
Leaky Processors: Lessons from Spectre, Meltdown, and Foreshadow

Jo Van Bulck

� imec-DistriNet, KU Leuven 7 jo.vanbulck@cs.kuleuven.be � jovanbulck

KU Leuven alumni forum, October 15, 2019

https://distrinet.cs.kuleuven.be/people/jo
mailto:jo.vanbulck@cs.kuleuven.be
https://twitter.com/jovanbulck

A primer on software security

Secure program: convert all input to expected output

INPUT OUTPUT

1 / 19

Attacker-defender race

Security is an arms-race . . .

but also a positive story

Attacks are getting increasingly difficult; we are making progress!

Offensive research keeps us on-par

. . . requires out-of-the-box thinking

. . . across the hardware-software boundary(!)

2 / 19

Attacker-defender race

Security is an arms-race . . . but also a positive story

Attacks are getting increasingly difficult; we are making progress!

Offensive research keeps us on-par

. . . requires out-of-the-box thinking

. . . across the hardware-software boundary(!)

2 / 19

Attacker-defender race

Security is an arms-race . . . but also a positive story

Attacks are getting increasingly difficult; we are making progress!

Offensive research keeps us on-par

. . . requires out-of-the-box thinking

. . . across the hardware-software boundary(!)

2 / 19

A primer on software security (revisited)

Buffer overflow vulnerabilities: trigger unexpected behavior

INPUT OUTPUT

3 / 19

Buffer overflows: Triggering unexpected program behavior

void	my_program	(idx)
{
		s	=	buffer[idx];
		print(s);
		...
}

user buffer secret

LEN

Program intention: never access out-of-bounds memory

. . . but attacker may provide idx ≥ LEN

. . . and leak or modify secrets

⇒ include defensive checks

4 / 19

Buffer overflows: Triggering unexpected program behavior

void	my_program	(idx)
{
		if	(idx	<	LEN)	{
				s	=	buffer[idx];
				print(s);
		}
		...
}

user buffer secret

LEN

Program intention: never access out-of-bounds memory

. . . but attacker may provide idx ≥ LEN

. . . and leak or modify secrets

⇒ include defensive checks

4 / 19

A primer on software security (revisited)

Safe languages & formal verification: preserve expected behavior

INPUT OUTPUT

5 / 19

A primer on software security (revisited)

Side-channels: observe side-effects of the computation

INPUT OUTPUT

5 / 19

Evolution of “side-channel attack” occurrences in Google Scholar

1990 1994 1998 2002 2006 2010 2014 2018

3000

4000

2000

1000

DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/
6 / 19

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

Microarchitectural timing leaks in practice

12000

12500

13000

13500

IR
Q

 L
at

en
cy

 (
TS

C
 c

yc
le

s)

Time (instruction number)

0 1 0 1 0 0 0 1 0 0 1 0 0 0 1

Zero threshold

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018

7 / 19

CPU cache timing side-channel

Cache principle: CPU speed � DRAM latency → cache code/data

CPU + cache DRAM memory

while true do

 maccess(&a);

endwh

8 / 19

CPU cache timing side-channel

Cache miss: Request data from (slow) DRAM upon first use

CPU + cache DRAM memory

while true do

 maccess(&a);

endwh

cache miss

a

8 / 19

CPU cache timing side-channel

Cache hit: No DRAM access required for subsequent uses

CPU + cache DRAM memory

while true do

 maccess(&a);

endwh

cache hit

a

8 / 19

Cache timing attacks in practice: Flush+Reload

if secret do

 maccess(&a);

else

 maccess(&b);

endif

flush(&a);

start_timer

 maccess(&a);

end_timer

CPU + cache DRAM memory

a

9 / 19

Cache timing attacks in practice: Flush+Reload

if secret do

 maccess(&a);

else

 maccess(&b);

endif

flush(&a);

start_timer

 maccess(&a);

end_timer

CPU + cache DRAM memory

cache miss

secret=1, load 'a' into cache

a

9 / 19

Cache timing attacks in practice: Flush+Reload

if secret do

 maccess(&a);

else

 maccess(&b);

endif

flush(&a);

start_timer

 maccess(&a);

end_timer

CPU + cache DRAM memory

a

cache hit

fast access(&a) → secret=1

9 / 19

A primer on software security (revisited)

Side-channels: observe side-effects of the computation

INPUT OUTPUT

10 / 19

A primer on software security (revisited)

Constant-time code: eliminate secret-dependent side-effects

INPUT OUTPUT

10 / 19

A primer on software security (revisited)

Transient execution: HW optimizations do not respect SW abstractions (!)

INPUT OUTPUT

10 / 19

Out-of-order and speculative execution

Key discrepancy:

Programmers write sequential instructions

Modern CPUs are inherently parallel

⇒ Speculatively execute instructions ahead of time

Best-effort: What if triangle fails?

→ Commit in-order, roll-back square

. . . But side-channels may leave traces (!)

11 / 19

Out-of-order and speculative execution

Key discrepancy:

Programmers write sequential instructions

Modern CPUs are inherently parallel

⇒ Speculatively execute instructions ahead of time

Best-effort: What if triangle fails?

→ Commit in-order, roll-back square

. . . But side-channels may leave traces (!)

11 / 19

Out-of-order and speculative execution

Overflow
exceptionRoll-back

Key discrepancy:

Programmers write sequential instructions

Modern CPUs are inherently parallel

⇒ Speculatively execute instructions ahead of time

Best-effort: What if triangle fails?

→ Commit in-order, roll-back square

. . . But side-channels may leave traces (!)

11 / 19

Transient-execution attacks: Welcome to the world of fun!

CPU executes ahead of time in transient world

Success → commit results to normal world ,
Fail → discard results, compute again in normal world /

Transient world (microarchitecture) may temp bypass architectural software intentions:

12 / 19

Transient-execution attacks: Welcome to the world of fun!

CPU executes ahead of time in transient world

Success → commit results to normal world ,
Fail → discard results, compute again in normal world /

Transient world (microarchitecture) may temp bypass architectural software intentions:

Delayed exception handling Control flow prediction

12 / 19

Transient-execution attacks: Welcome to the world of fun!

Key finding of 2018

⇒ Transmit secrets from transient to normal world

Transient world (microarchitecture) may temp bypass architectural software intentions:

CPU access control bypass Speculative buffer overflow/ROP

12 / 19

The transient-execution zoo https://transient.fail

Transient cause

Spectre-type

Meltdown-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Meltdown-NM-REG

Meltdown-PF

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK-L1

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

Meltdown-CPL-REG

Meltdown-NC-SB

Meltdown-AD

Meltdown-AVX-LP

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-AD-LFB

Meltdown-AD-SB

Canella et al. “A systematic evaluation of transient execution attacks and defenses”, USENIX Security 2019 13 / 19

https://transient.fail

Meltdown: Transiently encoding unauthorized memory

Unauthorized access

14 / 19

Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

s
e
c
re

t
id

x

14 / 19

Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window Exception

(discard architectural state)

14 / 19

Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

cache hit

Exception handler

14 / 19

Building Foreshadow

Foreshadow can read unmapped physical addresses from the cache (!)

15 / 19

Building Foreshadow

Foreshadow can read unmapped physical addresses from the cache (!)

15 / 19

Foreshadow: Breaking the virtual memory abstraction

PT
walk?

L1D

vadrs

CPU micro-architecture

Tag? Pass to out-of-order

SGX?
EPT
walk?

host
padrs

guest
padrs

L1-Terminal Fault: bypass virtual machine and SGX isolation(!)

16 / 19

Mitigating Meltdown/Foreshadow: Hardware-software cooperation

17 / 19

Spectre v1: Speculative buffer over-read

secretuser buffer Programmer intention: never access out-of-bounds memory

Branch can be mistrained to speculatively (i.e., ahead of
time) execute with idx ≥ LEN in the transient world

Insert explicit speculation barriers to tell the CPU to halt
the transient world...

18 / 19

Spectre v1: Speculative buffer over-read

secretuser buffer Programmer intention: never access out-of-bounds memory

Branch can be mistrained to speculatively (i.e., ahead of
time) execute with idx ≥ LEN in the transient world

Insert explicit speculation barriers to tell the CPU to halt
the transient world...

18 / 19

Spectre v1: Speculative buffer over-read

secretuser buffer Programmer intention: never access out-of-bounds memory

Branch can be mistrained to speculatively (i.e., ahead of
time) execute with idx ≥ LEN in the transient world

Insert explicit speculation barriers to tell the CPU to halt
the transient world...

18 / 19

Conclusions and take-away https://transient.fail/

⇒ Security is an arms-race, importance of fundamental offensive research

⇒ New class of side-channel and transient-execution attacks

⇒ Security cross-cuts the system stack: hardware, hypervisor, kernel, compiler, application

19 / 19

https://transient.fail/

References I

C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin, D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and Y. Yarom.

Fallout: Leaking Data on Meltdown-resistant CPUs.
In Proceedings of the 26th ACM Conference on Computer and Communications Security (CCS), 2019.

C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss.

A Systematic Evaluation of Transient Execution Attacks and Defenses.
In Proceedings of the 28th USENIX Security Symposium, 2019.

P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.

Spectre attacks: Exploiting speculative execution.
In Proceedings of the 40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg.

Meltdown: Reading kernel memory from user space.
In Proceedings of the 27th USENIX Security Symposium, 2018.

J. T. Mühlberg and J. Van Bulck.

Reflections on post-Meltdown trusted computing: A case for open security processors.
;login: the USENIX magazine, Vol. 43(No. 3), Fall 2018.

M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher, and D. Gruss.

ZombieLoad: Cross-Privilege-Boundary Data Sampling.
In Proceedings of the 26th ACM Conference on Computer and Communications Security (CCS), 2019.

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx.

Foreshadow: Extracting the keys to the Intel SGX kingdom with transient out-of-order execution.
In Proceedings of the 27th USENIX Security Symposium. USENIX Association, August 2018.

20 / 19

References II

J. Van Bulck, F. Piessens, and R. Strackx.

Nemesis: Studying microarchitectural timing leaks in rudimentary CPU interrupt logic.
In Proceedings of the 25th ACM Conference on Computer and Communications Security (CCS’18). ACM, October 2018.

S. van Schaik, A. Milburn, S. sterlund, P. Frigo, G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida.

RIDL: Rogue In-flight Data Load.
In Proceedings of the 40th IEEE Symposium on Security and Privacy (S&P), May 2019.

O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom.

Foreshadow-NG: Breaking the virtual memory abstraction with transient out-of-order execution.
Technical Report https: // foreshadowattack. eu/ , 2018.

Y. Yarom and K. Falkner.

Flush+reload: A high resolution, low noise, L3 cache side-channel attack.
In Proceedings of the 23rd USENIX Security Symposium, pp. 719–732. USENIX Association, 2014.

21 / 19

https://foreshadowattack.eu/

Spectre is here to stay: Evolution of Linux kernel gadget discovery

0
40

80
O

cc
ur

re
nc

es

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

array_index_nospec
array_index_mask_nospec

Canella et al. “A systematic evaluation of transient execution attacks and defenses”, USENIX Security 2019

22 / 19

Mitigating Meltdown: Unmap kernel addresses from user space

OS software fix for faulty hardware (↔ future CPUs)

Unmap kernel from user virtual address space

→ Unauthorized physical addresses out-of-reach (˜cookie jar)

SMAP+SMEP

user kernel

user

context switch

unmapped

kernel

context switch
switch address space

Gruss et al. “KASLR is dead: Long live KASLR”, ESSoS 2017

23 / 19

Mitigating Foreshadow

Future CPUs

(silicon-based changes)

https://newsroom.intel.com/editorials/advancing-security-silicon-level/

24 / 19

https://newsroom.intel.com/editorials/advancing-security-silicon-level/

Mitigating Foreshadow

OS kernel updates

(sanitize page frame bits)

https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/L1TF

24 / 19

https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/L1TF

Mitigating Foreshadow

Intel microcode updates

⇒ Flush L1 cache on enclave/VMM exit + disable HyperThreading

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault

24 / 19

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault

	Introduction
	Appendix

