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Abstract
Protected Module Architectures are a new brand of security ar-
chitectures whose main objective is to support the secure isolated
execution of software modules with a minimal Trusted Comput-
ing Base (TCB) – several prototypes for embedded systems (and
also the Intel Software Guard eXtensions for higher-end systems)
ensure isolation with a hardware-only TCB. However, while these
architectures offer strong confidentiality and integrity guarantees
for software modules, they offer no availability (let alone real-time)
guarantees. This paper reports on our work-in-progress towards
extending a protected module architecture for small microproces-
sors with availability and real-time guarantees. Our objective is to
maintain the existing security guarantees with a hardware-only TCB,
but to also guarantee availability (and even real-time properties) if
one can also trust the scheduler. The scheduler, as any software on
the platform, remains untrusted for confidentiality and integrity –
but it is sufficient to trust the scheduler module to get availability
guarantees even on a partially compromised platform.

Categories and Subject Descriptors D.4.7 [Operating Systems
Organization and Design]: Real-time systems and embedded sys-
tems

General Terms Design, Security

Keywords Protected module architecture, secure scheduling, se-
cure interrupt, mixed-criticality, real-time operating system, trusted
computing

1. Introduction
Small embedded devices are becoming omnipresent and intercon-
nected in our everyday lives. Through the rise of wireless sensor net-
works, ubiquitous computing and the Internet of Things, lightweight
extensible platforms are increasingly entrusted with safety-critical
and privacy-sensitive tasks. Yet, to minimize production costs and
power consumption, these devices commonly lack hardware support
for established security measures, such as virtual memory and pro-
cessor privilege levels. They generally operate in a single-address-
space where memory is treated as a global resource, addressable
and accessible by everyone. Software running on these platforms is
thus exposed to modification by malicious or buggy programs.
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To address these concerns, recent research on Protected Mod-
ule Architectures (PMAs) [10, 18, 25] proposes low-cost hardware
extensions that enable the secure and isolated execution of soft-
ware modules by means of fine-grained memory access control.
These architectures support the creation of so-called Self-Protecting
Modules (SPMs) that define a contiguous code and data section
in the shared address space. Security guarantees are based on the
property that an SPM’s private data section is exclusively managed
via its corresponding code section, which can only be entered via
a few predefined entry points. We discuss PMAs in more detail
in Section 2.

An interesting aspect of PMAs is that it has been shown [1, 20]
that source code can be compiled to a PMA while maintaining
source code level abstractions, even against attackers that can oper-
ate at machine code level. In other words, if a source code module
encapsulates data using source code modularization mechanisms
such as Java classes, then secure compilation of that source code
to a PMA ensures that the encapsulation is maintained at runtime
with respect to arbitrary (possibly even malicious) other machine
code modules. For hardware-level PMAs, these guarantees even
hold against attackers that compromise the Operating System (OS).

However, the security guarantees offered by current PMAs
are limited to confidentiality and integrity guarantees – they do
not extend to availability. A buggy or malicious application can
still harm the availability of the platform by overwriting crucial
OS data structures, or by monopolizing a shared system resource
such as CPU time. This paper reports on our work-in-progress
towards lifting this limitation. We argue that in addition to isolating
software, hardware-level protection mechanisms can be extended to
also preserve availability (possibly even real-time) guarantees on a
partially compromised embedded system.

The objective of this paper is to identify some of the availability
challenges induced by hardware-level PMAs, and to report on
our work-in-progress to address them while keeping the Trusted
Computing Base (TCB) small. More specifically, we make the
following contributions:

• We outline a hardware mechanism that makes SPMs fully inter-
ruptible and reentrant. We show how our mechanism preserves
deadlines for external events, and facilitates reasoning about real-
time guarantees by ensuring a deterministic interrupt latency at
all times.

• We sketch a multitasking model that introduces protection
domains within a conventional control flow thread. We show how
logical threads can be managed by an unprivileged scheduler,
and we discuss new challenges regarding secure compilation
and asynchronous communication.

The remainder of this paper is structured as follows. First, in
Section 2, we briefly revisit existing embedded PMAs, and we



formulate our objectives in Section 3. Next, Section 4 elaborates on
the hardware and software changes needed to support availability
and real-time guarantees, where the real-time deadlines of one
stakeholder are unaffected by the actions of another. Finally, we
discuss related work in Section 5 and conclude in Section 6.

2. Background: Protected Module Architectures
As mentioned in the introduction, a recent line of research [10,
18, 23, 25] investigates an alternative memory access model for
lightweight embedded microcontrollers. Since we build our work
upon the Sancus [18] platform, this section provides a more detailed
overview of general PMA concepts and Sancus’ internals.

While these PMAs have a striking resemblance to similar archi-
tectures for higher-end systems, most notably the Intel Software
Guard eXtensions (SGX) [16], there are also important differences.
In this paper, we focus strictly on lightweight embedded PMAs.

2.1 Self-Protecting Modules
An SPM corresponds to a fine-grained protection domain in a shared
address space, and is defined by two contiguous memory regions: a
public text or code section containing a fixed number of entry points
and a private data section. PMAs ensure that memory access to the
private data section of a module is only allowed when the program
counter is pointing within the module’s corresponding code section.
Attackers from the outside can never directly access the protected
data; an SPM is solely responsible for its own private data section,
hence the name self-protecting modules.

To ensure that control flow within an SPM protection domain
cannot be influenced from the outside, an SPM can only be entered
via a few predefined entry points and should maintain its own private
call stack. Table 1 summarizes the memory access rights for an SPM.
All memory addresses are categorized as either “protected”, that
is belonging to the SPM, or “unprotected”. Protected memory is
further subdivided as belonging to an entry point, a text section or a
data section. Each entry indicates how code executing in the “from”
section may access the “to” section. Note that when deciding access
to an SPM the program counter is only considered “protected” when
corresponding to an address within the code section of the same
module (i.e., any other module is treated as if it were unprotected).

Table 1. Program counter based access control rules for an SPM in
the traditional UNIX notation.

From \ to Protected Unprotected
Entry Text Data

Protected r-x r-x rw- rwx
Unprotected/
Other SPM r-x r-- --- rwx

2.2 Sancus and Embedded PMAs
The Sancus [18] architecture extends the memory access logic and
instruction set of a low-end TI MSP430 microcontroller to support
software module protection at hardware-level. Sancus explicitly
targets low-end platforms featuring runtime extensibility by several
mutually distrusting parties. To this end, Sancus allows an external
software provider to remotely deploy an SPM, without having to
trust any of the host software on the embedded device. Through
a process known as remote attestation, the software provider is
given the assurance that their software is loaded on a specific
device, without being tampered with. When enabling protection for
a newly loaded module, the Sancus hardware calculates a symmetric
cryptographic key based on the contents of that module’s text section.

The remote software provider obtains an identical key through a key-
derivation scheme, so that he or she is provided with an authenticated
confidentiality- and integrity-preserving communication channel to
the deployed module.

Sancus also supports the secure linking of SPMs residing on the
same device. That is, a dedicated hardware instruction enables an
SPM to cryptographically verify the integrity of another module,
before jumping to its entry point. Likewise, a newly entered SPM
can verify the identity of its caller. To speed up subsequent authen-
tications and enable the implementation of access control policies,
the Sancus hardware assigns a unique unforgeable spmID to each
module, and offers specialized instructions to query the spmID of
the caller or another module.

The Sancus distribution1 comes with a dedicated C compiler
to automate the process of creating SPMs. For this, the compiler
inserts short spm_entry and spm_exit assembly code stubs in the
text section of every SPM. These code stubs are executed whenever
a module is entered or exited, and take care of secure linking, private
call stack switching, clearing of CPU registers, and multiplexing
multiple logical entry points through a single physical entry point.

While Sancus hard codes the memory access rules in a dedi-
cated combinational Memory Access Logic circuit per SPM, the
TrustLite [10] architecture features an Execution-Aware Memory
Protection Unit (EA-MPU) that records program counter based
memory access rules in a configurable hardware table. The Ty-
TAN [2] security architecture employs a trusted software layer that
reconfigures TrustLite’s EA-MPU table at runtime to provide dy-
namic loading, and local and remote attestation guarantees. We
compare our approach in detail to these proposals in Section 5.

3. Objectives
The above way of isolating software in hardware-enforced protec-
tion domains allows for strong security guarantees in a dynamic
multi-stakeholder context, but does not address the issue of availabil-
ity on a partially compromised system. Existing embedded security
architectures either put availability explicitly out of scope [6, 18, 25],
or rely on an omnipotent software TCB [2, 13]. The integrity of such
a trusted software layer should in turn be attested to the remote stake-
holder, and protected against an attacker capable of arbitrary code
execution in the shared address space. Moreover, a trusted software
component may be vulnerable to well-known [7] low-level software
security attacks. We therefore argue that mixed-criticality embedded
systems will benefit from real-time availability guarantees, imposed
without invalidating the property that confidentiality and integrity
are protected with a hardware-only TCB.

More specifically, via careful hardware/software co-design we
aim to develop a security architecture with the following central
features:

Zero-Software TCB. An SPM should solely rely on its own imple-
mentation and trusted hardware for the integrity and confiden-
tiality of its internal state.

Real-Time Compliance. Strict real-time deadlines for external
events should be met, even while an adversary is executing arbi-
trary code on the platform. For this, our system should ensure a
deterministic worst-case interrupt latency (i.e., the amount of
time before an interrupt is serviced) at all times.

Secure Multitasking. We will extend the notion of secure linking
to introduce protection within a conventional control flow thread.
An unprivileged preemptive priority-based scheduler will be
able to provide such threads with strong availability guarantees,
independent from attackers executing at a lower priority level.

1 https://distrinet.cs.kuleuven.be/software/sancus/



4. Working Towards Availability and Real-Time
Guarantees

In the following, we report on our ongoing work in leveraging
PMA concepts to not only guarantee the untampered execution of
hardware-enforced software modules, but also assure their timely
execution. We first outline a secure hardware interrupt mechanism.
Next, we introduce a multitasking model where isolated threads can
be managed by an untrusted scheduler.

4.1 Interruptible Isolated Execution
Existing hardware-level PMAs such as SMART [6] and Sancus [18]
protect the runtime state of a software module, under the explicit
assumption that interrupts are disabled during SPM execution.
This constraint seems unreasonable for mission-critical embedded
systems that should remain responsive to external stimuli at all
times. For such systems, interruptible protection domains have
been proposed [2, 13] via a trusted software layer that saves the
internal execution context of a task before passing control to an
untrusted Interrupt Service Routine (ISR). Alternatively, researchers
[5, 10, 16] have implemented secure hardware interrupt engines that
preserve a zero-software TCB in the presence of interrupts.

To the best of our knowledge however, no hardware interrupt
mechanism so far considers the combination of (i) multiple SPMs,
(ii) multithreading within an SPM, and (iii) atomicity constraints. In
the following, we present our progress towards addressing these chal-
lenges. First, we explain how we realize the autonomous operation
of SPMs by automatically invoking them in response to an interrupt.
Next, we discuss recent work on a secure hardware interrupt mech-
anism that makes SPMs fully interruptible and re-entrant. Finally,
we outline our planned work on developing compiler measures and
a hardware atomicity monitor to address the security implications
of preemption on secure SPM execution.

4.1.1 Interrupt-Serving SPMs
We enable secure interrupt handling by registering an SPM’s entry
address in the system-wide Interrupt Vector Table (IVT). Several
specifics should be considered when doing so. First, we want to
protect the read-only nature of the in-memory IVT. In the existing
Sancus prototype, this can be easily achieved by wrapping the IVT
memory region in the text section of a dedicated SPM. Second, to
ensure an interrupt-serving SPM is only invoked in response to a
specific Interrupt Request (IRQ), we extended Sancus’ hardware
primitive for caller authentication with unforgeable IRQ identifiers.
Finally, we will enable the use of non-maskable interrupts on the
microcontroller (cf. Section 4.1.3). Together these measures ensure
the untampered and guaranteed execution of an ISR, without having
to trust any infrastructural software on the embedded device. Such
guarantees may for example reinforce recent research on trust
assessment modules [17] where a protected module periodically
measures the trustworthiness of an untrusted execution environment.

The above approach leaves several research questions open,
especially when considering multiple protected ISRs that might
interrupt each other. To avoid complications resulting from such
interrupt nesting, we will investigate hardware changes that assure
run-to-completion semantics for ISRs, while still limiting their
effective length. We will also consider alternative, more fine-grained
hardware-assisted mechanisms to protect the integrity of the in-
memory IVT, facilitating flexible ISR (un)registering at runtime.

4.1.2 Interruptible SPMs
Being able to interrupt and resume SPMs without requiring their
cooperation ensures responsiveness and enables the implementation
of preemptive real-time scheduling. We have modified the interrupt
logic of a Sancus-enabled MSP430 microcontroller to ensure that,

even in the presence of interrupts, an SPM solely relies on trusted
hardware for the integrity and confidentiality of its internal state.
More specifically, our IRQ logic (i) pushes the program counter,
status register, and general-purpose CPU registers on the interrupted
SPM’s private call stack, (ii) stores the stack pointer on a fixed
location in the private data section, (iii) clears the CPU registers,
and (iv) vectors to the appropriate untrusted ISR. Importantly, the
hardware IRQ logic is subject to the same memory access checks as
normal user code. When encountering a memory violation, the logic
will immediately shortcut to step (iii), assuring ISR execution – at
the cost of a non-resumable (misbehaving) interrupted SPM. This
is especially relevant in a multi-module context where a malicious
or buggy SPM might change the stack pointer register, or overflow
its internal stack into the private data section of another SPM. To
make the interruption of SPMs fully transparent to the programmer,
we rely on Sancus’ compiler-generated assembly code stubs. The
spm_entry stubs of our current prototype automatically restore
internal execution context on the next invocation of a previously
interrupted SPM.

Some existing embedded security architectures feature similar
interruptible protection domains. The TrustLite [10] security ar-
chitecture includes a comparable hardware exception engine for
hardware-enforced software modules. Recent work by De Clercq et
al. [5] implements secure hardware-level interrupts for a Sancus-like
architecture with two protection domains. We anticipate more chal-
lenges when dealing with multithreaded SPMs (cf. Section 4.2), as
multiple internal stack pointers should then be considered. Moreover,
none of the existing approaches consider denial-of-service attacks
where an untrusted ISR breaks the integrity of the reti (return from
an ISR) control flow, or refuses to return at all. We therefore plan to
extend our hardware interrupt mechanism to keep track of the entry
point of the previously interrupted module. Genuine ISR exit can
then be asserted through a modified reti instruction that jumps to
this address. Furthermore, we will limit the length of an untrusted
ISR by automatically invoking a reti instruction when a certain
number of execution cycles was exceeded.

4.1.3 Atomicity Constraints
Our architecture will support the atomic execution of small critical
code sections. Apart from application-specific atomicity constraints,
we will employ atomic sections to preserve security guarantees
for interruptible isolated execution. A newly-entered SPM can for
example not be interrupted before it has (i) stored the address
and hardware spmID of its caller (to enable subsequent caller
authentication), and (ii) restored its internal stack pointer. Moreover,
to avoid well-known time-of-check-to-time-of-use attacks [23, 25]
when calling into an SPM, authentication of the SPM and jumping
to its entry point should happen atomically. If not, the SPM might
be unloaded in the meantime. Existing security architectures work
around these issues by either not allowing SPMs to be (un)loaded
at runtime [10], requiring their uninterrupted execution [18, 24],
or relying on an omnipotent trusted software entity to mediate all
inter-module communication [2].

Our architecture on the other hand will allow SPMs to call each
other directly, without trusting external software, and without inval-
idating their security properties. From an availability perspective,
we will prevent an attacker from abusing our atomicity mechanism
to hold on to the CPU. Inspired by related work [13], we plan to
develop a hardware atomicity monitor that limits the maximum dura-
tion of an atomic section and prevents their nesting. We expect such
a bounded execution time for atomic sections to facilitate reasoning
about real-time guarantees and the schedulability of the system, as
it enables a deterministic interrupt latency at all times.

Using our atomicity primitive, we plan to develop automatic
compiler measures that allow a programmer to write SPMs that can



be safely executed in an existing preemptive scheduling context.
We expect our atomic solution to be sufficiently powerful to realize
secure compilation, but further research is needed to evaluate the
(application-specific) expressiveness limitations of strictly bounded
and unnested critical sections. For atomic sections that run across
multiple interacting SPMs, we will look into the influence of an
(untrusted) caller on the atomic behavior of a callee.

4.2 Real-Time Secure Multitasking
At some point in the complexity curve, embedded applications will
benefit from a (real-time) OS. This in mind, we are developing an
unprivileged scheduler that manages protected SPM threads. By
building upon the isolation and secure interrupt hardware primitives,
we ensure the scheduler’s guaranteed and untampered execution. As
such, the scheduler software component will enable multiple dis-
trusting parties to share an embedded computing platform, without
loosing their (real-time) availability guarantees.

We now describe a multithreading model where isolated, pro-
tected threads may run through multiple fine-grained SPM protec-
tion domains. Next, we show how such isolated threads may be
interleaved by an unprivileged scheduler. Finally, we outline future
work on asynchronous Inter Process Communication (IPC) to allow
secure threads to communicate with untrusted threads.

4.2.1 Multithreading Model
Developing a suitable concurrency model for PMAs can be regarded
as an open research question of its own. Classical C-style threading
is the predominant paradigm in embedded systems, as well as in
existing PMA implementations. We will therefore primarily focus
on secure multithreading, but ideas from other concurrency models
such as reactive or continuation passing style programming are to
be considered as well.

A thread traditionally represents an activity within the address
space (protection domain) of a process. When implementing thread-
ing in a single-address-space, it is important to understand that the
unit of execution does not necessarily correspond to the unit of fine-
grained memory protection. Instead, logical control flow “threads”
can be constructed by allowing SPMs to authenticate and call each
other directly. Securely linking multiple such interacting modules
in a control flow thread is however non-trivial, as the call stack
is now divided over different SPM-private call stacks and the in-
tegrity of the inter-module control flow should be preserved. The
TrustLite [10] and TyTAN [2] architectures tend to avoid these is-
sues by considering SPMs as stand-alone “secure tasks” that are
only allowed to communicate indirectly via message-passing IPC.
The complexity of such secure tasks is increased, as they should in-
ternally queue IPC requests, and may rely on an intermediate trusted
software entity [2] to supervise IPC, inducing considerable runtime
overhead and an enlarged TCB. Moreover, without further consider-
ation, synchronous IPC between separately schedulable SPMs can
introduce unbounded priority inversion where a high-priority task
waits for a reply from a low-priority service that is interrupted by a
medium priority task.

We therefore argue that logical “threads”, jumping from module
to module, are the better option to represent (synchronous) control
flow in a single-address-space. We regard SPMs as an execution
context for threads, defining their current memory access rights and
private call stack. The same schedulable entity may traverse multiple
SPM protection domains during its lifetime. Our prototype transpar-
ently preserves the integrity of inter-module control flow through
the aforementioned compiler-generated spm_entry assembly code
stubs. Participating SPMs guard the entry of their protection domain
to ensure the integrity of inter-SPM calls/returns. For this, we rely
on Sancus’ unforgeable spmIDs and the hardware primitives for
caller/callee authentication, introduced in Section 2.2.

When interleaving the execution of multiple logical threads,
participating SPMs have to be made threading-aware. That is,
they should not accumulate the execution contexts of different
logical threads on the same private call stack. To this end, our
protected scheduler module (discussed below) assigns a unique
thrID to each logical thread, and provides an entry point to retrieve
the thrID of the currently executing thread. This scheme enables
the compiler-generated spm_entry procedure to properly separate
internal execution contexts on different call stacks. In case the SPM
runs out of internal call stacks, a failure indicator is returned via an
agreed CPU register. Our current prototype only features a single
private call stack for each module, but our thrID mechanism should
scale to multithreaded SPMs.

We plan to further develop our multithreading model and reason
about its security and availability guarantees. Logical threads will
be provided with strong, real-time availability guarantees, as long
as they do not include unprotected code, and authenticate and trust
all participating SPMs before calling them. We will also consider
server-like modules that may be part of multiple threads, and that
may be internally multithreaded, as in Intel’s high-end SGX [16]
architecture. Furthermore, we will analyze the exact security and
(real-time) availability guarantees of our multithreading model. To
do so, we will look into recent (theoretical) developments on multi-
module fully abstract compilation [1, 21].

4.2.2 Protected Scheduler
Having developed a suitable concurrency model, we multiplex the
CPU time resource via a preemptive real-time scheduler. Related
work [13] employs a pre-configured hardware scheduler to enable
the on-schedule execution of critical tasks in a static, single-purpose
embedded system. Given that we target highly dynamic deploy-
ment scenarios, we implement the scheduling policy completely
in software, allowing for maximal flexibility without introducing
an omnipotent TCB. More specifically, by building upon the se-
cure interrupt and isolation hardware primitives, we (i) preserve
the integrity of the scheduler’s internal state, (ii) guarantee its reg-
ular invocation, and (iii) avoid a trusted software layer [2, 13] that
saves/restores task state on context switch. When interrupting an
executing thread, our scheduler solely keeps track of the address
of the currently executing SPM. Continuing a thread at a later time
then simply comes down to “returning” into that SPM. As explained
above, individual software modules remain responsible to guard
the entry of their protection domain, and restore internal execution
context on successful entry. Any invalid entry attempts should be
reported to the scheduler, who may subsequently decide to prevent
further execution of the offending task.

To ensure the practical relevance of our results, we base our
prototype on an existing real-world embedded OS. We selected
FreeRTOS2 as our case-study real-time kernel, motivated by its
(i) widespread use, (ii) relatively small code base, and (iii) mul-
tithreading task model. We expect the task of encapsulating the
FreeRTOS scheduler in an SPM to be feasible, and already made
progress in doing so. Our current prototype supports the interleaved
execution of multiple FreeRTOS tasks via explicit yield calls. From
our experiences, we can tell that FreeRTOS contains lots of optional
features and was not designed with security or guaranteed avail-
ability in mind. Applications are allowed to stop the scheduler, or
disable interrupts for an unlimited amount of time. Moreover, the
kernel contains lots of critical sections to prevent interrupts from
bringing the system in an inconsistent state.

One of the challenges will be to prevent an attacker from break-
ing the scheduling policy by abusing public API functions or regis-
tering custom interrupt handlers. We aim to prevent this by (i) re-

2 http://www.freertos.org



moving optional features from the FreeRTOS API, (ii) employing
our atomicity primitive, and (iii) “locking” the scheduler on entry,
so that scheduler functions have run-to-completion semantics, while
interrupts are still being served.

4.2.3 Asynchronous Communication
Being able to synchronously call unprotected code or an SPM
within a single thread does not always suffice in practical real-
time application scenarios. Consider for example a small dedicated
task that wants to communicate (confidential) sensor readings
asynchronously, without risking to miss a sensor value while waiting
for the receiver to return. To support such scenarios, we will build
an IPC mechanism that allows tasks to communicate indirectly, via
an untrusted intermediate software module. Our mechanism will
allow a secure thread to communicate with another untrusted thread,
without loosing its availability guarantees and while preserving the
confidentiality and integrity of the passed data.

Consistently, we will base our prototype on FreeRTOS’s IPC
component. FreeRTOS realizes inter-task communication via fixed-
length queues, which are also used to implement semaphores and
mutexes. FreeRTOS allows receivers to block on a queue until data
becomes available by removing the corresponding task control block
from the scheduler’s ready list. Following the principle of least
privilege, our queue implementation will be encapsulated in its own
protection domain, and communicate via a restricted privileged
interface with the scheduler. We will make a clear distinction
between queue-private and scheduler-private memory, and only
allow the IPC module to request the currently executing task to
be blocked (with a timeout). These measures will ensure that a
FreeRTOS application not using queues, cannot be affected by a
vulnerability in the queue implementation.

We are confident on the feasibility of such an IPC module. In
previous work [26] we presented a similar intermediate SPM that
realizes a form of protected shared memory. This shared memory
service can be regarded as a primitive form of message passing IPC,
where data is copied in a private memory buffer, and subsequent
access is restricted according to some access control policy.

5. Related Work
Protecting the internal state of a running software entity against
other potentially malicious entities is a well-known requirement,
and an active research field. There has been much work on isolating
software components in space and time, both in conventional as
well as real-time environments. In the following we compare our
approach to these proposals – ranging from lightweight embedded
techniques to higher-end solutions.3

Embedded security architectures. Considerable research effort
has been put in providing software isolation for embedded microcon-
trollers that lack related hardware support. Safe TinyOS [3] enforces
type and memory safety through compile time modifications. Har-
bor [11] partitions a single-address-space into protection domains
by inserting runtime checks into compiled binaries. t-Kernel [8]
equally modifies untrusted application code at load time to provide
virtual memory and OS protection. While these approaches remain
compatible with existing microcontrollers, they inevitably decrease
performance and rely on a trusted software layer.

In addition to isolating software, various researchers have ad-
dressed the issue of availability on a partially compromised embed-
ded platform. t-Kernel [8] includes a rather crude mechanism that
rewrites untrusted application code to transfer control to the OS ev-

3 Note that the division between “embedded” and “high-end” architectures
is somewhat arbitrary, due to the wide range of hardware/software solutions
that are considered as embedded systems.

ery few instructions. Masti et al. [13] propose a combination of hard-
ware and software components to prevent misbehaving applications
or peripheral devices from holding on to the CPU or peripheral bus.
In contrast to our approach however, they target static single-purpose
embedded systems, and employ a “trusted domain” software layer
that is responsible for initializing the system and saving/restoring
task state on context switch. The work that comes closest to ours is
the TyTAN [2] security architecture that enables an untrusted OS
to schedule dynamically loadable isolated tasks in between normal
tasks. As indicated above, our multitasking model differs signif-
icantly in that TyTAN does not allow modules to call each other
directly. Instead, TyTAN relies on an omnipotent kernel-like soft-
ware layer responsible for (i) dynamic loading, (ii) saving/restoring
state on context switch, (iii) inter-module authenticated commu-
nication, and (iv) remote attestation. Furthermore, to the best of
our knowledge, TyTAN does not protect against denial-of-service
attacks where an adversary for example disables interrupts for an
unlimited period of time.

While we focus explicitly on the low-end side of the embedded
spectrum, more resource-intensive solutions exist to host mixed-
criticality software on the same processor. The ARINC 653 avionics
standard defines a partitioned embedded architecture that provides
strict time and space partitioning for safety-critical real-time systems.
Spatial as well as temporal isolation can be achieved via a trusted
hypervisor [4] that assigns a fixed periodic time slice for a number
of partitions, each containing their own OS and applications. The
local OS within a partition executes its applications via a preemptive
priority-based scheduling policy, whereas the hypervisor is respon-
sible to (i) predictably schedule partitions, (ii) virtualize interrupts,
and (iii) direct (limited) inter-partition communication. ARINC 653
thus allows mutually distrusting applications to be isolated in terms
of memory and processor resources. In this, the approach shares
our goals, but there are two major differences. First, we do not rely
on a trusted hypervisor software layer that enlarges the TCB, and
imposes a significant runtime overhead. Second, we do not regard
SPMs as “partitions” with a dedicated internal OS, and expensive
inter-protection domain communication. Instead, our approach relies
solely on hardware for the spatial isolation of fine-grained protection
domains, and enables a (single) unprivileged real-time scheduler to
implement the desired temporal isolation.

High-end security architectures. Ongoing research seeks to re-
alize PMAs for conventional high-end computer systems. Fine-
grained protection domains enforced by a small TCB could in-
deed improve the security guarantees offered by a large omnipo-
tent OS kernel that sandboxes each application in its own virtual
address space. Such PMAs have successfully been implemented
as an additional layer of protection enforced by a small hypervi-
sor [14, 15, 24] or incorporated in a commodity OS kernel [22].
Moreover, recent Intel x86 processors are equipped with Software
Guard eXtensions (SGX) [16] that allow the isolated execution of
security-critical code via hardware-enforced enclaves in the virtual
address space of a process, managed by an untrusted OS. SGX en-
claves may be multithreaded, where internal threads are bound to a
larger unprotected execution thread.

Our concurrency model where execution threads may run
through multiple SPMs during their lifetimes resembles the mi-
grating thread [19] approach, which facilitates predictable inter-
protection domain communication in component-based OSs. Our
approach of implementing OS services in unprivileged modules
also relates to microkernels [9, 12]. Importantly however, we do not
rely on a privileged kernel, as microkernel abstractions – including
protection and authentication – are enforced at hardware level. In
this regard, we previously [26] suggested that a Sancus-like PMA
can be regarded as a zero-software microkernel. On the other hand,
the complete seL4 microkernel [9] has been formally verified, in-



cluding worst-case execution times, which makes it a suitable and
trustworthy alternative for virtual memory architectures. Notably,
our approach works in a single-address-space, and allows a remote
stakeholder to explicitly verify the OS-like server modules.

6. Conclusion
Minimization of the Trusted Computing Base (TCB) has been one
of the key principles of computer security since the start of the
field. There has been considerable progress over the last years
in building systems that can securely execute software modules
with a small hardware-only TCB. But focus has mainly been on
confidentiality and integrity properties rather than on availability
properties. As part of our ongoing work in enforcing availability
and real-time guarantees with a small TCB, we have presented (i) a
prototypic hardware mechanism that enables interruptible isolated
execution and a deterministic worst-case interrupt latency, and (ii) an
unprivileged cooperative scheduler that interleaves the execution of
cross-protection domain threads.

Our long-term goal is to assure the on-schedule execution of
critical tasks on a partially compromised platform. For future work,
we plan to further develop our hardware interrupt request logic to
enforce the guaranteed and unmodified return control flow from
an untrusted interrupt service routine. We will furthermore employ
our interrupt mechanism to enable real-time preemptive scheduling,
while preserving secure compilation guarantees.
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