
6    FA L L 20 1 8  VO L . 4 3 , N O. 3 	 www.usenix.org

OPINIONReflections on Post-Meltdown Trusted
Computing
A Case for Open Security Processors

J A N T O B I A S M Ü H L B E R G A N D J O V A N B U L C K

Jan Tobias Mühlberg works
as a Research Manager for
embedded software security
at imec-DistriNet, KU Leuven
(BE). His research focuses

on protected module architectures such
as Sancus, software security, and formal
verification and validation of software systems.
Tobias is particularly interested in everything
safety-critical, IoT security, embedded control
systems, and low-level operating system
components. He obtained a PhD from the
University of York (UK) in 2009. jantobias.
muehlberg@cs.kuleuven.be

Jo Van Bulck works as a PhD
student at imec-DistriNet,
KU Leuven (BE). His research
explores hardware-based
trusted computing from an

integrated attack and defense perspective.
He is currently the lead developer of the
open-source Sancus architecture, where he
is looking into processor design, compiler
and operating system infrastructure, and
case-study applications. More recently, his
focus expanded to investigate architectural
limitations and side-channel vulnerabilities
in commodity Intel SGX x86 processors.
Ultimately, both lines of work come together
to establish a hardware-only root-of-trust.
jo.vanbulck@cs.kuleuven.be

The recent wave of microarchitectural vulnerabilities in commodity
hardware requires us to question our understanding of system secu-
rity. We deplore that even for processor architectures and research

prototypes with an explicit focus on security, open-source designs remain the
exception. This article and call for action briefly surveys ongoing community
efforts for developing a new generation of open security architectures, for
which we collectively have a clear understanding of execution semantics and
the resulting security implications. We advocate formal approaches to reason
about the security guarantees that these architectures can provide, including
the absence of microarchitectural bugs and side-channels. We consider such
a principled approach essential in an age where society increasingly relies on
interconnected and dependable control systems. Finally, we aim to inspire
strong industrial and academic collaboration in such an engineering effort,
which we believe is too monumental to be suitably addressed by a single
enterprise or research community.

The security community has traditionally assessed the trustworthiness of applications
at the software level by reasoning about source code as if it were executed on an idealized
abstract computing platform. With the advance of hardware-level trusted computing
solutions that embed a root-of-trust directly in the hardware, it even becomes possible to
abstract away the underlying operating system and supporting software. However, a recent
line of microarchitectural attack research, with Rowhammer, Meltdown, and Spectre being
prominent examples, revealed fundamental flaws in commodity hardware. These findings
range from plain design errors to intricate side-channels and triggered an array of follow-up
research, effectively rendering the search for exploitable bugs in commodity processors a
playground for researchers who “may have, either directly or indirectly, an economic interest
in the performance of the securities of the [affected] companies” (https://amdflaws.com/),
and who may or may not act in the public interest with respect to responsible disclosure
guidelines. The key lesson to be learned from this wave of microarchitectural vulnerabilities
and the tiresome patching process is that current processors exceed our levels of under-
standing and need to be subjected to independent review and assessment.

Now, having security vulnerabilities in components that are in virtually everyone’s computer
or phone, and components that are commonly relied upon to build critical infrastructure—
think of communications networks, data centers, and cloud systems up to the power grid
and hospital equipment—is certainly worrisome. Yet, considering that computing platforms
are designed by humans, we have to face that security vulnerabilities are to some extent
inevitable. As a community, we must therefore welcome research efforts that enhance our
understanding of the attack surface and the limitations of today’s commodity computing
infrastructure, and that responsibly handle security-related findings to swiftly patch exist-
ing systems and avoid introducing similar errors in the future.

www.usenix.org	   FA L L 20 1 8  VO L . 4 3 , N O. 3  7

OPINION
Reflections on Post-Meltdown Trusted Computing: A Case for Open Security Processors

Reverse Engineering Is Insufficient
Conducting this kind of research is far from easy, however, as
prevalent business models of the industry hamper such efforts.
That is, today’s computing platforms are not designed to be ana-
lyzed, and intellectual property concerns commonly restrict the
freedom of end users (i.e., companies, governments, researchers,
the general public) to access hardware design internals, let alone
source code. We deplore that even for processor architectures
and research prototypes with an explicit focus on security,
open-source designs remain the exception [1]. This situation
leaves researchers at publicly funded institutions with no choice
but to invest enormous reverse-engineering efforts before being
able to fully understand the advertised security features, iden-
tify limitations and vulnerabilities, or formally prove security
properties.

Great examples of such efforts in third-party reverse engi-
neering include the Cambridge formal models [2] of the ARM
instruction set architecture, or the fact that the most insight-
ful security analysis of Intel’s SGX trusted computing platform
comes from MIT researchers [3]. Yet, much of these efforts
need to be repeated for every academic publication that models,
investigates, or reports on vulnerabilities in closed-source com-
mercial products.

Of course, we acknowledge the importance of intellectual prop-
erty protection for market shares and revenues in the commer-
cial sector. We also acknowledge the contributions of industry
initiatives that integrate strong security features in commodity
hardware. Important achievements include secure virtualiza-
tion extensions, TPM co-processors, and enclaved execution
environments such as Intel SGX, ARM TrustZone, and AMD
SEV. However, we strongly believe that it is close to impossible for
vendors and producers to guarantee the absence of certain classes
of critical vulnerabilities in their highly complex products [4].

Bridging the Trust Gap
We therefore argue that processors in a post-Meltdown world
can no longer be considered opaque black boxes that implement
an instruction set abstraction. Hardware vendors must not
attempt to hide microarchitectural execution semantics but
instead allow these details to become part of the specification,
so that compilers and operating systems can fully take them into
account. When looking at the development of open processors,
we welcome a number of such initiatives. For example, a range
of free and open-source CPU cores are listed on opencores.org.
The RISC-V ISA (https://riscv.org/) enables processor innova-
tion through open standard collaboration, with fully open and
industry-competitive RISC-V implementations available.

What we need beyond openness, however, are CPUs with real
support for security. We have not fundamentally reconsidered
the concepts of hierarchical protection rings and virtual mem-
ory since the introduction of the Multics mainframe operating
system in 1969. Only very recently have industry and academia
developed alternative trusted computing solutions to isolate
small software components without relying on privileged system
software. As a constructive next step to bridge the trust gap
between hardware and software, we envisage enhanced proces-
sor designs that allow applications to communicate fine-grained
security constraints into the underlying CPU architecture.
This would allow microarchitects to apply suitable optimiza-
tions while preventing unintended side-channel leakage across
protection domains.

Two state-of-the-art secure processor prototypes with an explicit
focus on openness are CHERI and Sancus. The CHERI [6]
research project explores MIPS extensions for a fine-grained
memory capability model. Our own Sancus [5] processor imple-
ments open-source (https://distrinet.cs.kuleuven.be/software​
/sancus/) trusted computing primitives for lightweight embed-
ded applications, such as automotive control systems [7]. Figure

Figure 1: Fine-grained intra-address space isolation paradigms. Left: Sancus [5] uses the current value of the CPU’s program counter to distinguish a pro-
tected module (hatched) from untrusted code. The module’s data memory can only be accessed when executing in the corresponding text section, which
can only be entered from a single predefined entry point. Software attestation is realized through a protected hardware storage area for metadata and cryp-
tographic keys. Right: CHERI [6] relies on a dedicated CPU register file for unforgeable memory capabilities that provide read/write/execute permissions for
individual memory regions (hatched). Flexible application protection domains are defined by deriving more restrictive capabilities at runtime.

https://distrinet.cs.kuleuven.be/software/sancus/
https://distrinet.cs.kuleuven.be/software/sancus/

8    FA L L 20 1 8  VO L . 4 3 , N O. 3 	 www.usenix.org

OPINION
Reflections on Post-Meltdown Trusted Computing: A Case for Open Security Processors

1 compares the CHERI and Sancus approaches to intra-address
space isolation. Compared to the legacy Multics virtual memory
paradigm, both offer a richer architectural expression of protec-
tion domain boundaries. Regarding Spectre- and Meltdown-type
speculative execution vulnerabilities, we follow the argument
of the CHERI authors [8]. A more explicit architectural notion
of protection domains that can be propagated into the microar-
chitecture has the potential to enable true hardware-software
co-design, where the security requirements of the application
constrain microarchitectural optimizations.

Importantly, with open security architectures as a prerequi-
site, dependable hardware-software co-designs can be vetted
from a formal perspective. Promising research results include
machine-checkable proofs for both functional correctness and
high-level integrity and confidentiality security properties [9],
or the application of proven-correct analysis to verify the
absence of digital side-channels in low-level assembly code.
Enhanced hardware description languages such as SecVerilog
[10] enable static information flow analysis at hardware design
time, which leads to a notion of contractual execution seman-
tics that compilers and applications can rely upon. Using this
approach, performant processors can be built, for which the
absence of timing side-channels and other undesired informa-
tion leakage is statically proven. With such trustworthy CPUs
as a basis, an especially promising avenue is to apply estab-
lished techniques in the field of software engineering to develop
dependable and highly secure trusted execution environments.

A Call for Action
Overall, we observe that vulnerabilities in software persist,
but the research community has a good understanding of how
to address these with established software engineering meth-
ods, modern programming languages, and advanced security
features in modern processors. However, we also observe that
there is a new class of widespread vulnerabilities in commod-
ity hardware ranging from plain design errors to intricate
side-channels. These vulnerabilities hamper efforts to improve
security on all layers of a system’s hardware and software stack.
In today’s world, where advanced societies increasingly rely on
the security and reliability of critical infrastructure in domains
such as the power grid, communication, transportation, and
medical infrastructure, these vulnerabilities may have disas-
trous consequences for a great many people, whether exploited
through malicious intent or triggered by accident.

We outlined one way to address these threats by relying on open
designs and formal methods to develop a new class of secure and
dependable processors. As a security community, we will benefit
from such an effort by obtaining a shared and clear understand-
ing of the protection mechanisms provided by these processors
and of how software systems can be built to make proper use
of hardware-level security primitives. It would then become
unnecessary for researchers to painstakingly reverse-engineer
microarchitectural design details as a prerequisite for exploring
new attack techniques or alternative modeling approaches. By
reaching the required level of performance while also emphasiz-
ing maintainability and rigorous availability guarantees, the
envisaged class of processors would form an ideal basis for the
design of the networked safety-critical control systems of the
future. We believe that architectures such as RISC-V, CHERI,
and Sancus present promising starting points for this highly
necessary work, and we would like to inspire and invite collabo-
ration in this field.

Acknowledgments
This research is partially funded by the Research Fund KU
Leuven. Jo Van Bulck is supported by a doctoral grant of the
Research Foundation—Flanders (FWO).

www.usenix.org	   FA L L 20 1 8  VO L . 4 3 , N O. 3  9

OPINION
Reflections on Post-Meltdown Trusted Computing: A Case for Open Security Processors

References
[1] P. Maene, J. Götzfried, R. De Clercq, T. Müller, F. Freiling,
and I. Verbauwhede, “Hardware-Based Trusted Computing
Architectures for Isolation and Attestation,” IEEE Transactions
on Computers, vol. 67, no. 3 (March 2018), pp. 361–374: https://​
www.esat.kuleuven.be/cosic/publications/article-2750.pdf.

[2] A. Fox and M. O. Myreen, “A Trustworthy Monadic Formal-
ization of the Armv7 Instruction Set Architecture,” in Inter-
national Conference on Interactive Theorem Proving (Springer,
2010), pp. 243–258: https://www.cl.cam.ac.uk/~mom22/itp10​
-armv7.pdf.

[3] V. Costan and S. Devadas, Intel SGX Explained (IACR, 2016),
p. 86: https://eprint.iacr.org/2016/086.pdf.

[4] A. Baumann, “Hardware Is the New Software,” in Proceed-
ings of the 16th Workshop on Hot Topics in Operating Systems
(ACM, 2017), pp. 132–137: https://www.microsoft.com/en-us​
/research/wp-content/uploads/2017/05/baumann-hotos17.pdf.

[5] J. Noorman, J. Van Bulck, J. T. Mühlberg, F. Piessens, P.
Maene, B. Preneel, I. Verbauwhede, J. Götzfried, T. Müller, and
F. Freiling, “Sancus 2.0: A Low-Cost Security Architecture
for IoT Devices,” ACM Transactions on Privacy and Security
(TOPS), vol. 20 (August 2017), pp. 1–33: http://www.beetzsee.de​
/leuven/2016-acmtops-sancus/paper.pdf.

[6] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J.
Anderson, B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M.
Roe, “The CHERI Capability Model: Revisiting RISC in an Age
of Risk,” in ACM SIGARCH Computer Architecture News, vol.
42, no. 3 (June 2014), pp. 457–468: https://www.cl.cam.ac.uk​
/research/security/ctsrd/pdfs/201406-isca2014-cheri.pdf.

[7] J. Van Bulck, J. T. Mühlberg, and F. Piessens, “VulCAN:
Efficient Component Authentication and Software Isolation
for Automotive Control Networks,” in Proceedings of the 33rd
Annual Computer Security Applications Conference (ACSAC
’17), ACM, 2017, pp. 225–237: https://distrinet.cs.kuleuven.be​
/software/sancus/publications/acsac17.pdf.

[8] R. N. Watson, J. Woodruff, M. Roe, S. W. Moore, and P. G.
Neumann, “Capability Hardware Enhanced RISC Instructions
(CHERI): Notes on the Meltdown and Spectre Attacks,” Univer-
sity of Cambridge, Computer Laboratory, Technical Report no.
916, 2018: https://www.cl.cam.ac.uk/techreports/UCAM-CL​
-TR-916.pdf.

[9] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno,
“Komodo: Using Verification to Disentangle Secure-Enclave
Hardware from Software,” in Proceedings of the 26th Sympo-
sium on Operating Systems Principles (SOSP ’17), ACM, 2017,
pp. 287–305: https://www.microsoft.com/en-us/research/wp​
-content/uploads/2017/10/komodo.pdf.

[10] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A Hard-
ware Design Language for Timing-Sensitive Information-
Flow Security,” ACM SIGPLAN Notices, vol. 50, no. 4 (May
2015), pp. 503–516: http://www.cse.psu.edu/~dbz5017/pub​
/asplos15.pdf.

https://www.esat.kuleuven.be/cosic/publications/article-2750.pdf
https://www.esat.kuleuven.be/cosic/publications/article-2750.pdf
https://www.cl.cam.ac.uk/~mom22/itp10-armv7.pdf
https://www.cl.cam.ac.uk/~mom22/itp10-armv7.pdf
https://eprint.iacr.org/2016/086.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/baumann-hotos17.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/baumann-hotos17.pdf
http://www.beetzsee.de/leuven/2016-acmtops-sancus/paper.pdf
http://www.beetzsee.de/leuven/2016-acmtops-sancus/paper.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201406-isca2014-cheri.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201406-isca2014-cheri.pdf
https://distrinet.cs.kuleuven.be/software/sancus/publications/acsac17.pdf
https://distrinet.cs.kuleuven.be/software/sancus/publications/acsac17.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-916.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-916.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/10/komodo.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/10/komodo.pdf
http://www.cse.psu.edu/~dbz5017/pub/asplos15.pdf
http://www.cse.psu.edu/~dbz5017/pub/asplos15.pdf

