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The recent wave of microarchitectural vulnerabilities in commodity 
hardware requires us to question our understanding of system secu-
rity. We deplore that even for processor architectures and research 

prototypes with an explicit focus on security, open-source designs remain the 
exception. This article and call for action briefly surveys ongoing community 
efforts for developing a new generation of open security architectures, for 
which we collectively have a clear understanding of execution semantics and 
the resulting security implications. We advocate formal approaches to reason 
about the security guarantees that these architectures can provide, including 
the absence of microarchitectural bugs and side-channels. We consider such 
a principled approach essential in an age where society increasingly relies on 
interconnected and dependable control systems. Finally, we aim to inspire 
strong industrial and academic collaboration in such an engineering effort, 
which we believe is too monumental to be suitably addressed by a single 
enterprise or research community.

The security community has traditionally assessed the trustworthiness of applications 
at the software level by reasoning about source code as if it were executed on an idealized 
abstract computing platform. With the advance of hardware-level trusted computing 
solutions that embed a root-of-trust directly in the hardware, it even becomes possible to 
abstract away the underlying operating system and supporting software. However, a recent 
line of microarchitectural attack research, with Rowhammer, Meltdown, and Spectre being 
prominent examples, revealed fundamental flaws in commodity hardware. These findings 
range from plain design errors to intricate side-channels and triggered an array of follow-up 
research, effectively rendering the search for exploitable bugs in commodity processors a 
playground for researchers who “may have, either directly or indirectly, an economic interest 
in the performance of the securities of the [affected] companies” (https://amdflaws.com/), 
and who may or may not act in the public interest with respect to responsible disclosure 
guidelines. The key lesson to be learned from this wave of microarchitectural vulnerabilities 
and the tiresome patching process is that current processors exceed our levels of under-
standing and need to be subjected to independent review and assessment.

Now, having security vulnerabilities in components that are in virtually everyone’s computer 
or phone, and components that are commonly relied upon to build critical infrastructure—
think of communications networks, data centers, and cloud systems up to the power grid 
and hospital equipment—is certainly worrisome. Yet, considering that computing platforms 
are designed by humans, we have to face that security vulnerabilities are to some extent 
inevitable. As a community, we must therefore welcome research efforts that enhance our 
understanding of the attack surface and the limitations of today’s commodity computing 
infrastructure, and that responsibly handle security-related findings to swiftly patch exist-
ing systems and avoid introducing similar errors in the future.
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Reverse Engineering Is Insufficient
Conducting this kind of research is far from easy, however, as 
prevalent business models of the industry hamper such efforts. 
That is, today’s computing platforms are not designed to be ana-
lyzed, and intellectual property concerns commonly restrict the 
freedom of end users (i.e., companies, governments, researchers, 
the general public) to access hardware design internals, let alone 
source code. We deplore that even for processor architectures 
and research prototypes with an explicit focus on security, 
open-source designs remain the exception [1]. This situation 
leaves researchers at publicly funded institutions with no choice 
but to invest enormous reverse-engineering efforts before being 
able to fully understand the advertised security features, iden-
tify limitations and vulnerabilities, or formally prove security 
properties.

Great examples of such efforts in third-party reverse engi-
neering include the Cambridge formal models [2] of the ARM 
instruction set architecture, or the fact that the most insight-
ful security analysis of Intel’s SGX trusted computing platform 
comes from MIT researchers [3]. Yet, much of these efforts 
need to be repeated for every academic publication that models, 
investigates, or reports on vulnerabilities in closed-source com-
mercial products.

Of course, we acknowledge the importance of intellectual prop-
erty protection for market shares and revenues in the commer-
cial sector. We also acknowledge the contributions of industry 
initiatives that integrate strong security features in commodity 
hardware. Important achievements include secure virtualiza-
tion extensions, TPM co-processors, and enclaved execution 
environments such as Intel SGX, ARM TrustZone, and AMD 
SEV. However, we strongly believe that it is close to impossible for 
vendors and producers to guarantee the absence of certain classes 
of critical vulnerabilities in their highly complex products [4].

Bridging the Trust Gap
We therefore argue that processors in a post-Meltdown world 
can no longer be considered opaque black boxes that implement 
an instruction set abstraction. Hardware vendors must not 
attempt to hide microarchitectural execution semantics but 
instead allow these details to become part of the specification, 
so that compilers and operating systems can fully take them into 
account. When looking at the development of open processors, 
we welcome a number of such initiatives. For example, a range 
of free and open-source CPU cores are listed on opencores.org. 
The RISC-V ISA (https://riscv.org/) enables processor innova-
tion through open standard collaboration, with fully open and 
industry-competitive RISC-V implementations available.

What we need beyond openness, however, are CPUs with real 
support for security. We have not fundamentally reconsidered 
the concepts of hierarchical protection rings and virtual mem-
ory since the introduction of the Multics mainframe operating 
system in 1969. Only very recently have industry and academia 
developed alternative trusted computing solutions to isolate 
small software components without relying on privileged system 
software. As a constructive next step to bridge the trust gap 
between hardware and software, we envisage enhanced proces-
sor designs that allow applications to communicate fine-grained 
security constraints into the underlying CPU architecture. 
This would allow microarchitects to apply suitable optimiza-
tions while preventing unintended side-channel leakage across 
protection domains.

Two state-of-the-art secure processor prototypes with an explicit 
focus on openness are CHERI and Sancus. The CHERI [6] 
research project explores MIPS extensions for a fine-grained 
memory capability model. Our own Sancus [5] processor imple-
ments open-source (https://distrinet.cs.kuleuven.be/software​
/sancus/) trusted computing primitives for lightweight embed-
ded applications, such as automotive control systems [7]. Figure 

Figure 1: Fine-grained intra-address space isolation paradigms. Left: Sancus [5] uses the current value of the CPU’s program counter to distinguish a pro-
tected module (hatched) from untrusted code. The module’s data memory can only be accessed when executing in the corresponding text section, which 
can only be entered from a single predefined entry point. Software attestation is realized through a protected hardware storage area for metadata and cryp-
tographic keys. Right: CHERI [6] relies on a dedicated CPU register file for unforgeable memory capabilities that provide read/write/execute permissions for 
individual memory regions (hatched). Flexible application protection domains are defined by deriving more restrictive capabilities at runtime.

https://distrinet.cs.kuleuven.be/software/sancus/
https://distrinet.cs.kuleuven.be/software/sancus/
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1 compares the CHERI and Sancus approaches to intra-address 
space isolation. Compared to the legacy Multics virtual memory 
paradigm, both offer a richer architectural expression of protec-
tion domain boundaries. Regarding Spectre- and Meltdown-type 
speculative execution vulnerabilities, we follow the argument 
of the CHERI authors [8]. A more explicit architectural notion 
of protection domains that can be propagated into the microar-
chitecture has the potential to enable true hardware-software 
co-design, where the security requirements of the application 
constrain microarchitectural optimizations.

Importantly, with open security architectures as a prerequi-
site, dependable hardware-software co-designs can be vetted 
from a formal perspective. Promising research results include 
machine-checkable proofs for both functional correctness and 
high-level integrity and confidentiality security properties [9], 
or the application of proven-correct analysis to verify the 
absence of digital side-channels in low-level assembly code. 
Enhanced hardware description languages such as SecVerilog 
[10] enable static information flow analysis at hardware design 
time, which leads to a notion of contractual execution seman-
tics that compilers and applications can rely upon. Using this 
approach, performant processors can be built, for which the 
absence of timing side-channels and other undesired informa-
tion leakage is statically proven. With such trustworthy CPUs 
as a basis, an especially promising avenue is to apply estab-
lished techniques in the field of software engineering to develop 
dependable and highly secure trusted execution environments.

A Call for Action
Overall, we observe that vulnerabilities in software persist, 
but the research community has a good understanding of how 
to address these with established software engineering meth-
ods, modern programming languages, and advanced security 
features in modern processors. However, we also observe that 
there is a new class of widespread vulnerabilities in commod-
ity hardware ranging from plain design errors to intricate 
side-channels. These vulnerabilities hamper efforts to improve 
security on all layers of a system’s hardware and software stack. 
In today’s world, where advanced societies increasingly rely on 
the security and reliability of critical infrastructure in domains 
such as the power grid, communication, transportation, and 
medical infrastructure, these vulnerabilities may have disas-
trous consequences for a great many people, whether exploited 
through malicious intent or triggered by accident.

We outlined one way to address these threats by relying on open 
designs and formal methods to develop a new class of secure and 
dependable processors. As a security community, we will benefit 
from such an effort by obtaining a shared and clear understand-
ing of the protection mechanisms provided by these processors 
and of how software systems can be built to make proper use 
of hardware-level security primitives. It would then become 
unnecessary for researchers to painstakingly reverse-engineer 
microarchitectural design details as a prerequisite for exploring 
new attack techniques or alternative modeling approaches.  By 
reaching the required level of performance while also emphasiz-
ing maintainability and rigorous availability guarantees, the 
envisaged class of processors would form an ideal basis for the 
design of the networked safety-critical control systems of the 
future. We believe that architectures such as RISC-V, CHERI, 
and Sancus present promising starting points for this highly 
necessary work, and we would like to inspire and invite collabo-
ration in this field.
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