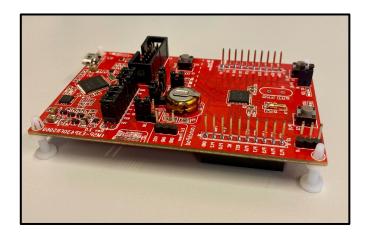
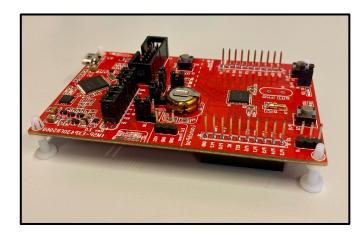
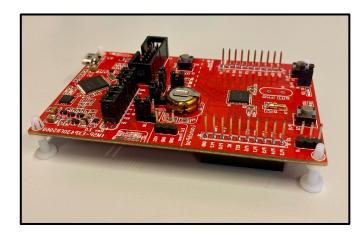
PenIPE: An Extensible Memory Isolation Framework for Microcontrollers

Marton Bognar, Jo Van Bulck


DistriNet, KU Leuven, Belgium @ EuroS&P (July 3rd, 2025)

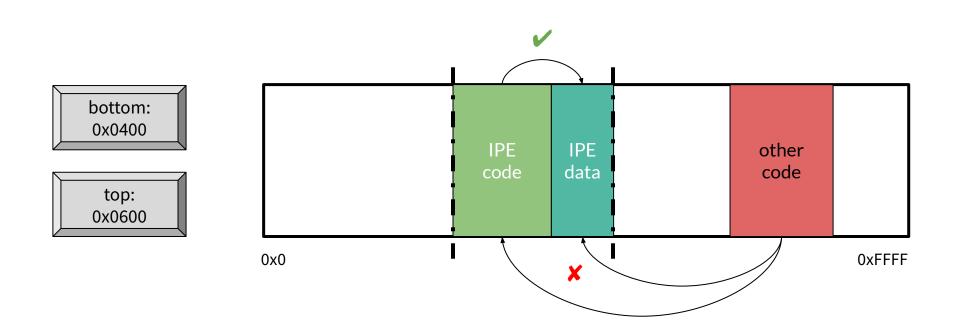


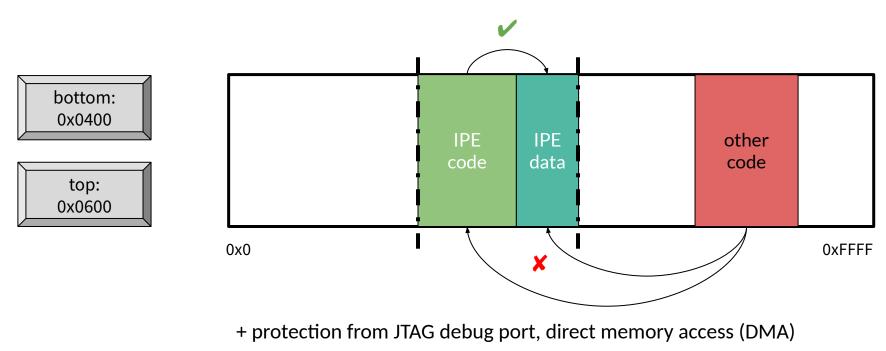
Texas Instruments MSP430 microcontroller


• Low-power microcontrollers

Texas Instruments MSP430 microcontroller

- Low-power microcontrollers
- FRAM edition (2014) with <u>security features:</u>
 - Physical tamper protection
 - Hardware AES cryptographic unit
 - Memory protection unit (MPU)
 - Intellectual Property Encapsulation (IPE)


Texas Instruments MSP430 microcontroller


- Low-power microcontrollers
- FRAM edition (2014) with <u>security features:</u>
 - Physical tamper protection
 - Hardware AES cryptographic unit
 - Memory protection unit (MPU)
 - Intellectual Property Encapsulation (IPE)

"The IPE module protects a programmed portion of memory from read or write access from anywhere outside of the IP Encapsulated area, even by JTAG. This IPE module minimizes risk of exposure of critical or proprietary software from the rest of the application [...]"

Intellectual Property Encapsulation (IPE)

Intellectual Property Encapsulation (IPE)

- \rightarrow Program-counter-based access control
- \rightarrow Memory isolation!

Research trends in memory isolation

- **openMSP430:** popular in research
 - Many systems (re-)implement isolation features
 - No compatibility with each other or industry standards
 - Limited applicability to real-world devices

	name	year	venue
	SMART [3] 🚠	2012	NDSS
	\mapsto ERASMUS [51]	2018	DATE
	Sancus 1.0 [52]	2013	USENIX
	→ Soteria [53]	2015	ACSAC
	\mapsto Towards Availability [11]	2016	MASS
	→ Sancus 2.0 [2] 🟦	2017	TOPS
	\rightarrow Sancus _V [33] $\hat{\mathbf{H}}$	2020	CSF
-	\mapsto Aion [8]	2021	CCS
130	\hookrightarrow Authentic Execution [54]	2023	TOPS
openMSP430	de Clercq et al. [7]	2014	ASAP
W	VRASED [4] 🕱	2019	USENIX
Den	→ APEX [50] 飛	2020	USENIX
lo	\mapsto ASAP [55]	2022	DAC
	\mapsto RARES [56]	2023	arXiv
	\mapsto RATA [57]	2021	CCS
	\mapsto CASU [58]	2022	ICCAD
	\rightarrow VERSA [59]	2022	S&P
	\rightarrow ACFA [60]	2023	USENIX
	GAROTA [61]	2022	USENIX
	IDA [10]	2024	NDSS
	UCCA [62]	2024	TCAD

Research trends in memory isolation

- **openMSP430:** popular in research
 - Many systems (re-)implement isolation features
 - No compatibility with each other or industry standards
 - Limited applicability to real-world devices
- **TI MSP430** difficult to do research on:
 - Closed-source hardware and firmware
 - No white-box simulator

	name	year	venue
	SMART [3] 🟦	2012	NDSS
	\rightarrow ERASMUS [51]	2018	DATE
	Sancus 1.0 [52]	2013	USENIX
	→ Soteria [53]	2015	ACSAC
	\rightarrow Towards Availability [11]	2016	MASS
	\rightarrow Sancus 2.0 [2] $\hat{\mathbf{R}}$	2017	TOPS
	\rightarrow Sancus _V [33] $\hat{\mathbf{R}}$	2020	CSF
	\mapsto Aion [8]	2021	CCS
openMSP430	\rightarrow Authentic Execution [54]	2023	TOPS
	de Clercq et al. [7]	2014	ASAP
	VRASED [4] 🕱	2019	USENIX
	\rightarrow APEX [50] $\hat{\pi}$	2020	USENIX
	\rightarrow ASAP [55]	2022	DAC
	\mapsto RARES [56]	2023	arXiv
	\mapsto RATA [57]	2021	CCS
	\mapsto CASU [58]	2022	ICCAD
	\rightarrow VERSA [59]	2022	S&P
	\rightarrow ACFA [60]	2023	USENIX
	GAROTA [61]	2022	USENIX
	IDA [10]	2024	NDSS
	UCCA [62]	2024	TCAD
	IPE [39] 🔒	2014	
00	\rightarrow SIA [63]	2019	HOST
54	\mapsto SICP [64]	2020	JHSS
ISI	\rightarrow Optimized SICP [65]	2022	TECS
TI MSP430	\rightarrow IPE Exposure [20] $\hat{\pi}$	2024	USENIX
	PISTIS [66]	2022	USENIX
	\mapsto FLAShadow [67]	2024	TIOT
	openIPE (this work)	2025	EuroS&P

Overlapping vulnerabilities

Nemesis: Studying Microarchitectural Timing Leaks in **Rudimentary CPU Interrupt Logic**

Jo Van Bulck imec-DistriNet, KU Leuven jo.vanbulck@cs.kuleuven.be

Frank Piessens imec-DistriNet, KU Leuven frank.piessens@cs.kuleuven.be

Raoul Strackx imec-DistriNet, KU Leuven raoul.strackx@cs.kuleuven.be

Mind the Gap: Studying the Insecurity of Provably Secure Embedded Trusted Execution Architectures

Marton Bognar marton.bognar@kuleuven.be imec-DistriNet, KU Leuven 3001 Leuven, Belgium

Jo Van Bulck io.vanbulck@kuleuven.be imec-DistriNet, KU Leuven 3001 Leuven, Belgium

Frank Piessens frank.piessens@kuleuven.be imec-DistriNet, KU Leuven 3001 Leuven, Belgium

A Tale of Two Worlds: Assessing the Vulnerability of Enclave **Shielding Runtimes**

@CCS'18

Io Van Bulck imec-DistriNet, KU Leuven io.vanbulck@cs.kuleuven.be

Abdulla Aldoseri

axa1170@student.bham.ac.uk

David Oswald The University of Birmingham, UK d.f.oswald@cs.bham.ac.uk

Flavio D. Garcia The University of Birmingham, UK The University of Birmingham, UK f.garcia@cs.bham.ac.uk

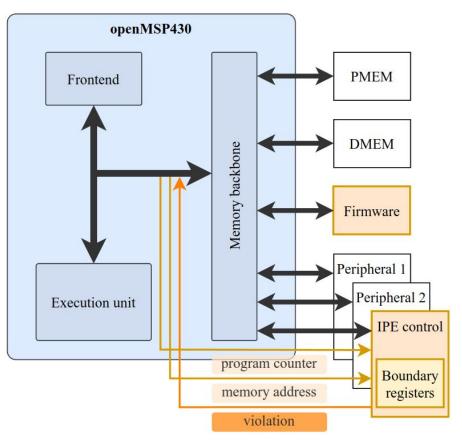
Eduard Marin The University of Birmingham, UK e.marin@cs.bham.ac.uk

Frank Piessens imec-DistriNet, KU Leuven frank.piessens@cs.kuleuven.be

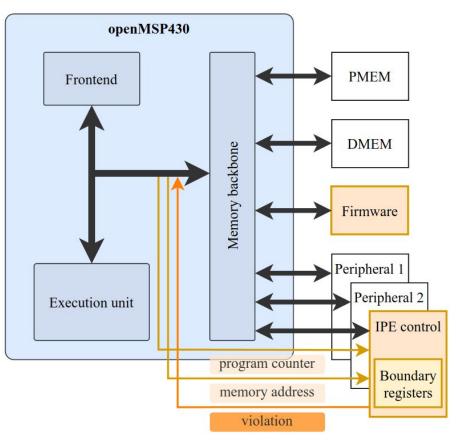
@S&P'22

Intellectual Property Exposure: Subverting and Securing **Intellectual Property Encapsulation in Texas Instruments Microcontrollers**

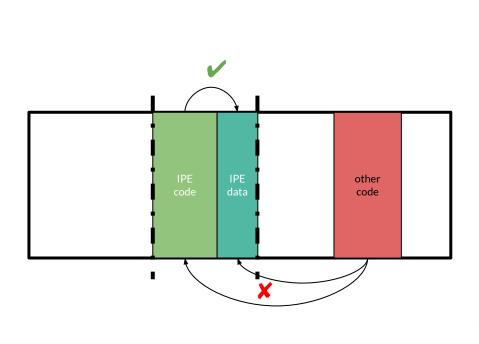
Marton Bognar, Cas Magnus, Frank Piessens, Jo Van Bulck

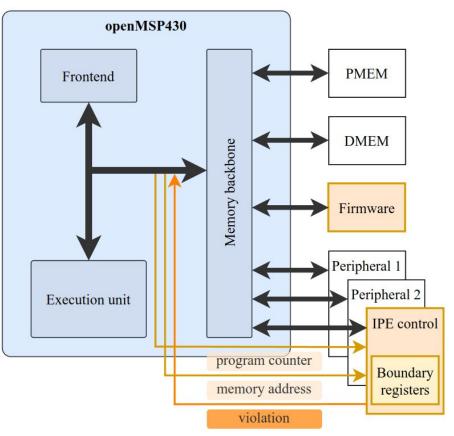

DistriNet, KU Leuven, 3001 Leuven, Belgium

@CCS'19


Our proposal: openIPE

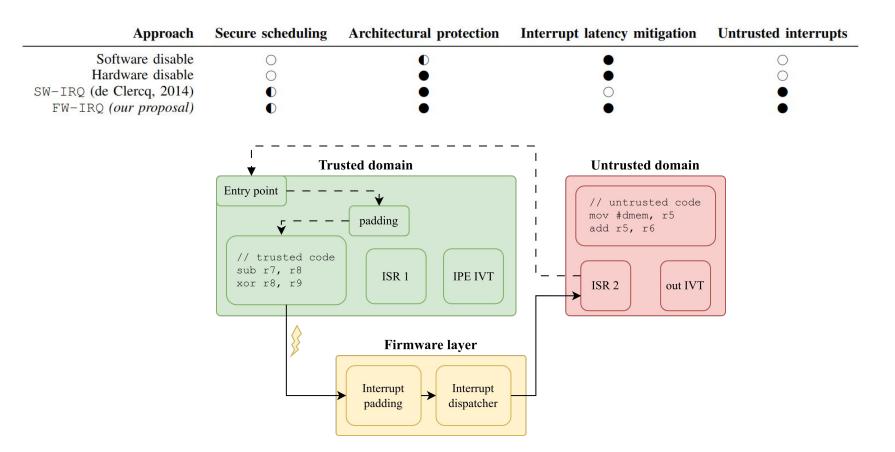
- Flexible isolation primitive
 - Based on the IPE specification
 - With protected firmware
 - But freely configurable!




Our proposal: openIPE

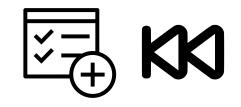
- Flexible isolation primitive
 - Based on the IPE specification
 - With protected firmware
 - But freely configurable!
- Includes proposed hardware fixes for IPE

Our proposal: openIPE



Case study: Secure interrupt handling

Approach	Secure scheduling	Architectural protection	Interrupt latency mitigation	Untrusted interrupts
Software disable	0	0	•	0
Hardware disable	0	•	•	0
SW-IRQ (de Clercq, 2014)	0	•	0	•
FW-IRQ (our proposal)	0	•	•	•


Case study: Secure interrupt handling

Hardware security validation: Unit tests

- Functional and security tests
- Backwards compatibility for (future) extensions

Hardware security validation: Unit tests

- Functional and security tests
- Backwards compatibility for (future) extensions

# tests	Tested functionality
4	IPE boundary setup
2	Modification of boundary registers
3	Protection from untrusted code
3	Protection from the debugger
2	Protection from DMA
1	Normal access from inside the IPE region
4	Protection from known attacks
4	Protection of the firmware region
3	Case study behavior

62 openMSP430 regression tests

Software security validation: Symbolic execution

✓ Unconst	rained read 👩		P=0x81c4		
lugin extra i	nfo				
Key					Value
Address					<bv16 r15_attacker_15_16=""></bv16>
Attacker tainted					True
Length					2
Pointer range					[0x0, 0xffff]
Pointer can wrap address space					True
Pointer can lie in enclave					Тгие
Extra info			Read address may lie inside or outside enclave		
Execution sta	ite info				
Disassembly					~
000081b4 <ir< td=""><td>e_func_internal>:</td><td></td><td></td><td></td><td></td></ir<>	e_func_internal>:				
81b4:	04 12	push	r4		
81b6:	04 41	mov	r1,	r4	
81b8:	24 53	incd	r4		
81ba:	21 83	decd	r1		
81bc:	84 4f fc ff	mov	r15,		;0xfffc(r4)
81c0:	1f 44 fc ff	mov	-4(r4),		;0xfffc(r4)
81c4:	2f 4f	mov	@r15,	r15	
81c6:	21 53	incd	r1		
81c8:	34 41	pop	r4	ΔI	der et al. "Pandora: Principled Symbolic Validation of Intel SGX Enclave Runtimes", So
81ca:	30 41	ret			der et al. Tandora, Trincipied Symbolie Validation of inter SOA Enclave Runtimes, So

Summary

- openIPE: Open-source extensible memory isolation
 - Hardware + firmware + software co-design
- Framework for security validation
 - Unit test suite
 - Symbolic execution tool (Pandora)
- Fully open source!
 - <u>https://github.com/martonbognar/openipe</u>

openIPE: An Extensible Memory Isolation Framework for Microcontrollers

CI passing License BSD 3-Clause

