
Towards Availability and Real-Time
Guarantees for Protected Module

Architectures

Jo Van Bulck, Job Noorman, Jan Tobias Mühlberg and
Frank Piessens

Towards Availability and Real-Time
Guarantees for Protected Module

Architectures

Jo Van Bulck, Job Noorman, Jan Tobias Mühlberg and
Frank Piessens

March 14, 2016

2

“Embedded-systems security is,
for lack of a better word, a mess.”

– John Viega & Hugh Thompson

VIEGA John, THOMPSON Hugh, The state of embedded-device security (spoiler alert:
It's bad), IEEE Security & Privacy (10.5), September 2012, pp. 68-70.

3

Motivation: Embedded Systems Security

Embedded

● Low-cost, low-power

● Mixed-criticality context

=> Single-address-space

Conventional

● Resource-intensive

● General-purpose

=> MMU/MPU

=> Kernel mode

<> TCB reduction

KOEBERL, Patrick, et al. Trustlite: A security architecture for tiny embedded devices. EuroSys. ACM (2014).

MCKEEN, Frank, et al. Innovative instructions and software model for isolated execution. HASP@ ISCA. 2013.

4

Roadmap

1. Protected Module Architectures

2. Research Objectives

3. Interruptible Isolated Execution

4. Secure Multithreading

5. Conclusion

5

Protected Module Architectures

STRACKX Raoul et al., Protected Software Module Architectures, ISSE 2013 Securing Electronic Business Processes,
Springer Fachmedien Wiesbaden, 2013, pp. 241-251.

● Isolated execution areas in a single-
address-space

6

Protected Module Architectures

STRACKX Raoul et al., Protected Software Module Architectures, ISSE 2013 Securing Electronic Business Processes,
Springer Fachmedien Wiesbaden, 2013, pp. 241-251.

● Isolated execution areas in a single-
address-space

● Program counter based access
control mechanism

7

Protected Module Architectures

STRACKX Raoul et al., Protected Software Module Architectures, ISSE 2013 Securing Electronic Business Processes,
Springer Fachmedien Wiesbaden, 2013, pp. 241-251.

PC

● Isolated execution areas in a single-
address-space

● Program counter based access
control mechanism

8

Protected Module Architectures

STRACKX Raoul et al., Protected Software Module Architectures, ISSE 2013 Securing Electronic Business Processes,
Springer Fachmedien Wiesbaden, 2013, pp. 241-251.

● Isolated execution areas in a single-
address-space

● Program counter based access
control mechanism

● Secure fully abstract compilation

9

Sancus PMA

NOORMAN Job et al., Sancus: Low-cost Trustworthy Extensible Networked Devices with a Zero-software Trusted
Computing Base, Proceedings of the 22nd USENIX conference on Security symposium, 2013, pp. 479-494.

● Zero-software TCB

→ extended openMSP430 instruction set

10

Sancus PMA

NOORMAN Job et al., Sancus: Low-cost Trustworthy Extensible Networked Devices with a Zero-software Trusted
Computing Base, Proceedings of the 22nd USENIX conference on Security symposium, 2013, pp. 479-494.

● Zero-software TCB

→ extended openMSP430 instruction set

● SM == unit of isolation + authentication

→ remote attestation / secure linking

→ hardware cryptographic key and ID per SM

11

Sancus PMA

NOORMAN Job et al., Sancus: Low-cost Trustworthy Extensible Networked Devices with a Zero-software Trusted
Computing Base, Proceedings of the 22nd USENIX conference on Security symposium, 2013, pp. 479-494.

● Zero-software TCB

→ extended openMSP430 instruction set

● SM == unit of isolation + authentication

→ remote attestation / secure linking

→ hardware cryptographic key and ID per SM

● Dedicated secure C compiler

→ generates sm_entry/exit asm stubs

12

13

Contents

1. Protected Module Architectures

2. Research Objectives

3. Interruptible Isolated Execution

4. Secure Multithreading

5. Conclusion

14

Research Objectives

PMAs assume the presence of an attacker:

☺ HW-enforced SM confidentiality / integrity

☹ no availability guarantees

=> concurrent execution of isolated threads via an

unprivileged preemptive scheduler

15

Contents

1. Protected Module Architectures

2. Research Objectives

3. Interruptible Isolated Execution

4. Secure Multithreading

5. Conclusion

16

Interruptible and Reentrant SMs

IVT

SMISR Code

...

SMA Code

...

SMISR Data

...

SMA Data

...

Memory

Register File

call stack

...

Current SM = SMA

Previous SM = x

R0 = PC

R1 = SP

R2 = SR

R3 = cst

R4 = general

...

R15 = general

17

Interruptible and Reentrant SMs

IVT

SMISR Code

...

SMA Code

...

SMISR Data

...

SMA Data

...

R0 = PC

R1 = SP

R2 = SR

R3 = cst

R4 = general

...

R15 = general

Memory

Register File

call stack

...

IRQ

Current SM = SMA

Previous SM = x

18

Interruptible and Reentrant SMs

IVT

SMISR Code

...

SMA Code

...

SMISR Data

...

SMA Data

...

R0 = PC

R1 = 0x0

R2 = 0x0

R3 = cst

R4 = 0x0

...

R15 = 0x0

Memory

Register File

call stack

IRQ

PC
SR
R15

...
R4

...

SPA Current SM = SMA

Previous SM = x

19

Interruptible and Reentrant SMs

IVT

SMISR Code

...

SMA Code

...

SMISR Data

...

SMA Data

...

R0 = PC

R1 = 0x0

R2 = 0x0

R3 = cst

R4 = 0x0

...

R15 = 0x0

Memory

Register File

call stack

PC
SR
R15

...
R4

...

SPA Current SM = SMISR

Previous SM = IRQ

sm_entry.s

20

Discussion / Future Work

=> Zero-software TCB for SM conf / int

● Atomicity constraints (secure compilation)

→ deterministic interrupt latency

→ TOCTOU: callee authentication

→ sm_entry: restore SP, caller authentication

21

Discussion / Future Work

=> Zero-software TCB for SM conf / int

● Atomicity constraints (secure compilation)

→ deterministic interrupt latency

→ TOCTOU: callee authentication

→ sm_entry: restore SP, caller authentication

● Untrusted ISRs: integrity of reti flow

22

Contents

1. Protected Module Architectures

2. Research Objectives

3. Interruptible Isolated Execution

4. Secure Multithreading

5. Conclusion

23

Traditional Multithreading vs. PMA

Synchronous control flow in address space

→ unit of threading >> SM

→ inter-SM call/return integrity

→ compiler-generated sm_entry stubs

SM_BarSM_FooSM_A

1.1.1: illegal return to A

1.1: call_bar
1: call_foo

24

Protected FreeRTOS Scheduler

● Interleaved execution of multiple threads

→ cooperative prototype: yield()

25

Protected FreeRTOS Scheduler

● Interleaved execution of multiple threads

→ cooperative prototype: yield()

● Unprivileged: scheduling decision only

→ store “return address” to continue thread

→ protected scheduler state

26

Protected FreeRTOS Scheduler

● Interleaved execution of multiple threads

→ cooperative prototype: yield()

● Unprivileged: scheduling decision only

→ store “return address” to continue thread

→ protected scheduler state

● Secure linking: sm_entry violation report

27

Threading-aware SMs

SM_foo SM_barSM_sched

9: ...8: continue

1: ...

7: yield_get_next
6: yield

5: return busy

4: cur_thr_id

3: get_cur_thr_id 2: call_foo

28

Discussion / Future Work

=> Isolated cross-SM control flow threads

Scheduling policy encapsulation

SMs guard internal consistency

29

Discussion / Future Work

=> Isolated cross-SM control flow threads

Scheduling policy encapsulation

SMs guard internal consistency

Future work:
→ preemptive FreeRTOS

→ SM-internal multithreading

→ asynchronous inter-thread communication

30

Contents

1. Protected Module Architectures

2. Research Objectives

3. Interruptible Isolated Execution

4. Secure Multithreading

5. Conclusion

31

Conclusion

=> Strong availability (real-time) guarantees
on a partially compromised platform

● Confined and explicit TCB

→ HW-only for SM conf / int

→ SW layer: principle of least privilege

● Secure compilation in preemptive context

Towards Availability and Real-Time
Guarantees for Protected Module

Architectures

Jo Van Bulck, Job Noorman, Jan Tobias Mühlberg and
Frank Piessens

Towards Availability and Real-Time
Guarantees for Protected Module

Architectures

Jo Van Bulck, Job Noorman, Jan Tobias Mühlberg and
Frank Piessens

https://distrinet.cs.kuleuven.be/software/sancus/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

