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A primer on software security

Secure program: convert all input to expected output

INPUT OUTPUT
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Attacker-defender race

Security is an arms-race . . .

but also a positive story

Attacks are getting increasingly difficult; we are making progress!

Offensive research keeps us on-par

. . . requires out-of-the-box thinking

. . . across the hardware-software boundary(!)
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A primer on software security (revisited)

Buffer overflow vulnerabilities: trigger unexpected behavior

INPUT OUTPUT
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Buffer overflows: Triggering unexpected program behavior

void	my_program	(idx)
{
		s	=	buffer[idx];
		print(s);
		...
}

user buffer secret

LEN

Program intention: never access out-of-bounds memory

. . . but attacker may provide idx ≥ LEN

. . . and leak or modify secrets

⇒ include defensive checks
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A primer on software security (revisited)

Safe languages & formal verification: preserve expected behavior

INPUT OUTPUT
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A primer on software security (revisited)

Side-channels: observe side-effects of the computation

INPUT OUTPUT
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Evolution of “side-channel attack” occurrences in Google Scholar
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DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/
6 / 19

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/


Microarchitectural timing leaks in practice
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Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018
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CPU cache timing side-channel

Cache principle: CPU speed � DRAM latency → cache code/data

CPU + cache DRAM memory

while true do

    maccess(&a);

endwh
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CPU cache timing side-channel

Cache miss: Request data from (slow) DRAM upon first use

CPU + cache DRAM memory

while true do

    maccess(&a);

endwh

cache miss

a
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CPU cache timing side-channel

Cache hit: No DRAM access required for subsequent uses

CPU + cache DRAM memory

while true do

    maccess(&a);

endwh

cache hit

a
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Cache timing attacks in practice: Flush+Reload

if secret do

    maccess(&a);

else

    maccess(&b);

endif

flush(&a);

start_timer

   maccess(&a);

end_timer

CPU + cache DRAM memory

a
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cache miss

secret=1, load 'a' into cache

a
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Cache timing attacks in practice: Flush+Reload

if secret do

    maccess(&a);

else

    maccess(&b);

endif

flush(&a);

start_timer

   maccess(&a);

end_timer

CPU + cache DRAM memory

a

cache hit

fast access(&a) → secret=1
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A primer on software security (revisited)

Side-channels: observe side-effects of the computation

INPUT OUTPUT
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A primer on software security (revisited)

Constant-time code: eliminate secret-dependent side-effects

INPUT OUTPUT

10 / 19



A primer on software security (revisited)

Transient execution: HW optimizations do not respect SW abstractions (!)

INPUT OUTPUT
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Out-of-order and speculative execution

Key discrepancy:

Programmers write sequential instructions

Modern CPUs are inherently parallel

⇒ Speculatively execute instructions ahead of time

Best-effort: What if triangle fails?

→ Commit in-order, roll-back square

. . . But side-channels may leave traces (!)
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Out-of-order and speculative execution

Overflow
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Transient-execution attacks: Welcome to the world of fun!

CPU executes ahead of time in transient world

Success → commit results to normal world ,
Fail → discard results, compute again in normal world /

Transient world (microarchitecture) may temp bypass architectural software intentions:
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CPU executes ahead of time in transient world

Success → commit results to normal world ,
Fail → discard results, compute again in normal world /

Transient world (microarchitecture) may temp bypass architectural software intentions:

Delayed exception handling Control flow prediction
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Transient-execution attacks: Welcome to the world of fun!

Key finding of 2018

⇒ Transmit secrets from transient to normal world

Transient world (microarchitecture) may temp bypass architectural software intentions:

CPU access control bypass Speculative buffer overflow/ROP
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The transient-execution zoo https://transient.fail

Transient cause

Spectre-type

Meltdown-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Meltdown-NM-REG

Meltdown-PF

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK-L1

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

Meltdown-CPL-REG

Meltdown-NC-SB

Meltdown-AD

Meltdown-AVX-LP

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-AD-LFB

Meltdown-AD-SB

Canella et al. “A systematic evaluation of transient execution attacks and defenses”, USENIX Security 2019 13 / 19
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Meltdown: Transiently encoding unauthorized memory

Unauthorized access
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Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

s
e
c
re

t 
id

x

14 / 19



Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window Exception

(discard architectural state)
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Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

cache hit

Exception handler
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Building Foreshadow

Foreshadow can read unmapped physical addresses from the cache (!)
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Foreshadow: Breaking the virtual memory abstraction

PT
walk?

L1D

vadrs

CPU micro-architecture

Tag? Pass to out-of-order

SGX?
EPT
walk?

host
padrs

guest
padrs

L1-Terminal Fault: bypass virtual machine and SGX isolation(!)
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Mitigating Meltdown/Foreshadow: Hardware-software cooperation
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Spectre v1: Speculative buffer over-read

secretuser buffer Programmer intention: never access out-of-bounds memory

Branch can be mistrained to speculatively (i.e., ahead of
time) execute with idx ≥ LEN in the transient world

Insert explicit speculation barriers to tell the CPU to halt
the transient world...
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Conclusions and take-away https://transient.fail/

⇒ Security is an arms-race, importance of fundamental offensive research

⇒ New class of side-channel and transient-execution attacks

⇒ Security cross-cuts the system stack: hardware, hypervisor, kernel, compiler, application
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Spectre is here to stay: Evolution of Linux kernel gadget discovery
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Canella et al. “A systematic evaluation of transient execution attacks and defenses”, USENIX Security 2019
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Mitigating Meltdown: Unmap kernel addresses from user space

OS software fix for faulty hardware (↔ future CPUs)

Unmap kernel from user virtual address space

→ Unauthorized physical addresses out-of-reach (˜cookie jar)

SMAP+SMEP

user kernel

user

context switch

unmapped

kernel

context switch
switch address space

Gruss et al. “KASLR is dead: Long live KASLR”, ESSoS 2017
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Mitigating Foreshadow

Future CPUs

(silicon-based changes)

https://newsroom.intel.com/editorials/advancing-security-silicon-level/
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Mitigating Foreshadow

OS kernel updates

(sanitize page frame bits)

https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/L1TF
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Mitigating Foreshadow

Intel microcode updates

⇒ Flush L1 cache on enclave/VMM exit + disable HyperThreading

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
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