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“Embedded-systems security is,
for lack of a better word, a mess.”

– John Viega & Hugh Thompson

VIEGA John, THOMPSON Hugh, The state of embedded-device security (spoiler alert: 
It's bad), IEEE Security & Privacy (10.5), September 2012, pp. 68-70.
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Motivation: Embedded Systems Security

Embedded

● Low-cost, low-power

● Mixed-criticality context

=> Single-address-space

Conventional

● Resource-intensive

● General-purpose

=> MMU/MPU

=> Kernel mode

<> TCB reduction

KOEBERL, Patrick, et al. Trustlite: A security architecture for tiny embedded devices. EuroSys. ACM (2014).

MCKEEN, Frank, et al. Innovative instructions and software model for isolated execution. HASP@ ISCA. 2013.
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Roadmap

1. Protected Module Architectures 

2. Research Objectives 

3. Interruptible Isolated Execution

4. Secure Multithreading

5. Conclusion
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Protected Module Architectures

STRACKX Raoul et al., Protected Software Module Architectures, ISSE 2013 Securing Electronic Business Processes, 
Springer Fachmedien Wiesbaden, 2013, pp. 241-251.

● Isolated execution areas in a single-
address-space
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Protected Module Architectures
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Protected Module Architectures

STRACKX Raoul et al., Protected Software Module Architectures, ISSE 2013 Securing Electronic Business Processes, 
Springer Fachmedien Wiesbaden, 2013, pp. 241-251.

● Isolated execution areas in a single-
address-space

● Program counter based access 
control mechanism

● Secure fully abstract compilation
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Sancus PMA

NOORMAN Job et al., Sancus: Low-cost Trustworthy Extensible Networked Devices with a Zero-software Trusted 
Computing Base, Proceedings of the 22nd USENIX conference on Security symposium, 2013, pp. 479-494.

● Zero-software TCB

→ extended openMSP430 instruction set
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Sancus PMA

NOORMAN Job et al., Sancus: Low-cost Trustworthy Extensible Networked Devices with a Zero-software Trusted 
Computing Base, Proceedings of the 22nd USENIX conference on Security symposium, 2013, pp. 479-494.

● Zero-software TCB

→ extended openMSP430 instruction set

● SM == unit of isolation + authentication

→ remote attestation / secure linking

→ hardware cryptographic key and ID per SM

● Dedicated secure C compiler

→ generates sm_entry/exit asm stubs
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Research Objectives

PMAs assume the presence of an attacker:

☺ HW-enforced SM confidentiality / integrity

☹ no availability guarantees

=> concurrent execution of isolated threads via an 

unprivileged preemptive scheduler
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Interruptible and Reentrant SMs

IVT
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...
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Previous SM = x

R0 = PC

R1  = SP

R2  = SR

R3  = cst

R4  = general

...

R15 = general
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Interruptible and Reentrant SMs

IVT

SMISR Code

...

SMA Code

...

SMISR Data
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...

R0 = PC

R1  = 0x0

R2  = 0x0

R3  = cst

R4  = 0x0

...

R15 = 0x0

Memory

Register File

call stack

PC
SR
R15

...
R4

...

SPA Current SM = SMISR

Previous SM = IRQ

sm_entry.s
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Discussion / Future Work

=> Zero-software TCB for SM conf / int

● Atomicity constraints (secure compilation)

→ deterministic interrupt latency

→ TOCTOU: callee authentication

→ sm_entry: restore SP, caller authentication
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Discussion / Future Work

=> Zero-software TCB for SM conf / int

● Atomicity constraints (secure compilation)

→ deterministic interrupt latency

→ TOCTOU: callee authentication

→ sm_entry: restore SP, caller authentication

● Untrusted ISRs: integrity of reti flow
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Traditional Multithreading vs. PMA

Synchronous control flow in address space

→ unit of threading >> SM

→ inter-SM call/return integrity

→ compiler-generated sm_entry stubs

SM_BarSM_FooSM_A

1.1.1: illegal return to A

1.1: call_bar
1: call_foo
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Protected FreeRTOS Scheduler

● Interleaved execution of multiple threads

→ cooperative prototype: yield()
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Protected FreeRTOS Scheduler

● Interleaved execution of multiple threads

→ cooperative prototype: yield()

● Unprivileged: scheduling decision only

→ store “return address” to continue thread

→ protected scheduler state

● Secure linking: sm_entry violation report
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Threading-aware SMs

SM_foo SM_barSM_sched

9: ...8: continue

1: ...

7: yield_get_next
6: yield

5: return busy

4: cur_thr_id

3: get_cur_thr_id 2: call_foo
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Discussion / Future Work

=> Isolated cross-SM control flow threads

Scheduling policy encapsulation

SMs guard internal consistency
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Discussion / Future Work

=> Isolated cross-SM control flow threads

Scheduling policy encapsulation

SMs guard internal consistency

Future work:
→ preemptive FreeRTOS

→ SM-internal multithreading

→ asynchronous inter-thread communication
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Conclusion

=> Strong availability (real-time) guarantees 
on a partially compromised platform

● Confined and explicit TCB

→ HW-only for SM conf / int

→ SW layer: principle of least privilege

● Secure compilation in preemptive context
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