manual testing to identify vulnerable microcode ver-
sions. Our results are summarized in Appendix A. As a crucial observation,
however, we found that the relevant microcode updates do not increase the
CPU Security Version Number (CPUSVN), which reflects the processor’s TCB
measurement for local and remote enclave attestations [1]. Importantly, since
SGX’s attacker model assumes a potentially malicious kernel, microcode revi-
sions that do not increase CPUSVN can be silently rolled back without alerting
the victim enclave or remote stakeholder. Only the very recent Spectre [3,14]
microcode patches increase CPUSVN and adequately prevent our attacks. Our
findings therefore provide additional evidence that (32-bit) enclave attestations
with a pre-Spectre CPUSVN should be considered untrustworthy.

6 Conclusion

Recent research on Intel SGX side-channel attacks has focused on the paging
unit, caches and branch target buffer. In this paper we have looked into a previ-
ously unexplored hardware component: the segmentation unit. We found that for
32-bit enclaves, segmentation-based attacks may reveal security sensitive infor-
mation. By combining microarchitectural behavior originating from the interplay
between the IA-32 segmentation and paging unit, our generalized notion of fault
sequence attacks can infer very detailed information. When a 32-bit enclave uses
the first 1 MiB of its address space, fine-grained control flow plus instruction
sizes can be leaked to an attacker. We furthermore showed how segmentation-
based attacks additionally reveal memory accesses past the 1 MiB boundary at
a conventional page-level granularity.

We found that Intel has silently patched segmentation-based enclave attack
surface, but without updating the CPUSVN number. This implies that kernel-
level attackers are able to rollback the microcode revisions unnoticed, until SGX
remote attestation schemes reject attestation reports of processors with old mi-
crocode revisions. Only with the very recent microcode patches that address the
Spectre attacks, will the CPUSVN number be increased and exploitation of the
segmentation unit be adequately prevented.

Responsible Disclosure and Availability

We responsibly disclosed our results to Intel and a microcode patch has been
distributed. To ensure the reproducibility of our results, and to encourage future
research that explores 32-bit enclave vulnerabilities, we have made the full source
code of our segmentation attack framework, 32-bit SGX-Step port, and SGX
SDK runtime modifications publicly available.3

3 https://distrinet.cs.kuleuven.be/software/off-limits/

https://distrinet.cs.kuleuven.be/software/off-limits/
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A Vulnerable Microcode Versions

Only very recently, Intel provided microcode revisions to foil our segmentation-
based attacks. We tested the following microcode revisions for our Skylake ma-
chine:

version release date CPUSVN vulnerable
0x1E unknown 020202ffffff00000000000000000000 Yes
0x2E unknown 020202ffffff00000000000000000000 Yes
0x9E unknown 020202ffffff00000000000000000000 Yes
0x4A unknown 020202ffffff00000000000000000000 Yes
0x8A unknown 020202ffffff00000000000000000000 Yes
0xBA April 9th, 2017 020202ffffff00000000000000000000 No
0xC2 November 16th, 2017 020702ffffff00000000000000000000 No
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