
Transient Execution Attacks:

Lessons from Spectre, Meltdown, and Foreshadow

Jo Van Bulck

� imec-DistriNet, KU Leuven • 7 jo.vanbulck@cs.kuleuven.be • � jovanbulck

ISSE Brussels, November 6, 2018

https://distrinet.cs.kuleuven.be/people/jo
mailto:jo.vanbulck@cs.kuleuven.be
https://twitter.com/jovanbulck

A primer on software security

Secure program: convert all input to expected output

INPUT OUTPUT

1 / 17

A primer on software security

Buffer overflow vulnerabilities: trigger unexpected behavior

INPUT OUTPUT

1 / 17

A primer on software security

Safe languages & formal verification: preserve expected behavior

INPUT OUTPUT

1 / 17

A primer on software security

Side-channels: observe side-effects of the computation

INPUT OUTPUT

1 / 17

Evolution of “side-channel attack” occurrences in Google Scholar

1990 1994 1998 2002 2006 2010 2014 2018

3000

4000

2000

1000

DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/
2 / 17

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

CPU cache timing side-channel

Cache principle: CPU speed � DRAM latency → cache code/data

CPU + cache DRAM memory

while true do

 maccess(&a);

endwh

3 / 17

CPU cache timing side-channel

Cache miss: Request data from (slow) DRAM upon first use

CPU + cache DRAM memory

while true do

 maccess(&a);

endwh

cache miss

a

3 / 17

CPU cache timing side-channel

Cache hit: No DRAM access required for subsequent uses

CPU + cache DRAM memory

while true do

 maccess(&a);

endwh

cache hit

a

3 / 17

Cache timing attacks in practice: Flush+Reload

if secret do

 maccess(&a);

else

 maccess(&b);

endif

flush(&a);

start_timer

 maccess(&a);

end_timer

CPU + cache DRAM memory

a

4 / 17

Cache timing attacks in practice: Flush+Reload

if secret do

 maccess(&a);

else

 maccess(&b);

endif

flush(&a);

start_timer

 maccess(&a);

end_timer

CPU + cache DRAM memory

cache miss

secret=1, load 'a' into cache

a

4 / 17

Cache timing attacks in practice: Flush+Reload

if secret do

 maccess(&a);

else

 maccess(&b);

endif

flush(&a);

start_timer

 maccess(&a);

end_timer

CPU + cache DRAM memory

a

cache hit

fast access(&a) → secret=1

4 / 17

Cache timing attacks in practice: Flush+Reload

if secret do

 maccess(&a);

else

 maccess(&b);

endif

flush(&a);

start_timer

 maccess(&b);

end_timer

CPU + cache DRAM memory

cache miss

slow access(&b) → secret=1

cache miss

b

4 / 17

A primer on software security (revisited)

Side-channels: observe side-effects of the computation

INPUT OUTPUT

5 / 17

A primer on software security (revisited)

Constant-time code: eliminate secret-dependent side-effects

INPUT OUTPUT

5 / 17

A primer on software security (revisited)

Transient execution: HW optimizations do not respect SW abstractions (!)

INPUT OUTPUT

5 / 17

Out-of-order and speculative execution

Key discrepancy:

Programmers write sequential instructions

Modern CPUs are inherently parallel

⇒ Speculatively execute instructions ahead of time

Best-effort: What if triangle fails?

→ Commit in-order, roll-back square

. . . But side-channels may leave traces (!)

6 / 17

Out-of-order and speculative execution

Key discrepancy:

Programmers write sequential instructions

Modern CPUs are inherently parallel

⇒ Speculatively execute instructions ahead of time

Best-effort: What if triangle fails?

→ Commit in-order, roll-back square

. . . But side-channels may leave traces (!)

6 / 17

Out-of-order and speculative execution

Overflow
exceptionRoll-back

Key discrepancy:

Programmers write sequential instructions

Modern CPUs are inherently parallel

⇒ Speculatively execute instructions ahead of time

Best-effort: What if triangle fails?

→ Commit in-order, roll-back square

. . . But side-channels may leave traces (!)

6 / 17

Transient execution attacks: Welcome to the world of fun!

CPU executes ahead of time in transient world

Success → commit results to normal world ,
Fail → discard results, compute again in normal world /

Transient world (microarchitecture) may temp bypass architectural software intentions:

Delayed permission checks

Mispredict control flow

7 / 17

Transient execution attacks: Welcome to the world of fun!

CPU executes ahead of time in transient world

Success → commit results to normal world ,
Fail → discard results, compute again in normal world /

Transient world (microarchitecture) may temp bypass architectural software intentions:

Delayed permission checks Mispredict control flow

7 / 17

Transient execution attacks: Welcome to the world of fun!

Key finding of 2018

⇒ transmit secrets from transient to normal world

Transient world (microarchitecture) may temp bypass architectural software intentions:

Delayed permission checks Mispredict control flow

7 / 17

Meltdown: Transiently encoding unauthorized memory

Unauthorized access

8 / 17

Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

s
e
c
re

t
id

x

8 / 17

Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window Exception

(discard architectural state)

8 / 17

Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

cache hit

Exception handler

8 / 17

Mitigating Meltdown: Unmap kernel addresses from user space

OS software fix for faulty hardware (↔ future CPUs)

Unmap kernel from user virtual address space

→ Unauthorized physical addresses out-of-reach (˜cookie jar)

9 / 17

Rumors: Meltdown immunity for SGX enclaves?

“[enclaves] remain protected and completely secure”

— International Business Times, February 2018

“[enclave memory accesses] redirected to an abort page, which has no value”

— Anjuna Security, Inc., March 2018

10 / 17

https://web.archive.org/web/20180617022540/https://www.ibtimes.co.uk/meltdown-melted-down-everything-except-one-thing-1663785
https://web.archive.org/web/20180720144203/https://www.anjuna.io/blog/2018/2/7/meltdown-spectre-sgx

Rumors: Meltdown immunity for SGX enclaves?

https://wired.com and https://arstechnica.com

10 / 17

https://wired.com
https://arstechnica.com

Building Foreshadow

Foreshadow can read unmapped physical addresses from the cache (!)

11 / 17

Building Foreshadow

Foreshadow can read unmapped physical addresses from the cache (!)

11 / 17

Foreshadow: Breaking the virtual memory abstraction

SGX?
EPT

walk?
PT

walk?

L1D

vadrs
guest
padrs

host
padrs

Tag? Pass to out-of-order

CPU micro-architecture

EPCM fail

1 2 3

3a

Arbitrary L1 cache read → bypass OS/hypervisor/enclave protection

12 / 17

Mitigating Foreshadow

13 / 17

Mitigating Foreshadow

Future CPUs

(silicon-based changes)

https://newsroom.intel.com/editorials/advancing-security-silicon-level/

13 / 17

https://newsroom.intel.com/editorials/advancing-security-silicon-level/

Mitigating Foreshadow

OS kernel updates

(sanitize page frame bits)

https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/L1TF

13 / 17

https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/L1TF

Mitigating Foreshadow

Intel microcode updates

⇒ Flush L1 cache on enclave/VMM exit + disable HyperThreading

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault

13 / 17

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault

Mitigating Foreshadow/L1TF: Hardware-software cooperation

14 / 17

Spectre v1: Speculative buffer over-read

secretuser buffer Programmer intention: never access out-of-bounds memory

Branch can be mistrained to speculatively (i.e., ahead of
time) execute with idx ≥ LEN in the transient world

Side-channels leak out-of-bounds secrets to the real world

15 / 17

Spectre v1: Speculative buffer over-read

secretuser buffer Programmer intention: never access out-of-bounds memory

Branch can be mistrained to speculatively (i.e., ahead of
time) execute with idx ≥ LEN in the transient world

Side-channels leak out-of-bounds secrets to the real world

15 / 17

Spectre v1: Speculative buffer over-read

secretuser buffer Programmer intention: never access out-of-bounds memory

Branch can be mistrained to speculatively (i.e., ahead of
time) execute with idx ≥ LEN in the transient world

Side-channels leak out-of-bounds secrets to the real world

15 / 17

Mitigating Spectre v1: Inserting speculation barriers

secretuser buffer Programmer intention: never access out-of-bounds memory

Insert speculation barrier to tell the CPU to halt the
transient world until idx got evaluated ↔ performance /

Huge error-prone manual effort, no reliable automated
compiler approaches yet. . .

16 / 17

Mitigating Spectre v1: Inserting speculation barriers

secretuser buffer Programmer intention: never access out-of-bounds memory

Insert speculation barrier to tell the CPU to halt the
transient world until idx got evaluated ↔ performance /

Huge error-prone manual effort, no reliable automated
compiler approaches yet. . .

16 / 17

Mitigating Spectre v1: Inserting speculation barriers

secretuser buffer Programmer intention: never access out-of-bounds memory

Insert speculation barrier to tell the CPU to halt the
transient world until idx got evaluated ↔ performance /

Huge error-prone manual effort, no reliable automated
compiler approaches yet. . .

16 / 17

Conclusions and take-away https://foreshadowattack.eu/

Hardware + software patches

Update your systems! (+ disable HyperThreading)

⇒ New class of transient execution attacks

⇒ Security cross-cuts the system stack: hardware, hypervisor, kernel, compiler, application

⇒ Importance of fundamental side-channel research

17 / 17

https://foreshadowattack.eu/

Conclusions and take-away https://foreshadowattack.eu/

Hardware + software patches

Update your systems! (+ disable HyperThreading)

⇒ New class of transient execution attacks

⇒ Security cross-cuts the system stack: hardware, hypervisor, kernel, compiler, application

⇒ Importance of fundamental side-channel research

17 / 17

https://foreshadowattack.eu/

References I

P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.

Spectre attacks: Exploiting speculative execution.
In Proceedings of the 40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg.

Meltdown: Reading kernel memory from user space.
In Proceedings of the 27th USENIX Security Symposium (USENIX Security 18), 2018.

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx.

Foreshadow: Extracting the keys to the Intel SGX kingdom with transient out-of-order execution.
In Proceedings of the 27th USENIX Security Symposium. USENIX Association, August 2018.

J. Van Bulck, F. Piessens, and R. Strackx.

Nemesis: Studying microarchitectural timing leaks in rudimentary CPU interrupt logic.
In Proceedings of the 25th ACM Conference on Computer and Communications Security (CCS’18). ACM, October 2018.

O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom.

Foreshadow-NG: Breaking the virtual memory abstraction with transient out-of-order execution.
Technical Report https: // foreshadowattack. eu/ , 2018.

Y. Yarom and K. Falkner.

Flush+reload: A high resolution, low noise, L3 cache side-channel attack.
In Proceedings of the 23rd USENIX Security Symposium, pp. 719–732. USENIX Association, 2014.

18 / 17

https://foreshadowattack.eu/

Appendix: Intel SGX promise: Hardware-level isolation and attestation

Mem HDD

OS kernel

Trusted Untrusted

CPU

AppApp

TPM

Hypervisor

Enclave app

19 / 17

Appendix: Intel SGX promise: Hardware-level isolation and attestation

Mem HDD

OS kernel

Trusted Untrusted

CPU

AppApp

TPM

Hypervisor

Enclave app

19 / 17

Appendix: Challenge #1: Intel SGX abort page semantics

Untrusted world view

Enclaved memory reads 0xFF

Meltdown “bounces back” (∼ mirror)

Intra-enclave view

Access enclaved + unprotected memory

SGXpectre in-enclave code abuse

20 / 17

Appendix: Challenge #1: Intel SGX abort page semantics

Untrusted world view

Enclaved memory reads 0xFF

Meltdown “bounces back” (∼ mirror)

Intra-enclave view

Access enclaved + unprotected memory

SGXpectre in-enclave code abuse
20 / 17

Appendix: Challenge #1: Intel SGX abort page semantics

Untrusted world view

Enclaved memory reads 0xFF

Meltdown “bounces back” (∼ mirror)

Intra-enclave view

Access enclaved + unprotected memory

SGXpectre in-enclave code abuse
20 / 17

	Introduction
	Appendix

