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About imec-DistriNet enclave research https://distrinet.cs.kuleuven.be/

• Trusted computing across the system stack: hardware, compiler, OS, apps

• Integrated attack-defense perspective and open-source prototypes

Transient-execution attacks Side-channel attacks Sancus TEE processor
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The big picture: Reducing attack surface with enclaves
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Traditional layered designs: Large trusted computing base
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The big picture: Reducing attack surface with enclaves
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Intel SGX promise: Hardware-level isolation and attestation
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The rise of trusted execution environments

• 2004: ARM TrustZone

• 2015: Intel Software Guard Extensions (SGX)

• 2016: AMD Secure Encrypted Virtualization (SEV)

• 2017: AMD SEV with Encrypted State (SEV-ES)

• 2018: IBM Protected Execution Facility (PEF)

• 2020: AMD SEV with Secure Nested Paging (SEV-SNP)

• 2022: Intel Trust Domain Extensions (TDX)

TEEs are here to stay. . .
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Computing spectrum

x86

Core-i / Ryzen Xeon / EPYC

ARM

Cortex-M Cortex-A
MSP430

16-bit 32-bit 64-bit

Bare metal Maskable interrupts Security levels Virtualization support

1-10 10-100 >100

Research TrustZone Intel SGX TDX / SEV

Enclave architectures
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Trusted execution environment types
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No trusted hardware Enclave shielding VM shielding / Trustzone
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Highlight #1: Impact on Attacks



Vulnerable platforms: Intel

Software Guard Extensions (SGX)

Enarx (Red Hat) Asylo (Google)



Software interface attacks (part 1)
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SGX not immune to interface sanitization oversights in enclave software
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Privileged side-channel attacks (part 2)
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Privileged side channels to spy on enclave-CPU interaction metadata
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Transient-execution attacks (part 3)
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Transient-execution data extraction from CPU to break enclave confidentiality
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Research agenda: Understanding privileged attack surface

1. Which novel privileged attacks exist?

→ Uncover previously unknown attack avenues

2. How well can they be exploited in practice?

→ Develop new techniques and practical attack frameworks

3. What can be leaked?

→ Leak metadata and data
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TEE attack research leads the way . . .



TEE attack research leads the way . . .

• Privileged TEE attacker model sets the bar!

• Idealized execution environment for attack research

• Generalizations: e.g., Foreshadow-NG, branch

prediction, address translation, etc.
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Challenge: Side-channel Sampling Rate

CC-BY-SA Nevit Dilmen



SGX-Step: Executing enclaves one instruction at a time

INPUT OUTPUT

36



SGX-Step: Executing Enclaves one Instruction at a Time

INPUT OUTPUT

INTERRUPT

Van Bulck et al., “SGX-Step: A Practical Attack Framework for Precise Enclave Execution Control”, SysTEX 2017.
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SGX-Step: Executing Enclaves one Instruction at a Time

libsgxstep

user space

ERESUME

OS kernel

Interrupt handler

Van Bulck et al., “SGX-Step: A Practical Attack Framework for Precise Enclave Execution Control”, SysTEX 2017. 3



A Retrospective of 5 Years of SGX-Step Development

SGX-Step

https://github.com/jovanbulck/sgx-step

• Became de-facto standard for

interrupt-driven attacks

• Actively maintained & supported

• Widely recognized:

• > 400 GitHub stars

• > 215 academic citations

• Marked influence on both attacks

& defenses on SGX and beyond
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SGX-Step: Enabling a New Line of High-Resolution Attacks

Yr Venue Paper Step Use Case Drv

’15 S&P Ctrl channel [XCP15] ∼ Page Probe (page fault) ✓

’16 ESORICS AsyncShock [WKPK16] ∼ Page Exploit (mem safety) –
’17 CHES CacheZoom [MIE17] ✗ >1 Probe (L1 cache) ✓

’17 ATC Hahnel et al. [HCP17] ✗ 0 - >1 Probe (L1 cache) ✓

’17 USENIX BranchShadow [LSG
+

17] ✗ 5 - 50 Probe (BPU) ✗

’17 USENIX Stealthy PTE [VBWK
+

17] ∼ Page Probe (page table) ✓

’17 USENIX DarkROP [LJJ
+

17] ∼ Page Exploit (mem safety) ✓

’17 SysTEX SGX-Step [VBPS17] ✓ 0 - 1 Framework ✓

’18 ESSoS Off-limits [GVBPS18] ✓ 0 - 1 Probe (segmentation) ✓

’18 AsiaCCS Single-trace RSA [WSB18] ∼ Page Probe (page fault) ✓

’18 USENIX Foreshadow [VBMW
+

18] ✓ 0 - 1 Probe (transient exec) ✓

’18 EuroS&P SgxPectre [CCX
+

19] ∼ Page Exploit (transient) ✓

’18 CHES CacheQuote [DDME
+

18] ✗ >1 Probe (L1 cache) ✓

’18 ICCD SGXlinger [HZDL18] ✗ >1 Probe (IRQ latency) ✗

’18 CCS Nemesis [VBPS18] ✓ 1 Probe (IRQ latency) ✓

’19 USENIX Spoiler [IMB
+

19] ✓ 1 Probe (IRQ latency) ✓

’19 CCS ZombieLoad [SLM
+

19] ✓ 0 - 1 Probe (transient exec) ✓

’19 CCS Fallout [CGG
+

19] – Probe (transient exec) ✓

’19 CCS Tale of 2 worlds [VBOM
+

19] ✓ 1 Exploit (mem safety) ✓

’19 ISCA MicroScope [SYG
+

19] ∼ 0 - Page Framework ✗

’20 CHES Bluethunder [HMW
+

20] ✓ 1 Probe (BPU) ✓

’20 USENIX Big troubles [WSBS19] ∼ Page Probe (page fault) ✓

’20 S&P Plundervolt [MOG
+

20] – Exploit (undervolt) ✓

’20 CHES Viral primitive [AB20] ✓ 1 Probe (IRQ count) ✓

’20 USENIX CopyCat [MVBH
+

20] ✓ 1 Probe (IRQ count) ✓

’20 S&P LVI [VBMS
+

20] ✓ 1 Exploit (transient) ✓

Yr Venue Paper Step Use Case Drv

’20 CHES A to Z [AGB20] ∼ Page Probe (page fault) ✓

’20 CCS Déjà Vu NSS [uHGDL
+

20] ∼ Page Probe (page fault) ✓

’20 MICRO PTHammer [ZCL
+

20] – Probe (page walk) ✓

’21 USENIX Frontal [PSHC21] ✓ 1 Probe (IRQ latency) ✓

’21 S&P CrossTalk [RMR
+

21] ✓ 1 Probe (transient exec) ✓

’21 CHES Online template [AB21] ✓ 1 Probe (IRQ count) ✓

’21 NDSS SpeechMiner [XZT20] – Framework ✓

’21 S&P Platypus [LKO
+

21] ✓ 0 - 1 Probe (voltage) ✓

’21 DIMVA Aion [HXCL21] ✓ 1 Probe (cache) ✓

’21 CCS SmashEx [CYS
+

21] ✓ 1 Exploit (mem safety) ✓

’21 CCS Util::Lookup [SBWE21] ✓ 1 Probe (L3 cache) ✓

’22 USENIX Rapid prototyping [ESSG22] ✓ 1 Framework ✓

’22 CT-RSA Kalyna expansion [CGYZ22] ✓ 1 Probe (L3 cache) ✓

’22 SEED Enclyzer [ZXTZ22] – Framework ✓

’22 NordSec Self-monitoring [LBA22] ∼ Page Defense (detect) ✓

’22 AutoSec Robotic vehicles [LS22] ✓ 1 - >1 Exploit (timestamp) ✓

’22 ACSAC MoLE [LWM
+

22] ✓ 1 Defense (randomize) ✓

’22 USENIX AEPIC [BKS
+

22] ✓ 1 Probe (I/O device) ✓

’22 arXiv Confidential code [PSL
+

22] ✓ 1 Probe (IRQ latency) ✓

’23 ComSec FaultMorse [HZL
+

23] ∼ Page Probe (page fault) ✓

’23 CHES HQC timing [HSC
+

23] ✓ 1 Probe (L3 cache) ✓

’23 ISCA Belong to us [YJF23] ✓ 1 Probe (BPU) ✓

’23 USENIX BunnyHop [ZTO
+

23] ✓ 1 Probe (BPU) ✓

’23 USENIX DownFall [Mog23] ✓ 0 - 1 Probe (transient exec) ✓

’23 USENIX AEX-Notify [CVBC
+

23] ✓ 1 Defense (prefetch) ✓
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A Versatile Open-Source Attack Toolkit

[CCS'18, USENIX'21]

[CCS'19, CHES'20-21, USENIX'20]

[USENIX'18, CCS'19, S&P'21]

[CCS'19/21, CHES'20, S&P'20-21, USENIX'17/18/22]

[AsiaCCS'18, USENIX'18-23, CCS20, CHES'20, NDSS'21]
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SGX-Step demo: Building a memcmp() Password Oracle
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Nemesis: Extracting IRQ latency traces with SGX-Step

Enclave x-ray: IRQ latency leaks instruction-level µ-arch timing!

Instruction (interrupt number)

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018..
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Nemesis microbenchmarks: Measuring x86 operands

Instruction timing leak: Reconstruct x86 operand class

IRQ latency (cycles)
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Nemesis microbenchmarks: Measuring x86 cache misses

Instruction timing leak: Reconstruct microarchitectural state

load cache hit

load cache miss

IRQ latency (cycles)
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Nemesis microbenchmarks: Measuring x86 data dependencies

Instruction timing leak: Execution time ≈ dividend significant bits
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De-anonymizing enclave lookups with interrupt latency

Goal: Infer lookup → reconstruct bsearch control flow
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Highlight #2: Impact on Defenses



Hardening Enclaves against Single-Stepping

SGX-Step sets the bar for adequate side-channel defenses!

→ (e.g., LVI, compiler, static analysis, constant-time, etc.)

“ineffective if the attacker can single-step through the enclave using the recent

SGX-Step framework. Taking into account these stronger attacker capabili-

ties, we propose a new defense. . . ” [HLLP18]

SGX-Step inspired several dedicated hardware-software mitigations

→ Collaboration with Intel on AEX-Notify: Innovative hardware-software

co-design included in recent processors

→ Probabilistic: SGX-Step remains relevant!
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Root-causing SGX-Step: Aiming the timer interrupt
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Root-causing SGX-Step: Microcode assists to the rescue!

ERESUME NOP1Arm timer

2. TLB flush1. Clear PTE A-bit

3. Assisted PT walk

page walk ($RIP) exec

PTE A-bit Mean (cycles) Stddev (cycles)

A=1 27 30

A=0 666 55
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Root-causing SGX-Step: Microcode assists to the rescue!

ERESUME NOP1Arm timer

2. TLB flush1. Clear PTE A-bit 3. Assisted PT walk

4. Filter zero-step (PTE A-bit)
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Ideas that were rejected (2)
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Virtual Machine
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Ideas that were rejected (3)
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AEX-Notify ISA 
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Attacker
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Legend:

AEX-Notify solution overview
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AEX-Notify solution overview

Enclave App

.page1:  

  …
  INC [RAX]

 …
  RET    # (C3 byte)

page walk (.page1) exec

AEX Handler IN
C

ERESUME

AEX Handler

1. Decode the 

saved [RIP]

2. Read and write 

back to [RAX]

3. …

XD

AEX

ERESUME

page walk ([RAX])

D AA

61.2%
71.1%

63.0% 65.9%

37.4%
26.5%

35.1% 32.0%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Intel SGX SDK (18) Gramine (53) Occlum (35) Total (106)

SGX Runtime (# of binaries analyzed)

CTD Instruction Coverage for popular SGX runtimes

Covered w/ CTD

Covered w/o CTD

98.1%98.6% 97.5% 98.0% Total Coverage

We implemented a fast, constant-time decoder (CTD)





SGX-Step led to new x86 processor instructions!

→ shipped in millions of devices ≥ 4th Gen Xeon [CVBC
+
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SGX-Step led to changes in

major OSs and enclave SDKs



Beyond SGX-Step: Derived Frameworks for Emerging TEEs

SGX-Step has inspired similar single-stepping frameworks for alternative TEEs

→ e.g., SEV, TDX, TrustZone

Independent testimonies on SGX-Step’s impact

• “In the hope that the framework inspires a similar community as SGX-Step, we

dubbed it SEV-Step.”[WWRE23]

• “Leveraging SGX-Step type attack to compromise Intel TDX, which is coined as

TDX-Step [. . . ] Working exploit well within the timeline but also collaborated

closely with the Intel TDX architecture team to review and refine the mitigation

for the vulnerability.”[Int23]
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“Embedded-systems security is,
for lack of a better word, a mess.”

– John Viega & Hugh Thompson (S&P’12)
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Sancus: Lightweight trusted computing for the IoT

OpenMSP430 CPU extensions

for isolation + attestation

LLVM compiler pass

+ +

Support software

“operating system”
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The bigger picture: The rise of trusted execution

Sancus

Intel SGX





Sancus: A Low-Cost Security Architecture for IoT devices

Extends openMSP430 with strong security primitives

• Software Component Isolation

• Cryptography & Attestation

• Secure I/O through isolation of

MMIO ranges

• Efficient, Modular, ≤ 2 kLUTs

• Cryptographic key hierarchy for

software attestation

• Isolated components are typically

very small (< 1kLOC)
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Noorman et al. Sancus 2.0: A Low-Cost Security Architecture for IoT devices. TOPS, 2017

Sancus is open source: https://distrinet.cs.kuleuven.be/software/sancus/ 3
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Sancus is dead, long live Sancus!

Sancus 1.0

Programming paradigms (auth exec)

Applications (Contiki, VulCAN, smart meter)

Real-time (Aion)

Attacks (T2W, Nemesis, DMA, Gap) Defenses (Sancus-V, SLLVM, SCF-MSP)

2013 2015-2017

2017-2022 2016-2021

2020-20232018-2022



Aion: Strong Availability Guarantees for Enclaves

Sancus as a Starting Point

Trusted Software

• Protected Scheduler controls

interrupts and scheduling decisions

Hardware Extensions

• Exception Engine facilitates

interruption of (protected) threads

• Atomicity Monitor provides control over interrupts to scheduler,

guarantees bounded critical sections

Alder et al., Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves. CCS, 2021
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Sancus attack research: The gift that keeps giving

Nemesis

[CCS’18]

Interruptible
enclaves

[MASS’16]

SGX-Step

[SysTEX’17]

Sancus-Step

[2019]

Sancus-V

[CSF’20]

Mind the Gap

[S&P’22]

DMA defense

[EuroS&P’23]

SLLVM

[EuroS&P’21]

SCF-MSP

[ARES’20]





Nemesis on embedded microprocessors (openMSP430+Sancus)
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Instruction (interrupt number)

0 (no press) 1 (key pressed) 0 (no press)

https://github.com/sancus-tee
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Nemesis hardware defense: Padding interrupt latency

• Busi et al. “Provably Secure Isolation for Interruptible Enclaved Execution on Small Microprocessors”, CSF 2020.
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Nemesis hardware defense: Studying limitations of formal systems

• Busi et al. “Provably Secure Isolation for Interruptible Enclaved Execution on Small Microprocessors”, CSF 2020.

• Bognar et al. “Mind the Gap: Studying the Insecurity of Provably Secure Embedded Trusted Execution Architectures”, S&P 2022.
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Nemesis software defenses: Balancing vulnerable branches

• Winderix et al. “Compiler-Assisted Hardening of Embedded Software Against Interrupt Latency Side-Channel Attacks”, EuroS&P 2021.

• Pouyanrad et al. “SCFMSP: Static Detection of Side Channels in MSP430 Programs”, ARES 2020.

• Salehi et al. “NemesisGuard: Mitigating Interrupt Latency Side Channel Attacks with Static Binary Rewriting”, Computer Networks 2022.
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Nemesis software defenses: Principled ISA augmentation

ISA
specification

LLVM compiler pass SCF-MSP static analysis

TableGen HDL simulation VCD trace

u-arch profile
C code

u-arch ISA augmentation

mitigated binary

1. Leakage analysis

2. Mitigation 3. Validation

• Winderix et al. “Compiler-Assisted Hardening of Embedded Software Against Interrupt Latency Side-Channel Attacks”, EuroS&P 2021.

• Pouyanrad et al. “SCFMSP: Static Detection of Side Channels in MSP430 Programs”, ARES 2020.

• Salehi et al. “NemesisGuard: Mitigating Interrupt Latency Side Channel Attacks with Static Binary Rewriting”, Computer Networks 2022.

• Bognar et al. “MicroProfiler: Principled Side-Channel Mitigation through Microarchitectural Profiling”, EuroS&P 2023.
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Outlook: Future and ongoing research directions

1. Universal attack primitives: Intel TDX, AMD SEV, ARM?

→ Adversary capabilities, hardware vs. software monitor, automation, etc.

2. Hardware extensions for next-gen TEEs: MSP430-Sancus, RISC-V

→ Provable security & limitations, availability, SMAP-like restrictions, etc.

3. Transparent shielding: Enclave runtime, compiler

→ Fuzzing, formal verification of the enclave interface

→ Compile-time hardening for incremental side-channel resistance

4. Towards transient safety: Redefining the hardware-software contract

→ Efficient containment of Spectre (long term) vs. LVI (short term)
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