
bare-sgx: A Bare-Metal C Runtime for
Intel SGX Development with Minimal Trust

Jo Van Bulck, Kobe Sauwens

 DistriNet, KU Leuven, Belgium  jo.vanbulck@cs.kuleuven.be  vanbulck.net

FOSDEM’26 Confidential Computing Devroom, Feb 1, 2026

https://xkcd.com/2347/

Trust?

https://xkcd.com/2347/

3

Reflections on Trusting Trust...

“The moral is obvious. You can't trust code
that you did not totally create yourself.”

https://dl.acm.org/doi/abs/10.1145/358198.358210

— Ken Thompson, Turing Award Lecture 1984

https://dl.acm.org/doi/abs/10.1145/358198.358210

4

Reflections on Trusting Trusted Execution Environments?

TEE promise: Hardware-level isolation and attestation

5

Reflections on Trusting Trusted Execution Environments?

CPU vulnerabilities: Microarchitectural reality (not today)

6

Reflections on Trusting Trusted Execution Environments?

Software attack surface: Enclave trusted computing base(!)

7

TEE Evolution: Towards Coarse-Grained Lift and Shift

8

Intel SGX Promise: Minimal Trusted Computing Base...

https://www.intc.com/news-events/press-releases/detail/1423/intel-xeon-scalable-platform-built-for-most-sensitive

https://www.intc.com/news-events/press-releases/detail/1423/intel-xeon-scalable-platform-built-for-most-sensitive

9

 Intel SGX Reality: Open-Source Enclave SDK Ecosystem

https://archive.fosdem.org/2020/schedule/event/tale/
https://www.zdnet.com/article/manual-code-review-finds-35-vulnerabilities-in-8-enclave-sdks/

https://archive.fosdem.org/2020/schedule/event/tale/
https://www.zdnet.com/article/manual-code-review-finds-35-vulnerabilities-in-8-enclave-sdks/

You can't trust code that
you did not totally create

yourself...

https://archive.fosdem.org/2020/schedule/event/tale/
https://www.zdnet.com/article/manual-code-review-finds-35-vulnerabilities-in-8-enclave-sdks/

You can't trust code that
you did not totally create

yourself...

Can we build enclaves we
totally create ourselves?

13

Starting Point: Linux selftests/sgx

https://github.com/torvalds/linux/tree/master/tools/testing/selftests/sgx

https://github.com/torvalds/linux/tree/master/tools/testing/selftests/sgx

14https://vanbulck.net/files/oakland24-pandora.pdf

Starting Point: Linux selftests/sgx

15https://lore.kernel.org/all/da0cfb1e-e347-f7f2-ac72-aec0ee0d867d@intel.com/

Starting Point: Linux selftests/sgx

https://lore.kernel.org/all/da0cfb1e-e347-f7f2-ac72-aec0ee0d867d@intel.com/

https://github.com/jovanbulck/bare-sgx

17

bare-sgx: Untrusted Runtime Features Rapid prototyping +
long-term packaging

(buildroot)

18

bare-sgx: Untrusted Runtime Features

Minimal trust:
extremely small

(~1-3 pages!)

Mini buildroot VM: Stable long-term
packaging of artifacts & PoCs without
bloated/fragile SDK dependencies

Rapid attack prototyping: Controlled
channels, single-stepping, etc.

21

Case Study: High-Assurance, Formally Verified Crypto (HACL*)

Trusted wrapper code: Generated with edger8r + mini libc/heap (FreeRTOS)

Results from Kobe Sauwens’s master thesis

22

TCB Size Evaluation: Lines of Code and Binary Size

Results from Kobe Sauwens’s master thesis

23

TCB Size Evaluation: Lines of Code and Binary Size

Results from Kobe Sauwens’s master thesis

24

Binary Size Analysis: bare-sgx + HACL*

Results from Kobe Sauwens’s master thesis

25

Performance Evaluation: CPU Cycles

Results from Kobe Sauwens’s master thesis

26

Performance Evaluation: Number of Executed Instructions

Results from Kobe Sauwens’s master thesis

27

Conclusions and Take-Away https://github.com/jovanbulck/bare-sgx

Thank you! Questions?

Reality: Intel SGX SDK ecosystem bloated and vulnerable

bare-sgx: Truly minimal-trust, specialized enclave development

Use cases: Formal verification; long-term packaging; testing; …

https://distrinet.cs.kuleuven.be/jobs/

https://github.com/jovanbulck/bare-sgx
https://distrinet.cs.kuleuven.be/jobs/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

Created by jin seung lee
from Noun Project

SGXSDK

Instruction Executed

80000
Bl Bare-SGX

BN Intel SGX SDK
BEE Open Enclave

60000

44765

28779
20992

40000

28040

20000 I
1179
0 29

Return HMAC AEAD

CPU Cycle Elapsed

100000

80000

60000

40000

20000

9460

E Bare-SGX
BN [ntel SGX SDK
B8 Open Enclave

Return

51340

HMAC

AEAD

101698

RRKD
0.0 0.0
KRR

Lines of Code

150000

120000

90000

60000

30000

B Bare-SGX
BN [ntel SGX SDK
BB Open Enclave

LOC

148481

1519.1

101.8
3.6
Binary Size (KB)

1500

1200

900

600

300

Binary Size (KB)

jo@aeolus:~/sgx-step/app/baresgx$ sudo ./app

==== Victim Enclave ====
[enclave.c] tcs at 7fb30ebf0000; aep at 5571f1l2ee85a
Driver: /dev/sgx _enclave
Base: 0x7fb30ebf0000
Limit: ©x7fb30ebf5000
Size: 20480
Exec: 1 pages
TCS: 0x7fb30ebT0000
SSA: 0x7fb30ebf1f48
AEP: 0x5571f12ee85a
EDBGRD: debug
main.c] dry run
L enclave returned deadbeefcafebabe

| XD | PK | IGN | RSVD | PHYS ADRS] TGN | G | PAT | D | A | PCD | PWT | U/S | R/W | P
6 | x | x |0 | 0xe040787b1000 | x | x 01 X 0 1

/ Application \ ' / Enclave "\
122

HACL* \
T
- AEAD_encrypt() RN

- AEAD_decrypt()
- HMAC()

S
AR 4

Untrusted Trusted

main.c

Input buffer
(shared memory)

[nnn nnn;nn; n;nn

Created by Chehuna
from Noun Project

/7
/N __ 7T __7_\ /7 T/
/11T T (Y /77> <
N/ N T /N, I /]|

/

/

Welcome to minimal Linux!
L Login as user root (no password required)
L Run bare-sgx programs (compiled on host) as cd /host/ecall_asm && ./app
L Exit gemu with CTRL-A followed by X
buildroot login: root
cd /host/ecall_asm/ && ./app
[main.c] loaded enclave at 0x7f253b378000
[main.c] reading enclave memory. .
L mem at 0x7f253b378000 is ffffffffffffffff
[main.c] calling enclave TCS..
ﬂ L enclave returned deadbeefcafebabe
#

OpensSSL

LIBRARY

(optional) N
encl.c | bare encl.elf

(optional) : SGX-Step
trts.a untrusted runtime

trusted build env

Linux kernel /dev/sgx_enclave

From Dave Hansen <dave.hansen@intel.com>@

To Jo Van Bulck e, jarkko@kernel.org @, linux-sgx@vger.kernel.org @, linux-kernel@vger.kernel.org @

Cc dave.hansen@linux.intel.come
Subject Re: [PATCH v2 0/4] selftests/sgx: Harden test enclave

On 7/20/23 15:16, Jo Van Bulck wrote:

While I understand that the bare-metal Intel SGX selftest enclave is
certainly not intended as a full-featured independent production runtime,
it has been noted on this mailing list before that "people are likely to
copy this code for their own enclaves" and that it provides a "great
starting point if you want to do things from scratch" [1].

I wholeheartedly agree with the desire to spin up enclaves without the
overhead or complexity of the SDK. I think I'm the one that asked for
this test enclave in the first place. There *IS* a gap here. Those who
care about SGX would be wise to close this gap in _some_ way.

SGX-Step

9
0

ALL_ MODERN DIGITAL
INFRASTRUCTURE

A PROJECT SOME
RANDOM PERSON
IN NEBRASKA HAS
BEEN THANKLESSLY
MANTAINING
SINCE: 2003

App H Enclave app E

OS kernel @ﬂ.
e U v @

Runtime

Linux selftest 5.18
— DCAP 1.16
— Inclavare 0.6.2
Linux selftest 5.18
— DCAP 1.16
— Inclavare 0.6.2
Linux selftest 5.18
 Inclavare 0.6.2

X X X< XXX
CLLCCCKLKK

Version Prod Src Plugin

ABISan
ABISan
ABISan
PTRSan
PTRSan
PTRSan
CFSan

CFSan

Instances

Gl = = =

N

1
1

Minimal SGX Enclave Development on Bare-Metal
Linux Platforms

. This repository provides a minimal, fully customizable framework for developing Intel SGX

@, cnclavesdirectly on bare-metal Linux, without relying on bloated external SDKs. It offers a clean,

.ﬂ low-level starting point for building minimalist enclaves in assembly or C, interfacing directly with
the upstream Linux SGX driver.

By interacting directly with the SGX driver in the Linux kernel, bare-sgx removes the complexity and overhead
of existing SGX SDKs and library OSs. The result is extremely small enclaves, often just a few pages, tailored to
a specific purpose and excluding all other unnecessary code and features. Therefore, bare-sgx provides a
truly minimal trusted computing base while avoiding fragile dependencies that could hinder portability or
long-term reproducibility.

License. bare-sgx is free software, licensed under GPLv2. The initial code was forked from the selftests/sgx
test enclave in the Linux kernel repository, following a discussion on the kernel mailing list.

KU LEUVEN

Home / Tech / Security

Manual code review finds 35 vulnerabilities in 8
enclave SDKs

All issues have been privately reported and patches are available.

Written by Catalin Cimpanu, Contributor
Nov. 12,2019 at 10:00 a.m. PT
P P

.
|nte| Overview Aboutintel ~News & Events Financial Info ~ Stock Info ~ Filings &Reports ~ Board & Governance ~ ESG

Overview Press Releases IR Calendar Annual Stockholders’ Meeting Investor Meeting Email Alerts Presentations

Data Protection across the Compute Stack

Technologies such as disk- and network-traffic encryption protect data in storage and during
transmission, but data can be vulnerable to interception and tampering while in use in

memory. “Confidential computing” is a rapidly emerging usage category that protects data
while itis in use in a Trusted Execution Environment (TEE). _
_ It enables application isolation in private memory regions, called

enclaves, to help protect up to 1 terabyte of code and data while in use.

Executable Sections Binary (132.0 KB)

HACL_Other (59.6 K

HACL_SHA3 (35.5 K

HACL* (128.5 KB)

HACL_SHA2 (20.9 K

HACL_Chacha20 (6.3 K

HACL_Poly1305 (3.4 KB)=

HACL_Blake2-(2:2:K
HACL_MD5 (0.6 K

)

B)—

Edger8r (2.4 KB)=

malloc (0.3 K
table (0.3 KB}
Runtime (:

d ;/ the) L
 enclHWA

K
calloc (0.1 K

B)—

B)
B)—

Created by Adrien Coquet
from Noun Project

D)istriN=t

DistriN=t

(X
(X

@med LU aWs arm

Intel SGX AWS Nitro ARM CCA
(Function call) (VM) (VM)
I I [
I 2016 ! 2022
2015 : 2020 : 2023
AMD SEV Intel TDX

(Virtual Machine) (VM)

jo@aeolus:~/sgx-step/sdk/intel-sdk/linux-sgx/sdk$ echo ; sloccount . 2>&1 | grep "Source Lines of Code" ; echo

Total Physical Source Lines of Code (SLOC)

jo@aeolus:~/sgx-step/sdk/intel-sdk/linux-sgx/sdk$ cd -
/home/jo/sgx-step/sdk/oe/openenclave

jo@aeolus:~/sgx-step/sdk/oe/openenclave$ echo ; sloccount .

Total Physical Source Lines of Code (SLOC)

222,681

2>&1 | grep "Source Lines of Code" ; echo

199,412

SGX-SDK

test_encl.elf

)
‘!’-
test_encl.elf

G

bare-sgx: A Bare-Metal C Runtime for
Intel SGX Development with Minimal Trust

Jo Van Bulck, Kobe Sauwens

Oisinet, KU Lewven, Belgium 2 jovanbulek@cs uleuven be. @ vanbulcknet

FOSDEM'26 Confidential Computing Devroom, Feb 1, 2026
DistriN=t

bare-sgx: A Bare-Metal C Runtime for Intel SGX Development with Minimal Trust

Jo Van Bulck, Kobe Sauwens

 DistriNet, KU Leuven, Belgium  jo.vanbulck@cs.kuleuven.be  vanbulck.net

FOSDEM’26 Confidential Computing Devroom, Feb 1, 2026

https://xkcd.com/2347/

Trust?

Reflections on Trusting Trust...

“The moral is obvious. You can't trust code that you did not totally create yourself.”

https://dl.acm.org/doi/abs/10.1145/358198.358210

— Ken Thompson, Turing Award Lecture 1984

Reflections on Trusting Trusted Execution Environments?

TEE promise: Hardware-level isolation and attestation

Reflections on Trusting Trusted Execution Environments?

CPU vulnerabilities: Microarchitectural reality (not today)

Reflections on Trusting Trusted Execution Environments?

Software attack surface: Enclave trusted computing base(!)

TEE Evolution: Towards Coarse-Grained Lift and Shift

Intel SGX Promise: Minimal Trusted Computing Base...

https://www.intc.com/news-events/press-releases/detail/1423/intel-xeon-scalable-platform-built-for-most-sensitive

 Intel SGX Reality: Open-Source Enclave SDK Ecosystem

https://archive.fosdem.org/2020/schedule/event/tale/

https://www.zdnet.com/article/manual-code-review-finds-35-vulnerabilities-in-8-enclave-sdks/

https://archive.fosdem.org/2020/schedule/event/tale/

https://www.zdnet.com/article/manual-code-review-finds-35-vulnerabilities-in-8-enclave-sdks/

You can't trust code that you did not totally create yourself...

https://archive.fosdem.org/2020/schedule/event/tale/

https://www.zdnet.com/article/manual-code-review-finds-35-vulnerabilities-in-8-enclave-sdks/

You can't trust code that you did not totally create yourself...

Can we build enclaves we totally create ourselves?

Starting Point: Linux selftests/sgx

https://github.com/torvalds/linux/tree/master/tools/testing/selftests/sgx

https://vanbulck.net/files/oakland24-pandora.pdf

Starting Point: Linux selftests/sgx

https://lore.kernel.org/all/da0cfb1e-e347-f7f2-ac72-aec0ee0d867d@intel.com/

Starting Point: Linux selftests/sgx

https://github.com/jovanbulck/bare-sgx

bare-sgx: Untrusted Runtime Features

Rapid prototyping + long-term packaging (buildroot)

bare-sgx: Untrusted Runtime Features

Minimal trust:

extremely small (~1-3 pages!)

Mini buildroot VM: Stable long-term packaging of artifacts & PoCs without bloated/fragile SDK dependencies

Rapid attack prototyping: Controlled channels, single-stepping, etc.

Case Study: High-Assurance, Formally Verified Crypto (HACL*)

Trusted wrapper code: Generated with edger8r + mini libc/heap (FreeRTOS)

Results from Kobe Sauwens’s master thesis

TCB Size Evaluation: Lines of Code and Binary Size

Results from Kobe Sauwens’s master thesis

TCB Size Evaluation: Lines of Code and Binary Size

Results from Kobe Sauwens’s master thesis

Binary Size Analysis: bare-sgx + HACL*

Results from Kobe Sauwens’s master thesis

Performance Evaluation: CPU Cycles

Results from Kobe Sauwens’s master thesis

Performance Evaluation: Number of Executed Instructions

Results from Kobe Sauwens’s master thesis

Conclusions and Take-Away https://github.com/jovanbulck/bare-sgx

Thank you! Questions?

Reality: Intel SGX SDK ecosystem bloated and vulnerable

bare-sgx: Truly minimal-trust, specialized enclave development

Use cases: Formal verification; long-term packaging; testing; …

https://distrinet.cs.kuleuven.be/jobs/

Click to edit the title text format

		Click to edit the outline text format

		Second Outline Level

		Third Outline Level

		Fourth Outline Level

		Fifth Outline Level

		Sixth Outline Level

		Seventh Outline Level

DistriNet-rgb-transparant.png

Project Title

DistriNet-rgb-transparant.png

DistriNet-rgb-transparant.png

Click to edit Master title style

Click to edit Master subtitle

Click to edit Master title style

		Click to edit Master text styles

		Second level

		Third level

		Fourth level

		Fifth level

1/31/26

1/31/26

Click to edit Master title style

		Click to edit Master text styles

		Second level

		Third level

		Fourth level

		Fifth level

1/31/26

1/31/26

Click to edit Master text styles

				Second level

		Third level

		Fourth level

		Fifth level

Click to edit Master title style

		Click to edit Master text styles

		Second level

		Third level

		Fourth level

		Fifth level

