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https://xkcd.com/2347/

Trust?

https://xkcd.com/2347/
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Reflections on Trusting Trust...

“The moral is obvious. You can't trust code 
that you did not totally create yourself.”

https://dl.acm.org/doi/abs/10.1145/358198.358210

— Ken Thompson, Turing Award Lecture 1984

https://dl.acm.org/doi/abs/10.1145/358198.358210
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Reflections on Trusting Trusted Execution Environments?

TEE promise: Hardware-level isolation and attestation
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Reflections on Trusting Trusted Execution Environments?

CPU vulnerabilities: Microarchitectural reality (not today)
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Reflections on Trusting Trusted Execution Environments?

Software attack surface: Enclave trusted computing base(!)
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TEE Evolution: Towards Coarse-Grained Lift and Shift
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Intel SGX Promise: Minimal Trusted Computing Base...

https://www.intc.com/news-events/press-releases/detail/1423/intel-xeon-scalable-platform-built-for-most-sensitive

https://www.intc.com/news-events/press-releases/detail/1423/intel-xeon-scalable-platform-built-for-most-sensitive
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 Intel SGX Reality: Open-Source Enclave SDK Ecosystem



https://archive.fosdem.org/2020/schedule/event/tale/
https://www.zdnet.com/article/manual-code-review-finds-35-vulnerabilities-in-8-enclave-sdks/



https://archive.fosdem.org/2020/schedule/event/tale/
https://www.zdnet.com/article/manual-code-review-finds-35-vulnerabilities-in-8-enclave-sdks/

You can't trust code that 
you did not totally create 

yourself...



https://archive.fosdem.org/2020/schedule/event/tale/
https://www.zdnet.com/article/manual-code-review-finds-35-vulnerabilities-in-8-enclave-sdks/

You can't trust code that 
you did not totally create 

yourself...

Can we build enclaves we 
totally create ourselves?
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Starting Point: Linux selftests/sgx

https://github.com/torvalds/linux/tree/master/tools/testing/selftests/sgx

https://github.com/torvalds/linux/tree/master/tools/testing/selftests/sgx


14https://vanbulck.net/files/oakland24-pandora.pdf

Starting Point: Linux selftests/sgx



15https://lore.kernel.org/all/da0cfb1e-e347-f7f2-ac72-aec0ee0d867d@intel.com/

Starting Point: Linux selftests/sgx

https://lore.kernel.org/all/da0cfb1e-e347-f7f2-ac72-aec0ee0d867d@intel.com/


https://github.com/jovanbulck/bare-sgx
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bare-sgx: Untrusted Runtime Features Rapid prototyping + 
long-term packaging 

(buildroot)
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bare-sgx: Untrusted Runtime Features

Minimal trust:
extremely small 

(~1-3 pages!)



Mini buildroot VM: Stable long-term 
packaging of artifacts & PoCs without 
bloated/fragile SDK dependencies



Rapid attack prototyping: Controlled 
channels, single-stepping, etc.
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Case Study: High-Assurance, Formally Verified Crypto (HACL*)

Trusted wrapper code: Generated with edger8r + mini libc/heap (FreeRTOS)

Results from Kobe Sauwens’s master thesis
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TCB Size Evaluation: Lines of Code and Binary Size

Results from Kobe Sauwens’s master thesis
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TCB Size Evaluation: Lines of Code and Binary Size

Results from Kobe Sauwens’s master thesis
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Binary Size Analysis: bare-sgx + HACL*

Results from Kobe Sauwens’s master thesis
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Performance Evaluation: CPU Cycles

Results from Kobe Sauwens’s master thesis
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Performance Evaluation: Number of Executed Instructions

Results from Kobe Sauwens’s master thesis
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Conclusions and Take-Away       https://github.com/jovanbulck/bare-sgx

Thank you! Questions?

Reality: Intel SGX SDK ecosystem bloated and vulnerable

bare-sgx: Truly minimal-trust, specialized enclave development

Use cases: Formal verification; long-term packaging; testing; …

https://distrinet.cs.kuleuven.be/jobs/

https://github.com/jovanbulck/bare-sgx
https://distrinet.cs.kuleuven.be/jobs/
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jo@aeolus:~/sgx-step/app/baresgx$ sudo ./app

==== Victim Enclave ====
[enclave.c] tcs at 7fb30ebf0000; aep at 5571f1l2ee85a
Driver: /dev/sgx _enclave
Base:  0x7fb30ebf0000
Limit: ©x7fb30ebf5000
Size: 20480
Exec: 1 pages
TCS: 0x7fb30ebT0000
SSA: 0x7fb30ebf1f48
AEP: 0x5571f12ee85a
EDBGRD: debug
main.c] dry run
L enclave returned deadbeefcafebabe

| XD | PK | IGN | RSVD | PHYS ADRS ] TGN | G | PAT | D | A | PCD | PWT | U/S | R/W | P
6 | x | x |0 | 0xe040787b1000 | x | x 01 X 0 1
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/

/

Welcome to minimal Linux!
L Login as user root (no password required)
L Run bare-sgx programs (compiled on host) as cd /host/ecall_asm && ./app
L Exit gemu with CTRL-A followed by X
buildroot login: root
# cd /host/ecall_asm/ && ./app
[main.c] loaded enclave at 0x7f253b378000
[main.c] reading enclave memory. .
L mem at 0x7f253b378000 is ffffffffffffffff
[main.c] calling enclave TCS..
ﬂ L enclave returned deadbeefcafebabe
#




OpensSSL

LIBRARY

(optional) N
encl.c | bare encl.elf

(optional) : SGX-Step
trts.a untrusted runtime

trusted build env

Linux kernel /dev/sgx_enclave





From  Dave Hansen <dave.hansen@intel.com>@

To Jo Van Bulck e, jarkko@kernel.org @, linux-sgx@vger.kernel.org @, linux-kernel@vger.kernel.org @

Cc dave.hansen@linux.intel.come
Subject Re: [PATCH v2 0/4] selftests/sgx: Harden test enclave

On 7/20/23 15:16, Jo Van Bulck wrote:

While I understand that the bare-metal Intel SGX selftest enclave is
certainly not intended as a full-featured independent production runtime,
it has been noted on this mailing list before that "people are likely to
copy this code for their own enclaves" and that it provides a "great
starting point if you want to do things from scratch" [1].

I wholeheartedly agree with the desire to spin up enclaves without the
overhead or complexity of the SDK. I think I'm the one that asked for
this test enclave in the first place. There *IS* a gap here. Those who
care about SGX would be wise to close this gap in _some_  way.
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Minimal SGX Enclave Development on Bare-Metal
Linux Platforms

. This repository provides a minimal, fully customizable framework for developing Intel SGX

@, cnclavesdirectly on bare-metal Linux, without relying on bloated external SDKs. It offers a clean,

.ﬂ low-level starting point for building minimalist enclaves in assembly or C, interfacing directly with
the upstream Linux SGX driver.

By interacting directly with the SGX driver in the Linux kernel, bare-sgx removes the complexity and overhead
of existing SGX SDKs and library OSs. The result is extremely small enclaves, often just a few pages, tailored to
a specific purpose and excluding all other unnecessary code and features. Therefore, bare-sgx provides a
truly minimal trusted computing base while avoiding fragile dependencies that could hinder portability or
long-term reproducibility.

License. bare-sgx is free software, licensed under GPLv2. The initial code was forked from the selftests/sgx
test enclave in the Linux kernel repository, following a discussion on the kernel mailing list.








KU LEUVEN




Home / Tech / Security

Manual code review finds 35 vulnerabilities in 8
enclave SDKs

All issues have been privately reported and patches are available.

Written by Catalin Cimpanu, Contributor
Nov. 12,2019 at 10:00 a.m. PT
P P
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Data Protection across the Compute Stack

Technologies such as disk- and network-traffic encryption protect data in storage and during
transmission, but data can be vulnerable to interception and tampering while in use in

memory. “Confidential computing” is a rapidly emerging usage category that protects data
while itis in use in a Trusted Execution Environment (TEE). _
_ It enables application isolation in private memory regions, called

enclaves, to help protect up to 1 terabyte of code and data while in use.
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jo@aeolus:~/sgx-step/sdk/intel-sdk/linux-sgx/sdk$ echo ; sloccount . 2>&1 | grep "Source Lines of Code" ; echo

Total Physical Source Lines of Code (SLOC)

jo@aeolus:~/sgx-step/sdk/intel-sdk/linux-sgx/sdk$ cd -
/home/jo/sgx-step/sdk/oe/openenclave

jo@aeolus:~/sgx-step/sdk/oe/openenclave$ echo ; sloccount .

Total Physical Source Lines of Code (SLOC)

222,681

2>&1 | grep "Source Lines of Code" ; echo

199,412
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Reflections on Trusting Trust...





“The moral is obvious. You can't trust code that you did not totally create yourself.”





https://dl.acm.org/doi/abs/10.1145/358198.358210



— Ken Thompson, Turing Award Lecture 1984





Reflections on Trusting Trusted Execution Environments?





TEE promise: Hardware-level isolation and attestation
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CPU vulnerabilities: Microarchitectural reality (not today)
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Software attack surface: Enclave trusted computing base(!)







TEE Evolution: Towards Coarse-Grained Lift and Shift







Intel SGX Promise: Minimal Trusted Computing Base...





https://www.intc.com/news-events/press-releases/detail/1423/intel-xeon-scalable-platform-built-for-most-sensitive









 Intel SGX Reality: Open-Source Enclave SDK Ecosystem
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https://www.zdnet.com/article/manual-code-review-finds-35-vulnerabilities-in-8-enclave-sdks/







https://archive.fosdem.org/2020/schedule/event/tale/



https://www.zdnet.com/article/manual-code-review-finds-35-vulnerabilities-in-8-enclave-sdks/





You can't trust code that you did not totally create yourself...





https://archive.fosdem.org/2020/schedule/event/tale/



https://www.zdnet.com/article/manual-code-review-finds-35-vulnerabilities-in-8-enclave-sdks/





You can't trust code that you did not totally create yourself...



Can we build enclaves we totally create ourselves?



Starting Point: Linux selftests/sgx





https://github.com/torvalds/linux/tree/master/tools/testing/selftests/sgx







https://vanbulck.net/files/oakland24-pandora.pdf









Starting Point: Linux selftests/sgx







https://lore.kernel.org/all/da0cfb1e-e347-f7f2-ac72-aec0ee0d867d@intel.com/









Starting Point: Linux selftests/sgx







https://github.com/jovanbulck/bare-sgx





bare-sgx: Untrusted Runtime Features





Rapid prototyping + long-term packaging (buildroot)



bare-sgx: Untrusted Runtime Features





Minimal trust:

extremely small (~1-3 pages!)







Mini buildroot VM: Stable long-term packaging of artifacts & PoCs without bloated/fragile SDK dependencies











Rapid attack prototyping: Controlled channels, single-stepping, etc.







Case Study: High-Assurance, Formally Verified Crypto (HACL*)





Trusted wrapper code: Generated with edger8r + mini libc/heap (FreeRTOS)







Results from Kobe Sauwens’s master thesis







TCB Size Evaluation: Lines of Code and Binary Size





Results from Kobe Sauwens’s master thesis
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Results from Kobe Sauwens’s master thesis





Binary Size Analysis: bare-sgx + HACL*







Results from Kobe Sauwens’s master thesis





Performance Evaluation: CPU Cycles





Results from Kobe Sauwens’s master thesis





Performance Evaluation: Number of Executed Instructions









Results from Kobe Sauwens’s master thesis





Conclusions and Take-Away    https://github.com/jovanbulck/bare-sgx





Thank you! Questions?







Reality: Intel SGX SDK ecosystem bloated and vulnerable

bare-sgx: Truly minimal-trust, specialized enclave development

Use cases: Formal verification; long-term packaging; testing; …











https://distrinet.cs.kuleuven.be/jobs/
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