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A primer on software security

Secure program: convert all input to expected output

INPUT OUTPUT
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A primer on software security

Buffer overflow vulnerabilities: trigger unexpected behavior
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A primer on software security

Safe languages & formal verification: preserve expected behavior
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1 / 17



A primer on software security

Side-channels: observe side-effects of the computation

INPUT OUTPUT
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Evolution of “side-channel attack” occurrences in Google Scholar

1990 1994 1998 2002 2006 2010 2014 2018
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DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/
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CPU cache timing side-channel

Cache principle: CPU speed � DRAM latency → cache code/data

CPU + cache DRAM memory

while true do

    maccess(&a);

endwh
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CPU cache timing side-channel

Cache miss: Request data from (slow) DRAM upon first use

CPU + cache DRAM memory

while true do

    maccess(&a);

endwh

cache miss

a
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CPU cache timing side-channel

Cache hit: No DRAM access required for subsequent uses

CPU + cache DRAM memory

while true do

    maccess(&a);

endwh

cache hit

a
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Cache timing attacks in practice: Flush+Reload

if secret do

    maccess(&a);

else

    maccess(&b);

endif

flush(&a);

start_timer

   maccess(&a);

end_timer

CPU + cache DRAM memory

a
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Cache timing attacks in practice: Flush+Reload

if secret do

    maccess(&a);

else

    maccess(&b);

endif

flush(&a);

start_timer

   maccess(&b);

end_timer

CPU + cache DRAM memory

cache miss

slow access(&b) → secret=1

cache miss

b
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A primer on software security (revisited)

Side-channels: observe side-effects of the computation

INPUT OUTPUT
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A primer on software security (revisited)

Constant-time code: eliminate secret-dependent side-effects

INPUT OUTPUT
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A primer on software security (revisited)

Transient execution: HW optimizations do not respect SW abstractions (!)

INPUT OUTPUT
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Out-of-order and speculative execution

Key discrepancy:

Programmers write sequential instructions

Modern CPUs are inherently parallel

⇒ Speculatively execute instructions ahead of time

Best-effort: What if triangle fails?

→ Commit in-order, roll-back square

. . . But side-channels may leave traces (!)
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Out-of-order and speculative execution

Overflow
exceptionRoll-back

Key discrepancy:

Programmers write sequential instructions

Modern CPUs are inherently parallel

⇒ Speculatively execute instructions ahead of time

Best-effort: What if triangle fails?

→ Commit in-order, roll-back square

. . . But side-channels may leave traces (!)
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Transient execution attacks: Welcome to the world of fun!

CPU executes ahead of time in transient world

Success → commit results to normal world ,
Fail → discard results, compute again in normal world /

Transient world (microarchitecture) may temp bypass architectural software intentions:

Delayed permission checks

Mispredict control flow

7 / 17



Transient execution attacks: Welcome to the world of fun!

CPU executes ahead of time in transient world

Success → commit results to normal world ,
Fail → discard results, compute again in normal world /

Transient world (microarchitecture) may temp bypass architectural software intentions:

Delayed permission checks Mispredict control flow

7 / 17



Transient execution attacks: Welcome to the world of fun!

Key finding of 2018

⇒ transmit secrets from transient to normal world

Transient world (microarchitecture) may temp bypass architectural software intentions:

Delayed permission checks Mispredict control flow
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Meltdown: Transiently encoding unauthorized memory

Unauthorized access

8 / 17



Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array
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Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window Exception

(discard architectural state)
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Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

cache hit

Exception handler
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Mitigating Meltdown: Unmap kernel addresses from user space

OS software fix for faulty hardware (↔ future CPUs)

Unmap kernel from user virtual address space

→ Unauthorized physical addresses out-of-reach (˜cookie jar)
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Rumors: Meltdown immunity for SGX enclaves?

“[enclaves] remain protected and completely secure”

— International Business Times, February 2018

“[enclave memory accesses] redirected to an abort page, which has no value”

— Anjuna Security, Inc., March 2018
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https://web.archive.org/web/20180617022540/https://www.ibtimes.co.uk/meltdown-melted-down-everything-except-one-thing-1663785
https://web.archive.org/web/20180720144203/https://www.anjuna.io/blog/2018/2/7/meltdown-spectre-sgx


Rumors: Meltdown immunity for SGX enclaves?

https://wired.com and https://arstechnica.com
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Building Foreshadow

Foreshadow can read unmapped physical addresses from the cache (!)
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Building Foreshadow

Foreshadow can read unmapped physical addresses from the cache (!)
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Foreshadow: Breaking the virtual memory abstraction

SGX?
EPT

walk?
PT

walk?

L1D

vadrs
guest
padrs

host
padrs

Tag? Pass to out-of-order

CPU micro-architecture

EPCM fail

1 2 3

3a

Arbitrary L1 cache read → bypass OS/hypervisor/enclave protection
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Mitigating Foreshadow
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Mitigating Foreshadow

Future CPUs

(silicon-based changes)

https://newsroom.intel.com/editorials/advancing-security-silicon-level/
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Mitigating Foreshadow

OS kernel updates

(sanitize page frame bits)

https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/L1TF
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Mitigating Foreshadow

Intel microcode updates

⇒ Flush L1 cache on enclave/VMM exit + disable HyperThreading

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
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https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault


Mitigating Foreshadow/L1TF: Hardware-software cooperation
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Spectre v1: Speculative buffer over-read

secretuser buffer Programmer intention: never access out-of-bounds memory

Branch can be mistrained to speculatively (i.e., ahead of
time) execute with idx ≥ LEN in the transient world

Side-channels leak out-of-bounds secrets to the real world
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Mitigating Spectre v1: Inserting speculation barriers

secretuser buffer Programmer intention: never access out-of-bounds memory

Insert speculation barrier to tell the CPU to halt the
transient world until idx got evaluated ↔ performance /

Huge error-prone manual effort, no reliable automated
compiler approaches yet. . .
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Conclusions and take-away https://foreshadowattack.eu/

Hardware + software patches

Update your systems! (+ disable HyperThreading)

⇒ New class of transient execution attacks

⇒ Security cross-cuts the system stack: hardware, hypervisor, kernel, compiler, application

⇒ Importance of fundamental side-channel research
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Appendix: Intel SGX promise: Hardware-level isolation and attestation

Mem HDD

OS kernel

Trusted Untrusted

CPU

AppApp

TPM

Hypervisor

Enclave app
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Appendix: Challenge #1: Intel SGX abort page semantics

Untrusted world view

Enclaved memory reads 0xFF

Meltdown “bounces back” (∼ mirror)

Intra-enclave view

Access enclaved + unprotected memory

SGXpectre in-enclave code abuse
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