On the Interplay between Attacks and New
Defenses

The Story of SGX-Step and Transferable Insights for Other Architectures

Jo Van Bulck

Huawei — KU Leuven research collaboration workshop, Leuven, March 6, 2024

A DistriNet, KU Leuven, Belgium &4 jo.vanbulck@cs.kuleuven.be ¥ jovanbulck

DistriN=t

https://distrinet.cs.kuleuven.be/people/jo
mailto:jo.vanbulck@cs.kuleuven.be
https://twitter.com/jovanbulck

About imec-DistriNet enclave research https://distrinet.cs.kuleuven.be/

e Trusted computing across the system stack: hardware, compiler, OS, apps

e Integrated attack-defense perspective and open-source prototypes

Transient-execution attacks Side-channel attacks Sancus TEE processor

https://distrinet.cs.kuleuven.be/

Mierosoft Dfse 2000
Windaws 2000
Microsaft Office for &'h:
L

Windows T

Windaws XP

Micresoft Office 2013

—
) |}

Large Hadron Callider
wm&wsvﬁp

Microsodt Visual Studio 2012
F::!tnd_(

LIS Army Futuze Combat System
Debian Glrcodetase

Mo 05 % "Tiger”

Car sodtware

" O ORI AT R L0 DR L RO

https://informationisbeautiful.net/visualizations/million-lines-of-code/

https://informationisbeautiful.net/visualizations/million-lines-of-code/

The big picture: Reducing attack surface with enclaves

App App

OS kernel
Hypervi or@:{

TPM CPU Mem HDD

@ Traditional layered designs: Large trusted computing base

The big picture: Reducing attack surface with enclaves

g Enclave app
S OS kernel x
Hypervisor —/l
TPM] CPUdé Mem M HDD

ﬂ Intel SGX promise: Hardware-level isolation and attestation

The rise of trusted execution environments

e 2004: ARM TrustZone

2015: Intel Software Guard Extensions (SGX)

2016: AMD Secure Encrypted Virtualization (SEV)
2017: AMD SEV with Encrypted State (SEV-ES)

e 2018: IBM Protected Execution Facility (PEF)

2020: AMD SEV with Secure Nested Paging (SEV-SNP)
e 2022: Intel Trust Domain Extensions (TDX)

5\ Q
83

AMD

T |

’Q‘ TEEs are here to stay...

Computing spectrum

ARM

Cortex-M Cortex-A Core-i/ Ryzen Xeon/EPYC

1-10 [10-100 [>100]

MSP430

—_—

Bare metal [Maskable interrupts [Security levels [Virtualization support]

O Research TrustZone Jj el sGx TDX / SEV
\ Enclave architectures /

Trusted execution environment types

1 1
App App | | App Aop | App App
A 4 A I
G”OeSSt Guest 0S : G‘c‘)‘gs" Guest 05 : Gg‘;‘“
A S S
Hypervisor 1 Hypervisor 1 Hypervisor
______________________________ e

No trusted hardware Enclave shielding VM shielding / Trustzone

Highlight #1: Impact on Attacks

Vulnerable platforms: Intel
Software Guard Extensions (SGX)

[Ex=rrd

(inte) =gl @ signal

@-%l Enarx (Red Hat) ' Asylo (Google)

7
. i .
WolfoS1 il Fortanix

Software interface attacks (part 1)

e R

Enclave app

S N
g OS kernel

(& J

CPU d“ @ {Mem ﬁ

SGX not immune to interface sanitization oversights in enclave software

Privileged side-channel attacks (part 2)

Enclave app

Privileged side channels to spy on enclave-CPU interaction metadata

Transient-execution attacks (part 3)

e R

Enclave app

(5 K
cPu ot @ vem

|

Transient-execution data extraction from CPU to break enclave confidentiality

Research agenda: Understanding privileged attack surface

1. Which novel privileged attacks exist?

— Uncover previously unknown attack avenues

« * 2. How well can they be exploited in practice?

' — Develop new techniques and practical attack frameworks

3. What can be leaked?

— Leak metadata and data

TEE attack research leads the way ...

TEE attack research leads the way ...

) e Privileged TEE attacker model sets the bar!
t e |dealized execution environment for attack research

e Generalizations: e.g., Foreshadow-NG, branch
prediction, address translation, etc.

Challenge: Side-channel Sampling Rate

Slow Medium Fast
shutter speed shutter speed shutter speed

CC-BY-SA Nevit Dilmen

SGX-Step: Executing enclaves one instruction at a time

——> OUTPUT

"
INPUT —».

y

36

SGX-Step: Executing Enclaves one Instruction at a Time

a,
~0

4

INPUT —>

"
$’ —> OUTPUT

D

INTERRUPT

D Van Bulck et al., “SGX-Step: A Practical Attack Framework for Precise Enclave Execution Control”, SysTEX 2017.

SGX-Step: Executing Enclaves one Instruction at a Time

o~
«Q)» Interrupt handler

4 Enclave N\

if secret do
—— instl <€«—

else A
inst2 .
endif E ERESUME J :
_ e Lserspace
______________________________________ s oS kernel

\ [/dev/;gx—step]

O Van Bulck et al., “SGX-Step: A Practical Attack Framework for Precise Enclave Execution Control”, SysTEX 2017. 3

A Retrospective of 5 Years of SGX-Step Development

Became de-facto standard for

interrupt-driven attacks

Actively maintained & supported

Widely recognized:
SGX—Step e > 400 GitHub stars

e > 215 academic citations

) https://github.com/jovanbulck/sgx-step Marked influence on both attacks

> Unwatch 27 ~ % Fork 82 bt 'ﬂ? Star 402 - & defenses on SGX and beyond

https://github.com/jovanbulck/sgx-step

SGX-Step: Enabling a New Line of High-Resolution Attacks

Yr Venue Paper Step Use Case Drv Yr Venue Paper Step Use Case Drv
'15 S&P Ctrl channel [XCP15] ~ Page Probe (page fault) '20 CHES A to Z [AGB20] ~ Page Probe (page fault) v -
'16 ESORICS AsyncShock [WKPK16] ~ Page Exploit (mem safety) — & 20 CCS Déja Vu NSS [uUHGDL*20] ~ Page Probe (page fault) v -
'17 CHES CacheZoom [MIEL7] X>1 Probe (L1 cache) 4 ‘2 '20 MICRO PTHammer [ZCL*20] = Probe (page walk) v -
17 ATC Hahnel et al. [HCP17] X0->1 Probe (L1 cache) v~ B8 21 USENIX Frontal [PSHC21 e Probe (IRQ latency) v -+
'17 USENIX BranchShadow [LSGHJI X5-50 Probe (BPU) xo 21 S&P CrossTaI[k [RMR+]21] v1 Probe Etranﬁent e:ic) v -
1; 3:&::? ;?iélgPP[TLiJ%E]VVK 17] : EZZE g;tlr;t(;’:wg:mta:':ty) j : :21 CHES Online te_mplate [AB21] v1 Probe (IRQ count) v -+
, 21 NDSS SpeechMiner [XZT20] - Framework v -
117 SysTEX SGX.—St.ep [VBPS17] v0-1 Framework) v - 91 S&P Platypus [LKO*21] /0-1 Probe (voltage) v
18 ESSoS Offiimits [GVBPS1s] /0-1 Probe (segmentation) v -# 21 DIMVA Aion [HXCL21] o Probe (cache) o
18 AsiaCCS Single-trace RSA [WSB18] ~ Page Probe (page fault) v - , b i

'18 USENIX Foreshadow [VBMW'18] v 0-1 Probe (transient exec) v - Al G ShiE(OR A /1 Bl (emeliy) o <7
'18 EuroS&P SgxPectre [CCX"19] ~ Page Exploit (transient) v B 2l Ees Utllb:LOOKUP [S_BWE21] 71U Gl Cleacte) =4
'18 CHES CacheQuote [DDME* 18] X1 Probe (L1 cache) B '22 USENIX Rapid prototyping [ESSG22] v 1 Framework v -
18 1CCD SGXlinger [HZDL18] X1 Probe (IRQ latency) X & '22 CT-RSA Kalyna expansion [CGYZ22] v 1 Probe (L3 cache) v
18 CCS Nemesis [VBPS18] /1 Probe (IRQ latency) v 22 SEED Enclyzer [ZXTZ22] - Framework v -
'19 USENIX Spoiler [IMB*19] /1 Probe (IRQ latency) v - '22 NordSec Self-monitoring [LBA22] ~ Page Defense (detect) v o
'19 CCS ZombieLoad [SLM*19] /0-1 Probe (transient exec) v - '22 AutoSec Robotic vehicles [LS22] v 1->1 Exploit (timestamp) v -
19 CCs Fallout [CGG*19] - Probe (transient exec) v - 22 ACSAC MOoLE [LWM*22] /1 Defense (randomize) v -
19 CCS Tale of 2 worlds [VBOM*19] v 1 Exploit (mem safety) v - 22 USENIX AEPIC [BKS"22] v1 Probe (1/0 device) v -+
19 ISCA MicroScope [SYG*19] 0 - Page Framework x & '22 arXiv Confidential code [PSL™22] v 1 Probe (IRQ latency) v -+
20 CHES Bluethunder [HMW*20] v1 Probe (BPU) ;- '23 ComSec FaultMorse [HZL"23] - Page Probe (page fault) v
20 USENIX Big troubles [WSBS19)] Page Probe (page fault) v - 23 CHES HQC timing [HSC*23] /1 Probe (L3 cache) v o
20 S&P Plundervolt [MOG*20] = Exploit (undervolt) v - '23 ISCA Belong to us [YJF23] v1 Probe (BPU) v
'20 CHES Viral primitive [AB20] /1 Probe (IRQ count) v - '23 USENIX BunnyHop [ZTO*23] s 1 Probe (BPU) . 4
20 USENIX CopyCat [MVBH"20] /1 Probe (IRQ count) v o '23 USENIX DownFall [Mog23] v 0-1 Probe (transient exec) v -
'20 S&P LVI [VBMS *20] /1 Exploit (transient) v '23 USENIX AEX-Notify [CVBC*23] /1 Defense (prefetch) v -

A Versatile Open-Source Attack Toolkit

void inc_secret(void)
if (secret)
*a+=1;
else

1)
" a=1; Interrupt latency

[CCS'18, USENIX'21] [
testje mov call
{ e - 77')’
SH —— CMPSHIFL 2SN

1 o
: G
i \LLL T
Page-table manipulation
[AsiaCCS'18, USENIX'18-23, CC520, CHES'20, NDSS'21] +

) Interrupt counting
@’ @ O S G x- Ste p [CCS'19, CHES'20-21, USENIX'20]
i P J:

.= High-resolution probing s

[CCS'19/21, CHES'20, S&P'20-21, USENIX'17/18/22]

[USENIX'18, CCS'19, s&P'21] Zero-step replaying

SGX-Step demo: Building a memcmp () Password Oracle

[idt.c]
[idt.c]
[idt.c]
[idt.c]

[file.
[apic.
[apic.
[apic.

c]

DTR.base=0xfffffef000DODOB0/size=4095 (256 entries)
established user space IDT mapping at @x7f7ff8e%a0oe
installed asm IRQ handler at 10:0x56312d19bH800
IDT[45] @Ox7f7ff8e9a2d0 = 0x56312d19b00O (seg sel 0x10); p=1; dpl=3; type=14; ist=0
reading buffer from '/dev/cpu/l/msr' (size=8)
established local memory mapping for APIC BASE=8xfeeD0B00 at 0x7f7ffB8e39000
APIC ID=2000000; LVYTT=400ec; TDCR=0
APIC timer one-shot mode with division 2 (lvtt=2d/tdcr=0)

[attacker] steps=15; guess='*kfkks!
[attacker] found pwd len = 6

[attacker] steps=35; guess='SECRET' --> SUCCESS

[apic.c] Restored APIC_LVTT=408ec/TDCR=0)

[file.c¢] writing buffer to '/dev/cpu/l/msr' (size=8)
[main.c] all done; counted 2260/2183 IRQs (AEP/IDT)
jo@breuer:~/sgx-step-demo$

Nemesis: Extracting IRQ latency traces with SGX-Step

‘.‘ _ R . . _ _ . .
's* Enclave x-ray: IRQ latency leaks instruction-level y-arch timing!]

IRQ latency (cycles)

il

D Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018..

Instruction (interrupt number)

47

Nemesis microbenchmarks: Measuring x86 operands

;‘@ Instruction timing leak: Reconstruct x86 operand class

A

Ifence

nop

Frequency

Y

8500

7700 7900 IRQ latency (cycles) 8300

48

Nemesis microbenchmarks: Measuring x86 cache misses

[:‘@ Instruction timing leak: Reconstruct microarchitectural state]

A

load cache hit

e

Frequency

Y

7700 7900 IRQ latency (cycles) 8300 8500
48

Nemesis microbenchmarks: Measuring x86 data dependencies

;‘@ Instruction timing leak: Execution time = dividend significant bits

800
T rdx=0x0fffffffffffffff; rax=oxffffffffffffffff
700 A [rdx=0x00000000ffffffff; rax=0xffffffffffffffff
rdx=0x0000000000000000; rax=Oxffffffffffffffff
600 [rdx=0x0000000000000000; rax=0x0000000000000000
5001

Frequency
N w B
o o o
o o o

-
o
o

7700 7800 7900 8000 8100 8200 8300 8400 8500
IRQ latency (cycles)

48

De-anonymizing enclave lookups with interrupt latency

Goal: Infer lookup — reconstruct bsearch control flow J
“ " .
7950 ' K Left Right > Hit ©
m <
@ r
9
[
§ ¢
g "o/
3
8
(o4
«
7800 - J b

Interrupt (instruction number)

42 /43

’

’;' Highlight #2: Impact on Defenses

‘\

Hardening Enclaves against Single-Stepping

D
k\ SGX-Step sets the bar for adequate side-channel defenses!

— (e.g., LVI, compiler, static analysis, constant-time, etc.)

“ineffective if the attacker can single-step through the enclave using the recent
SGX-Step framework. Taking into account these stronger attacker capabili-
ties, we propose a new defense...” [HLLP18]

:@g SGX-Step inspired several dedicated hardware-software mitigations

— Collaboration with Intel on AEX-Notify: Innovative hardware-software
co-design included in recent processors
— Probabilistic: SGX-Step remains relevant!

Root-causing SGX-Step: Aiming the timer interrupt

APIC time urrezbol 150 wistibutian
16252, gaT2. A0

nuf l’ " M, .

Q
X% Q
& Q}J &
A
Bro= Bro— R A
: ; t% Y RIP @2\\
N
[Armtimer]: ERESUME § § § § §
v

] ®

Root-causing SGX-Step: Microcode assists to the rescue!

PTE A-bit Mean (cycles) Stddev (cycles) TS
LT 4O
A=0 666 55 v
vAssiSted PT walk
g \ }
o
- -
I'& (page walk (SRIP) [exec

1. Clear PTE A-bit 2. TLB flush

[Arm timerI ERESUME NOP,

) o-@

Root-causing SGX-Step: Microcode assists to the rescue!

9 d \ d® =7

1. Clear PTE A-bit 2. TLB flush 3. Assisted PT walk

a,

OW 4. Filter zero-step (PTE A-bit)

= as. OO
T LR

Arm tlmer ERESUME

) o-@

Ideas that were rejected (2)

What if...?

[Arm timerI ERESUME

h
NOP; :%E E

NOP,
NOP.
NOP,
NOP

Highly complex

Ideas that were rejected (3)

Memory

/ Enclave \ Virtual Machine

Monitor (VMM)
' Enclave’s Page \‘. ! Extended Page
: Tables = ! ! Tables i
1 =11 —
1 E : ! l :
i ' Guest i ' Host
leeoe gl physical ! eee l l i physical
i i address | | address
1 1 1
a , g L §

Virtual Machine

AEX-Notify solution overview

/ ERESUME Q N\
Ve N\ Noti \l./
Enclave AEX-Notify P N ~

behavior AEX Handler Enclave App
Interruptor 1. Call a C3 byte -pagel:
Enclave App [.. Exception on .pagel _/9
2. Load all cache NOP,
Attacker lines in .pagel
EDECCSSA o G Q 3.JMP [&NOP,] — RET # (C3 byte)
& J 4
page walk (.pagel) exec
AEX Handler ERESUME |
A~
R ERESUME I AEX Handler } g‘;
i AEX-Notify ISA =
Legend:

AEX-Notify solution overview
We implemented a fast, constant-time decoder (CTD) . {/_ Q N\
s WV N

CTD Instruction Coverage for popular SGX runtimes

100.0% 98.6% 97.5% 98.1%

P
9B0% e Total Coverage AEX Handler Enclave App
saved [RIP]

, 1. Decode the .pagel: .
o o 2. Read and write /-) INC [RAX] : E I
e L 65.9% m Covered w/o CTD back to [RAX] /| e

0o 3. ..

,) U RET # (C3 byte) J

Intel SGX SDK (18) Gramine (53) Occlum (35)

~

Total (106)
SGX Runtime (# of binaries analyzed)

page walk ([RAX]) page walk (.pagel) exec

W\ e
™ A A

ERESUME J AEX Handler }

INC

US 2022/0012369 Al

TECHNIQUES AND TECHNOLOGIES TO
ADDRESS MALICIOUS SINGLE-STEPPING
AND ZERO-STEPPING OF TRUSTED

EXECUTION ENVIRONME

TECHNICAL FIELD

[0001] The disclosure relates generally to electronics, and,
mere specifically, an embodiment of the disclosure relates to
techniques and technologies 1o address malicious single-
stepping and zero-stepping of trusted execution environ-
ments (TEEs).

BACKGROUND

[0002] Trusted Execution Environments {TEEs). such as
Intel® Software Guard Extensions (Intel® SGX), are sus-
ceplible to methods that induce inlerrupls or exceplions lo
maliciously single-step (e.g. SGX-Step) or vero-step insiruc-
tion processing in the TEE (e.g. Microscope replay attack,
PLATYPUS power side-channel attack), During single-
stepping or zero-stepping. a malicious hvpervisor or oper-
ating system (OS) may be able to increase the granularity of
side channel information which can be collected during the
TEE processing. Analyzing side channel information is a
method that can be uvsed to infer information, such as
instruction Hows and data, about the TEE. Thus, there is
value in techniques that can mitigate these attack techniques,
specifically single-stepping and zero-stepping of TEEs.

Jan. 13, 2022

side-channel attack) and then resumes execution of the code
from the enclave according to embodiments of the disclo-
sure.

[0011] FIG. 8 illustrates a method of handling an asyn-
chronous exit of the exeeution of code rom an enclave that
utilizes an enclave enter instruction, an enclave exit instruc-
tion, and an enclave resume instruction that invokes a
handler to handle an operating system signal caused by the
asvnchronous exit and then resumes execution of the code
from the enclave according to embodiments of the disclo-
sure.

[0012] FIG. 9 illustrates a method of handling an excep-
lion with an enclave that comprises a field w indicate a set
of one or more exceptions o suppress, and when execution
of the code in the enclave encounters the exception. a
handler is invoked without delivering the exception 1o an
operating system according to embodiments of the disclo-
sure,

[0013] FIG. 10 illustrates a hardware processor coupled 1o
slorage that includes one or more enclave instructions (e.g.,
an enclave resume (ERESUMLE) instruction) according to
embediments of the disclosure,

[0014] FIG. 11 is a flow diagram illustrating operations of
a method for processing an “TRESUME™ instruction
according o embodiments of the disclosure.

[0015] FIG. 12 is a flow diagram illustrating operations of
anuther method lor processing an “ERESUME™ instruction
accerding to embodiments of the disclosure,

[0016] FIG. 13A is a block diagram illustrating a generic

=
ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION I n tel

CHAPTER 8

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER
LEAF FUNCTION

8.1 INTRODUCTION

Asynchronous Enclave Exit Notify (AEX-Notify) is an extension to Intel® SGX that allows Intel SGX enclaves to be
notified after an asynchronous enclave exit {AEX) has occurred. BQECCSSA is a new Intel SGX user leaf function

Nwell as s

uileondpieion SGX-Step led to new x86 processor instructions!
= — shipped in millions of devices > 4th Gen Xeon [CVBC' 23]

phoronix

ARTICLES & REVIEWS NEWS ARCHIVE FORUMS PREMIUM CONTACT © CATEGORIES

Intel AEX Notify Support Prepped For Linux To Help
Enhance SGX Enclave Security

mber 202

6:01 AM EST. 5 Comments

tten by Michael Larabel in Intel on 6 No

Future Intel CPUs and some existing processors via a microcode update will
support a new feature called the Asynchronous EXit (AEX) notification
mechanism to help with Software Guard Extensions (SGX) enclave security.
Patches for the Linux kernel are pending for implementing this Intel AEX
Notify support with capable processors.

Intel's Asynchronous EXit (AEX) notification mechanism lets SGX enclaves run a handler
after an AEX event. Those handlers can be used for things like mitigating SGX-Step as an
attack framework for precise enclave execution control.

=0 a e &

Code 1 Vv in Intel/linux-sgx X = Fileer

v wa sdkdtrts/linuxdtrts_mitigation.s

aH ¢ pescriprio
tile provides mitigations for SGX-Step

49 . The

71 * Function

and_continue. utio

tant_time_apply 0
Mitigate SGX-Step and return to the point at which the
nost recent

@ NEerrupt/exception oceurred

7A\

SGX-Step led to changes in
major OSs and enclave SDKs

SGX-Step

Beyond SGX-Step: Derived Frameworks for Emerging TEEs

SGX-Step has inspired similar single-stepping frameworks for alternative TEEs

- e.g., AMDZ1SEV, @ TDX, arm TrustZone

Independent testimonies on SGX-Step’s impact

e “In the hope that the framework inspires a similar community as SGX-Step, we

dubbed it SEV-Step.” [WWRE23]

“Leveraging SGX-Step type attack to compromise Intel TDX, which is coined as
TDX-Step [...] Working exploit well within the timeline but also collaborated
closely with the Intel TDX architecture team to review and refine the mitigation

for the vulnerability.” [Int23]
11

“Embedded-systems security is,
for lack of a better word, a mess.”

- John Viega & Hugh Thompson (S&P’12)

Sancus: Lightweight trusted computing for the loT

o)l 4+ ““v J o+ {é}

ok
OpenMSP430 CPU extensions LLVM compiler pass Support software
for isolation + attestation “operating system”

Unprotected | SPM, Unprotected | §pA, | Unprotected
memory Code mMCmory Data, MCmory

0x0000 OxFFFF 3

The bigger picture: The rise of trusted execution

of

gl holar results for “trusted execution environment".

35000 -

00081 Intel SGX

Sancus

23000 -

20000 -

15000 -

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 23

Sancus: Lightweight and Open-Source Trusted Computing for

the loT

\iew on GitHub € Watch a demo B = Explore Research [l

((We do have problems with security, ones that need to be dealt with, not only with changes to software

toolchains but also to the underlying hardware.

Rik Farrow USENIX [login:

U

SOFTWARE ISOLATION

Outside software cannot read or write a
protected module’s runtime state. A module
can only be called through one of its
designated entry points

=
2=

SECURE COMMUNICATION

Sanous safeguards the authenticity,
integrity, and freshness of ali traffic between
a protected module and its remate provider,

LIGHTWEIGHT CRYPTOGRAPHY
A minimalist eryptographic hardware unit
enables low-overhead symmetric key
derivation, authenticated encryplion. and
hashing,

e

SECURE 'O

Secure driver modules have exclusive
ownership over memory-mapped /G
peripheral devices, and can implement
software-defined access control policies.

iy
SOFTWARE ATTESTATION
Remaote or local parfies can verify at
runtime that a particular software module

has been isolated on-a specific node
without having been tampered with

W
BACKWARDS COMPATIBILITY

Legacy applications continue to function as
expecied, al components can be
migrated gradually into Sancus-protected
modules,

Sancus: A Low-Cost Security Architecture for loT devices

Extends openMSP430 with strong security primitives

Sancus CPU core

Software Component Isolation

Frontend ‘

Cryptography & Attestation ﬁ {}—iﬁ :

Secure 1/O through isolation of
MMIO ra nges Register file

Efficient, Modular, < 2 kLUTs
Cryptographic key hierarchy for

software attestation

g
2 g

Memory backbone

Peripherals

Isolated components are typically
very small (< 1kLOC)

Noorman et al. Sancus 2.0: A Low-Cost Security Architecture for loT devices. TOPS, 2017

Sancus is open source: https://distrinet.cs.kuleuven.be/software/sancus/

https://distrinet.cs.kuleuven.be/software/sancus/

Sancus is dead, long live Sancus!

—

@ 2013 2015-2017 EEE! oo

Sancus 1.0 ——p Applications (Contiki, VulCAN, smart meter)

2017-2022 / \ 2016-2021

Programming paradigms (auth exec) Real-time (Aion) (/’

Vb — @

Attacks (T2W, Nemesis, DMA, Gap) —p Defenses (Sancus-V, SLLVM, SCF-MSP)
2018-2022 2020-2023 43

Aion: Strong Availability Guarantees for Enclaves

Sancus as a Starting Point

Shared Shared <
resource resource E
B e

Resources

Trusted Software

Aacker appliction JGF> applcation |
e Protected Scheduler controls = [,,,f"‘,‘?',’,‘??a,‘,'f’,", , ”ﬁ: ,,, , ¢ SR PN
interrupts and scheduling decisions {0 o> enciaved scheduler

T cheduler maintains
- 3 controlover
H interrupts

TEE Exception Atomicity (
architecture engine monitor

|:J> Direct data access » Relation

Hardware Extensions

HW

CPU
e Exception Engine facilitates

interruption of (protected) threads
e Atomicity Monitor provides control over interrupts to scheduler,

guarantees bounded critical sections

Alder et al., Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves. CCS, 2021

Sancus attack research: The gift that keeps giving

~ / SGX-Sfep \ FORESHADOW
‘/ [SysTEX'17]
s Sancus-Step

) [2019]
Interruptible Nemesis *
enclaves [CCS'18]

[MASS’16] Sancus-V —— Mind the Gap
[CSF'20] [S&P’22]

Y, |

SCF-MSP @————— SLLVYM —pp DMA defense

[ARES’20] [EuroS&P'21] [EuroS&P’23] 4

PSIRT Notification
MSP430FR5xxx and MSP430FR6xxx IP Encapsulation
Write Vulnerability

w3 TeEXAs INSTRUMENTS

Summary

The IP Encapsulation feature of the Memory Protection Unit may not properly prevent writes to an IPE protected
region under certain conditions. This vulnerability assumes an attacker has control of the device outside of the
IPE protected region (access to non-protect memory, RAM, and CPU registers).

Vulnerability

Nemesis on embedded microprocessors (openMSP430+Sancus)

0O 1/, 0(0 00 00O0OOOOOODO

~ IRQ latency »

4 A TT
_ 0 (no press) 1 (key pressed) 0 (no press)
3 f‘&“‘
<
g
g
i,
o
&
14 [

Instruction (interrupt number)

) https://github.com/sancus-tee 49

https://github.com/sancus-tee

Nemesis hardware defense: Padding interrupt latency

>

F Y

& Aty Aty Aty

e Legend:

S
[] :enclave instruction

Interrupt service

routine runs here v padding

@ [Busi et al. “Provably Secure Isolation for Interruptible Enclaved Execution on Small Microprocessors”’, CSF 2020.

50

Nemesis hardware defense: Studying limitations of formal systems

[Verified SV\i Trusted SW Other SW}

[Veriﬁed H\n? Core HPenpheral}
-

@ [Busi et al. “Provably Secure Isolation for Interruptible Enclaved Execution on Small Microprocessors”’, CSF 2020.

® [Bognar et al. “Mind the Gap: Studying the Insecurity of Provably Secure Embedded Trusted Execution Architectures”, S&P 2022.

50

Nemesis software defenses: Balancing vulnerable branches

ol A ~ s = Ty Y r 0
PR 111 IR IR 111
RIERIER 2|22k 2 (212 2022 211212
20l 21| 3 3003 3|3 30133 333
3001 1 1 — [| L L1
AR A L S —

(a) () (c) (d) (e)

® [Winderix et al. “Compiler-Assisted Hardening of Embedded Software Against Interrupt Latency Side-Channel Attacks’, EuroS&P 2021.
® [Pouyanrad et al. “SCFMSP: Static Detection of Side Channels in MSP430 Programs”, ARES 2020.

® [Salehi et al. “NemesisGuard: Mitigating Interrupt Latency Side Channel Attacks with Static Binary Rewriting”, Computer Networks 2022.

51

Nemesis software defenses: Principled ISA augmentation

1. Leakage analysis

ISA TableGen HDL simulation VCD trace
specification

} u-arch profile

u-arch ISA augmentation ‘

dk

LLVM compiler pass

2. Mitigation

mitigated binary
[ttt AN

v

SCF-MSP static analysis —>

3. Validation

D Winderix et al. “Compiler-Assisted Hardening of Embedded Software Against Interrupt Latency Side-Channel Attacks”, EuroS&P 2021.
D Pouyanrad et al. “SCFMSP: Static Detection of Side Channels in MSP430 Programs”, ARES 2020.
D Salehi et al. “NemesisGuard: Mitigating Interrupt Latency Side Channel Attacks with Static Binary Rewriting”, Computer Networks 2022.

D Bognar et al. “MicroProfiler: Principled Side-Channel Mitigation through Microarchitectural Profiling”, EuroS&P 2023.

51

Outlook: Future and ongoing research directions

1. Universal attack primitives: Intel TDX, AMD SEV, ARM?

— Adversary capabilities, hardware vs. software monitor, automation, etc.

2. Hardware extensions for next-gen TEEs: MSP430-Sancus, RISC-V

— Provable security & limitations, availability, SMAP-like restrictions, etc.

3. Transparent shielding: Enclave runtime, compiler

— Fuzzing, formal verification of the enclave interface
— Compile-time hardening for incremental side-channel resistance

4. Towards transient safety: Redefining the hardware-software contract

— Efficient containment of Spectre (long term) vs. LVI (short term)

23

