
Breaking Virtual Memory
Protection and the
SGX Ecosystem
with Foreshadow

Jo Van Bulck
Katholieke Universiteit Leuven

Marina Minkin
University of Michigan

Ofir Weisse
University of Michigan

Daniel Genkin
University of Michigan

Baris Kasikci
University of Michigan

Frank Piessens
Katholieke Universiteit Leuven

Mark Silberstein
Technion–Israel Institute of Technology

Thomas F. Wenisch
University of Michigan

Yuval Yarom
University of Adelaide and Data61, CSIRO

Raoul Strackx
Katholieke Universiteit Leuven

Abstract—Foreshadow is a speculative execution attack that allows adversaries to

subvert the security guarantees of Intel’s Software Guard eXtensions (SGX). Foreshadow

allows access to data across process boundaries, and allows virtual machines (VMs)

to read the physical memory belonging to other VMs or the hypervisor.

& OVER THE PAST year and a half, speculative

execution attacks-–attacks that subvert memory

protection by exploiting the speculative execution

features of modern out-of-order processors—

have gone from a hypothetical possibility to a

very real threat.1,2 These attacks allow software to

exploit microarchitectural flaws, wherein specula-

tive wrong-path instructions are allowed to access

memory in violation of architectural protection

guarantees. For example, the Meltdown flaw2

allows the user-level code to access kernel

memory locations that are mapped into the pro-

cess address space but are restricted to privileged

Digital Object Identifier 10.1109/MM.2019.2910104

Date of publication 15 April 2019; date of current version 8

May 2019.

Top Picks

66
0272-1732 � 2019 IEEE Published by the IEEE Computer Society IEEE Micro

accesses only. Speculative execution attacks

exploit the transient data access of wrong-path

instructions by leaking secret data into a side chan-

nel. Side-channel attacks exploit subtle timing var-

iations in program execution resulting from state

changes in microarchitectural (i.e., unspecified in

the instruction set architecture) structures or con-

tention on microarchitectural CPU resources to

extract otherwise-unavailable secret information.

Processor vendors have invested signific-

ant effort3 to roll out mitigations for the earliest

discovered speculative execution attacks, Melt-

down2 and Spectre.1

Unfortunately these

measures are inef-

fective against Fore-

shadow (also known

as “L1 Terminal

Fault (L1TF)” in

Intel’s product liter-

ature4). Foreshadow

allows the attacker code direct access to arbitrary

physical addresses through speculative wrong-

path execution. Unlike previously disclosed specu-

lative execution attacks, this vulnerability fully sub-

verts the isolation provided by the traditional

virtualmemory abstraction, uponwhich the classic

security mechanisms of operating systems and vir-

tual machines are built, by allowing attackers to

access data that has no virtual address mapping.

The key restriction of Foreshadow/L1TF is that as

far as we know, only physical addresses cached in

the L1 data cache can be exfiltrated. However, as

we show, there are often mechanisms available to

cause the processor to load desired data into

cache; in some circumstances, entire address

spaces can be exfiltrated.

FORESHADOW-SGX
Our international collaboration discovered

Foreshadow/L1TF in the context of efforts to inves-

tigate the security of Intel’s Software Guard

eXtensions (SGX). SGX is a set of architectural

extensions,which collectively provide strong secu-

rity guarantees to software running in the presence

of powerful adversaries. SGX promises secure

execution on adversary-controlled machines.

For example, in the context of cloud computing,

SGX guarantees that the processor executes the

unmodified code provided by the customer and

that data accessed during execution cannot be

observed by the privileged cloud vendor.

To support such private and secure code exe-

cution, SGX provides isolated execution environ-

ments, called enclaves, which offer confidentiality

and integrity guarantees to programs running

inside them. Enclaves are secure even in the pres-

ence of a malicious operating system, hypervisor,

or firmware. Enclaves are also resilient to physical

attacks from outside the CPU package, such as

probes on thememory bus.

At a high level, SGX achieves these strong secu-

rity guarantees by encrypting the enclave memory

and protecting it with a secure authentication code,

making the associated cryptographic keys inaccessi-

ble to software. Finally, SGX provides a remote attes-

tation mechanism. Attestation allows enclaves to

prove to remote parties that the code and data

uponwhich they operate are unmodified and, impor-

tantly, the processor upon which they execute is a

genuine (hence, presumed secure) Intel processor.

Notwithstanding its strong security guaran-

tees, SGX does not protect against microarc-

hitectural side-channel attacks. Since their

introduction over a decade ago, microarchitec-

tural attacks have been used to break numerous

cryptographic implementations, track program

behavior, and create covert communication chan-

nels. Since SGX’s release, there have been many

works that demonstrated side-channel attacks on

SGX enclaves (e.g., work presented by Xu et al.5)—

exploiting vulnerabilities that already exist in

enclaves’ code to leak sensitive data.

Instead, our investigation was motivated by

the following question: Can an adversary extract

secret data from an enclave’s address space

when the code running in that enclave does not

itself have any security vulnerabilities?

Next, given the importance of SGX remote

attestation we asked: What are the implications

of such security breaches on the SGX integrity

guarantees? Can an adversary using a side chan-

nel erode trust in SGX remote attestation?

We answer both questions in the affirmative.

OUR CONTRIBUTIONS

Breaking SGX’s Confidentiality

Foreshadow-SGX exploits the speculative

execution features present in all SGX-enabled

Foreshadow allows the

attacker code direct

access to arbitrary

physical addresses

through speculative

wrong-path execution.

May/June 2019 67

Intel CPUs to read the entire address space of

victim enclaves. Crucially, unlike previous Spec-

tre-style speculative execution attacks on SGX,

our attack does not require any form of coopera-

tion or particular flaw in the victim enclave.

In fact, our attack reads all the secrets of the

victim enclave without requiring that enclave to

execute any instruction.

Breaking the Integrity of Sealed Data

Going beyond the attacks on the SGX confi-

dentiality properties, we show that Foreshadow

also compromises SGX’s long-term storage integ-

rity guarantees. Specifically, beyond secure

computation, SGX also provides private and

authenticated long-term storage, which is imple-

mented via a special sealing application program-

ming interface (API). This storage mechanism

allows enclaves to encrypt and verify data stored

by the (untrusted) operating system.

As we show, we can use our attack on SGX’s

confidentiality to extract the sealing key from a

victim enclave that uses the SGX sealing mecha-

nism.11 After recovering the sealing key, we use

it to unseal and read the sealed information,

then modify and reseal it. As SGX provides no

means to detect such a change, the victim con-

sequently operates on data corrupted by the

attacker.

Breaking Remote Attestation

Finally, we turn our attention to SGX’s remote

attestation mechanism, which allows an enclave

to prove to a remote party that it has been ini-

tialized correctly and is executing on a genuine

(presumably secure) Intel processor.

As we show, we can mount our attacks on

enclaves written by Intel and extract their sealing

key. Using the extracted sealing key, we then

unseal the persistent storage of the SGX Quoting

Enclave, which contains the machine’s private

attestation key. With this key, we can construct

malicious SGX simulators that can forge the attes-

tation process, masquerading as enclaves that

are allegedly running on genuine Intel processors

with the SGX security guarantees. As the simu-

lated enclaves do not offer any security guaran-

tees, this attack undermines the trustworthiness

of SGX’s attestationmechanism.

Exploiting SGX’s Privacy Guarantees

We note that SGX’s attestation protocol is

designed with privacy in mind and does not

reveal the identity of the attesting machine to

the remote verifying party. As such, the remote

party has no way of telling which keys were used

for attestation. Consequently, until revoked by

Intel, even a single leaked attestation key can be

used for all malicious simulators, without the

remote parties being able to distinguish them

from genuine SGX machines. Thus, the leak of

even a single key jeopardizes the trustworthi-

ness of the entire SGX ecosystem.

Demonstrating the Brittleness of the SGX

Ecosystem

To the best of our knowledge, our attack is

the first direct attack on the confidentiality of

SGX enclaves that makes no assumptions about

code running in a victim enclave. By leveraging

this attack, the adversary may break the integ-

rity of the SGX long-term storage and the trust-

worthiness of the remote attestation protocol.

As such, our work highlights the brittleness of

the current SGX design because a flaw in confi-

dentiality leads to a cascading set of compro-

mises that undermine the root of trust in the

ecosystem.

First real demonstration of the L1TF vulnerability

Our international collaboration reported

our proof-of-concept exploit of SGX to Intel.

Prompted by our reports, Intel subsequently dis-

covered and revealed the underlying L1TF micro-

architectural flaw, with consequences much

broader than SGX, including subverting memory

protections essential for cloud computing.

BACKGROUND—SIDE-CHANNEL
AND SPECULATIVE EXECUTION
ATTACKS

We briefly explain past side-channel and spe-

culative execution attack mechanisms.

The FlushþReload Attack

FlushþReload7 is a cache-based microarchi-

tectural attack technique that detects access to

a shared memory location. The technique com-

prises two main operations. The flush operation

evicts the contents of a monitored memory

Top Picks

68 IEEE Micro

location from the cache. Typically, the

eviction is done via a dedicated

instruction, such as the x86 CLFLUSH

instruction. The reload operation later

measures the time it takes to access

the monitored location. Based on this

time, the attacker determines whether

the monitored location was loaded

into the cache in the interim since the

flush operation.

In a typical attack scenario, an

attacker flushes one or more moni-

tored locations. The attacker then either exe-

cutes an operation it wants to analyze or waits

until the operation is naturally executed by

the victim. The attacker then reloads the moni-

tored locations while recording the amount

of time required to perform the reload. As the

analyzed operation accesses (and thereby

caches) some of the monitored locations, but

not others, the attacker is then able to learn

information about the victim memory access

pattern. FlushþReload has been extensively

used for side-channel attacks and is used as a

reliable covert channel in speculative execution

attacks.1,2

Spectre and Meltdown

Spectre and Meltdown attacks perform

unauthorized data access while executing

wrong-path instructions in vulnerable process-

ors. When the CPU squashes these instru-

ctions, it does not fully revert all the side

effects they have on microarchitectural state,

and in particular, processor cache state. Spec-

tre and Meltdown1,2 exploit these side effects

to leak information across protection domains.

The attacks cause the CPU to speculatively

execute a code gadget, which implements the

transmitting side of a covert channel, sending

information that would otherwise be unavail-

able to the receiver.

Specifically, the Meltdown attack (Figure 1) is

possible because vulnerable processors handle

memory exception faults at instruction retire-

ment rather than as instructions execute, creat-

ing a window of vulnerability where data may be

forwarded to wrong-path instructions that follow

the faulting access. So, when a user program

attempts to read from a kernel address, the

processor may speculatively execute the wrong-

path instructions that follow the kernel memory

read. By placing a gadget that sends the value

forwarded by the faulting load through a covert

channel, an attack can retrieve the contents of

that address even for accesses that violate mem-

ory protection.

Figure 1 illustrates a toy Meltdown example

wherein an attacker exfiltrates one bit of infor-

mation across privilege levels. In the first step,

the attacker attempts to read data from a more

privileged protection layer, which will eventually

lead to a memory protection exception. But, the

subsequent dependent wrong-path instructions

can receive the value from the read—even

though it will eventually fault—and encode

secrets in the CPU cache. The example uses a

reliable FlushþReload7 covert channel, where

the wrong-path instruction sequence loads a

predetermined memory location into the cache,

dependent on the least significant bit of the ker-

nel data. When the speculation resolves, the

load faults and an exception handler is invoked.

In this example, we show the attacker code for

retrieving the secret within the exception han-

dler, wherein the adversary retrieves the secret

bit by carefully measuring the amount of time it

takes to reload the predetermined memory

location.

TheMeltdown attack, however, does not allow

attackers to perform unauthorized reads from

memory protected by SGX. In contrast to Melt-

down, which relies on a page fault after accessing

kernel space, accessing SGXmemory does not pro-

duce a page fault. Instead, such accesses trigger

abort page semantics and the load instead returns

the dummy value 0xFF, precluding wrong-path

code from leaking a secret value.

Figure 1. Rogue data cache loads (Meltdown) can be leveraged to leak

sensitive data from more privileged security layers.

May/June 2019 69

BACKGROUND—INTEL SGX

Memory Isolation

SGX enclaves live in the virtual address space

of a conventional user process, but their physical

memory isolation is strictly enforced in hardware.

This separation of responsibilities ensures that

enclave-private memory can never be accessed

from outside, while untrusted system software

remains in charge of enclave memory manage-

ment (i.e., allocation, eviction, and mapping

of pages). An SGX-enabled CPU furthermore veri-

fies the untrusted address translation process,

and may signal a page fault when traversing

the untrusted page tables, or when encountering

rogue/illegal enclave memory mappings. Subse-

quent address translations are cached in the

processor’s TLB. The processor performs a TLB

shootdown for enclave entries upon enclave exit

to prevent access to enclave memory from code

executing outside the enclave. Any attempt to

directly access private pages from outside the

enclave results in abort page semantics: reads

return the value 0xFF andwrites are ignored.

SGX further protects enclaves against moti-

vated adversaries that exploit Rowhammer

DRAM bugs, or resort to physical cold boot

attacks. A hardware-level memory encryption

engine8 transparently safeguards the integrity,

confidentiality, and freshness of enclaved code

and data while it resides outside of the processor

package. That is, any access to main memory is

first authenticated and decrypted before cached

on chip in plaintext.

Enclave code can only be invoked through a

few predefined entry points. The EENTER and

EEXIT instructions transfer control between

the untrusted host application and an enclave.

In case of a fault or external interrupt, the pro-

cessor executes the asynchronous enclave

exit procedure, which securely stores and

wipes CPU register contents before transferring

control to the untrusted operating system. A

dedicated ERESUME instruction allows the

unprotected application to resume a previously

interrupted enclave.

Enclave Measurement

While an enclave is prepared for launch by

untrusted system software, the processor com-

poses a secure hash (i.e., a “measurement”) of

the enclave’s initial code and data. Besides

this content-based identity (MRENCLAVE), each

enclave also features an alternative, author-

based identity (MRSIGNER) that includes a hash

of the enclave developer’s public key and ver-

sion information. Upon enclave initialization,

and before it can be entered, the processor veri-

fies the enclave’s signature and stores both

MRENCLAVE and MRSIGNER measurements at a

secure location, inaccessible to software—even

from within the enclave. Thus, an enclave’s

initial measurement is unforgeable and can be

attested to other parties or used to access

sealed secrets.

Each SGX-enabled processor is shipped

with a platform master secret stored within

the processor and exclusively accessible to

key derivation hardware. Enclaves make use of

the key derivation facility by using the SGX

instruction EGETKEY. For instance, enclaves

can invoke EGETKEY to generate sealing keys

based on either the calling enclave’s content-

based (MRENCLAVE) or developer-based

(MRSIGNER) identity. Such sealing keys can be

used to securely store persistent data outside

the enclave, for later use by either the exact

same enclave (MRENCLAVE) or the same

developer (MRSIGNER).

Architectural Enclaves

As certain policies are too complex to realize

in hardware, some key SGX aspects are them-

selves implemented as Intel-signed enclaves.

Specifically, Intel provides: 1) a launch enclave,

which controls entry into other enclaves; 2) a

provisioning enclave to supply the long-term

platform attestation key; and 3) a quoting

enclave, which uses the asymmetric platform

attestation key to sign local attestation reports

for a remote stakeholder.

ATTACK MODEL AND OBJECTIVES

Adversary Capabilities

Whereas most existing SGX attacks require

the full potential of a kernel-level attacker,

we show that the basic Foreshadow attack can

be mounted entirely from user space. Our

attack essentially implies that current SGX

implementations cannot even protect enclave

Top Picks

70 IEEE Micro

secrets from unprivileged adversaries, for

instance co-residing cloud tenants. Addition-

ally, to further improve the success rate of

our attack for root adversaries, we contribute

various optional noise-reduction techniques

that exploit full control over the untrusted

operating system, in line with SGX’s privileged

attacker model.

Crucially, in contrast to all previously

published SGX side-channel attacks and existing

Spectre-style speculative execution attacks5

against SGX enclaves, Foreshadow does not

require any side-channel vulnerabilities, code

gadgets, or even knowledge of the victim

enclave’s code. In fact, as long as secrets

reside in the enclave’s address space, our attack

does not even require the victim enclave’s

execution.

Breaking SGX Confidentiality

The Intel SGX documentation unequivocally

states that “enclave memory cannot be read

or written from outside the enclave regardless

of current privilege level and CPU mode (ring3/

user-mode, ring0/kernel-mode, SMM, VMM,

or another enclave).”9 As Foreshadow compro-

mises confidentiality of production enclave

memory, this Intel SGX security objective

is broken.

Our basic attack requires enclave secrets to

reside in the L1 data cache. For root adversaries,

we furthermore contribute an innovative tech-

nique that leverages SGX’s paging instructions

to prefetch arbitrary enclave memory into the L1

data cache without requiring the victim enclave’s

cooperation. When combined with a state-of-the-

art enclave execution control framework, such as

SGX-Step,10 our root attack can dump the entire

memory and register contents of a victim enclave

at any point in its execution.

Breaking SGX Sealing and Attestation

The SGX design allows enclaves to “request a

secure assertion from the platform of the

enclave’s identity [and] bind enclave ephemeral

data to the assertion.”11 While we cannot break

integrity of enclaved data directly, we leverage

Foreshadow to extract enclave sealing and attes-

tation keys. The former comprises the confidenti-

ality and integrity of sealed secrets, whereas the

latter can be used to forge attestation reports.

Our attack on Intel’s trusted quoting enclave for

remote attestation further collapses confidential-

ity and integrity guarantees for remote computa-

tions and secret provisioning.

THE FORESHADOW ATTACK
The basic Foreshadow attack extracts a single

byte from an SGX enclave in three distinct phases,

visualized in Figure 2. As part of the attack prepara-

tion, the untrusted enclave host application first

allocates a covert channel array �1 with 256 slots,

each measuring 4 KB in size (padded to avoid hard-

ware prefetcher interactions). In Phase I of the

attack, plaintext enclave data are loaded into the

cache. With a malicious OS, the relevant cache line

can be fetched easily without the victim running.

Next, Phase II dereferences the enclave secret and

speculatively executes a wrong-path instruction

sequence that loads a secret-dependent line into

the cache. Finally, Phase III acts as the receiving

end of the FlushþReload covert channel and

reloads the array slots to determine the secret byte.

Phase I: Caching Enclave Secrets

In contrast to previous research,1 and consis-

tent with Intel’s vulnerability disclosures,4 we

found consistently that enclave secrets never

reach the wrong-path instructions in Phase II

if they do not already reside in the L1 cache.

The first phase of the basic Foreshadow attack

Figure 2. Basic overview of the Foreshadow attack to extract a single byte from an SGX enclave.

May/June 2019 71

executes the victim enclave �2 to load plaintext

secrets into cache.

Bringing Data Into the L1 Cache on Behalf of

the Victim

The SGX design explicitly relies on an

untrusted OS for oversubscribing the limited

encrypted physical memory, called the enclave

page cache (EPC). To do so, the untrusted OS

may make use of the privileged EWB and

ELDU SGX instructions that respectively copy

encrypted 4 KB enclave pages out of, and back

into the EPC. We observed that, when decrypting

an encrypted enclave page, the ELDU instruction

loads the entire page as plaintext into the CPU’s

L1 cache. Thus, Foreshadow can bring the vic-

tim’s data into the L1 cache without having the

victim execute any instructions.

Phase II: Wrong-Path Execution

In the second phase, we dereference secret_ptr

and speculatively execute a wrong-path instruc-

tion sequence to exfiltrate the secret. Under SGX,

abort page semantics normally prevent wrong-

path instructions from observing values that orig-

inate in enclave memory—they instead observe

only the dummy value 0xFF. However, Fore-

shadow circumvents this protection by taking

advantage of the fact that abort page semantics

apply only after the legacy page table permission

check succeeds without triggering a page fault.

Specifically, the attacker removes access permis-

sions from the enclave’s memory to cause, as

dubbed by Intel, a translation terminal fault.4

Despite the failed translation, the processor’s

load unit nevertheless forms a physical address

using the faulty translation and accesses the L1

data cache. Consequently, the actual value at

the corresponding physical address, rather than

a dummy value, is propagated from L1 to depen-

dent wrong-path instructions. In our running

example, we proceed by revoking �3 all access

permissions to the enclave page we wish to read

via themprotect user space API:

mprotect(secret_ptr &�0xfff, 0x1000,
PROT_NONE);

We verified that the above mprotect system

call simply clears the “present” bit in the

corresponding page table entry, such that

accesses to the page lead to a fault. To ensure

the successful exfiltration of the secret byte via

the covert channel array, we flush the slots from

the cache �4 . Finally, the attacker dereferences

secret_ptr and executes the wrong-path instruc-

tion sequence�5 .
Phase III: Receiving the Secret

When the faulting load retires, the processor

rolls back subsequent wrong-path instructions,

discarding uncommitted register changes and

raises a page fault. After the fault is caught by

the operating system, the attacker’s user-level

exception handler is called. Here, she carefully

measures �6 the timing to reload each slot. If

the wrong-path instruction sequence reached

the step that touches the array slot at the secret

index, the corresponding cache line will hit,

resulting in a much shorter access time.

Implications

Foreshadow allows dumping the entire

address spaceof SGX enclaves at any time.We suc-

cessfully used Foreshadow to extract the launch

and attestation secrets protected by the Intel’s

Launch andQuote enclaves. Extracting the private

attestation keys from the Quote Enclave allowed

us to sign counterfeit attestation proofs, which

were approved by Intel Attestation Services.

ATTACKING INTEL’S ENCLAVES
Whereas SGX is largely realized in hardware and

microcode, Intel implements certain critical func-

tionality in software through dedicated architectural

enclaves. These enclaves are part of the trusted

computing base and were written by experts with

detailed knowledge of SGX. No obvious security

flaws have ever been found, and Intel’s architec-

tural enclaves implement various defense-in-depth

mechanisms. For example, even though private

memory should never leak from enclaves, sensitive

data are erased as soon as possible.

Attack and Exploitation

SGX remote attestation relies on the SGX seal-

ing mechanism to encrypt and store the attes-

tation key on disk. An attacker with an attestation

key can sign arbitrary enclave measurements,

Top Picks

72 IEEE Micro

which are the SHA-256 of the enclave code. Using

Foreshadow, the attacker can steal the quote

enclave sealing key. After unsealing the attes-

tation key, the attacker can sign rogue enclave

measurements and forge proofs to Intel and exter-

nal parties that the enclave runs on genuine

hardware (see the work given by Van Bulck et al.
12 for details).

Impact

The ability to spoof remote attestation

responses has profound consequences. Attes-

tation is typically the first step to establish a

secure communication channel, for example, via

an authenticated Diffie–Hellman key exchange.11

Using our rogue quoting service, a network-level

adversary (e.g., the untrusted host application)

can trivially establish a man-in-the-middle posi-

tion to read and modify all traffic between a vic-

tim enclave and a remote party. All remotely

provisioned secrets can now be intercepted,

without even executing the victim enclave or

requiring detailed knowledge of its internals—

effectively eliminating the ability to trust remote

SGX-based cloud services. For instance, an end-

user might be fooled to reveal his private crypto

currency key to a remote SGX-based wallet while

in fact the private key is intercepted by the

adversary. Apart from such confidentiality con-

cerns, adversaries can also fabricate arbitrary

remote SGX computation results.

BROADER IMPLICATIONS OF
FORESHADOW / L1TF

We reported our Foreshadow-SGX findings

to Intel in January 2018, describing how we

defeated enclave memory isolation, sealing, and

attestation guarantees (CVE-2018-3615). Subse-

quent investigation by Intel4 identified the root

cause for Foreshadow as the L1TF vulnerability.

Unfortunately, L1TF has much broader and more

direr consequences than leaking enclavememory,

for it essentially allows dumping the entire

contents of the L1 data cache, regardless of the

owner of the data. In particular, Intel identified

two closely related variants of Foreshadow, which

we collectively call Foreshadow-Next Generation

(Foreshadow-NG).6 At a high level, Foreshadow-NG

might be exploited by unprivileged applications

to access kernel memory (CVE-2018-3620) or by

malicious guest virtual machines to access mem-

ory belonging to the hypervisor and other guest

machines (CVE-2018-3646).

Importantly, where previous Meltdown1

attacks access unauthorized supervisor data

within the attacker’s virtual address space,

Foreshadow-NG variants access unauthorized

physical memory

locations that are

not mapped in the

attacker’s virtual

address space. As

such, Foreshadow-

NG fully escapes the

virtual memory

sandbox—page

table isolation is no longer sufficient to prevent

unauthorizedmemory access.

Crucially, page table isolation mitigations that

are effective against Meltdown do not prevent

Foreshadow-type L1TF attacks. Foreshadow,

therefore, brings a paradigm shift in the way we

should think about mitigating Meltdown-like

threats: merely unmapping secrets from an

untrusted application’s address space is an insuf-

ficient countermeasure.

Final thoughts

Foreshadow and other speculative execution

attacks exploit subtle microarchitectural races

and, therefore, are highly elusive. For example,

we found that seemingly insignificant variations

of the covert channel implementation may cause

the attack to succeed or fail. Unfortunately, due

to the scarcity of public information about the

processor architecture, we can only guess what

real architectural flaws underlie the attack. Yet,

the higher level insight is independent of the

hardware implementation: speculation across

memory protection boundaries is dangerous in

the presence of hardware side channels, and

should be avoided or explicitly safe-guarded

against potential attacks.

ACKNOWLEDGEMENTS
This work was supported in part by the

Research Fund KU Leuven, the Technion Hiroshi

Fujiwara cyber security research center, the Israel

Foreshadow and other

speculative execution

attacks exploit subtle

microarchitectural

races and, therefore,

are highly elusive.

May/June 2019 73

cyber bureau, the National Science Foundation

(NSF) under Awards 1514261 and 1652259, the

financial assistance award 70NANB15H328 from

the U.S. Department of Commerce, the National

Institute of Standards and Technology, the 2017-

2018 Rothschild Postdoctoral Fellowship, and

the Defense Advanced Research Project Agency

(DARPA) under Contract FA8650-16-C-7622. The

work of J. Van Bulck and R. Strackx was supported

by a grant from the Research Foundation—Flan-

ders (FWO).

& REFERENCES

1. P. Kocher et al., “Spectre attacks: Exploiting speculative

execution,” in Proc. 40th IEEE Symp. Security Privacy,

2019.

2. M. Lipp et al., “Meltdown: Reading kernel memory from

user space,” inProc. USENIX Security Symp., 2018,

pp. 973–990.

3. Intel, “Speculative execution side channel mitigations.”

2018. [Online]. Available: https://software.intel.com/

security-softwareguidance/api-app/sites/default/files/

336996Speculative-Execution-Side-ChannelMitigations.

pdf

4. Intel, “Deep dive: Intel analysis of L1 terminal fault.”

2018. [Online]. Available: https://software.intel.com/

security-software-guidance/insights/deep-dive-intel-

analysis-l1-terminal-fault

5. Y. Xu, W. Cui, and M. Peinado, “Controlled-channel

attacks: Deterministic side channels for untrusted

operating systems,” in Proc. IEEE Symp. Security

Privacy, 2015, pp. 640–656.

6. O. Weisse et al., “Foreshadow-NG: Breaking the virtual

memory abstraction with transient out-of-order

execution,” 2018. [Online] Available at: https://

foreshadowattack.eu/foreshadow-NG.pdf

7. Y. Yarom and K. Falkner, “FLUSHþRELOAD: A high

resolution, low noise, L3 cache side-channel attack,” in

Proc. 23rd USENIX Security Symp., 2014, pp. 719–732.

8. S. Gueron, “Memory encryption for general-purpose

processors,” IEEE Security Privacy, vol. 14, no. 6,

pp. 54–62, Nov. 2016.

9. Intel, “SGX SDK for Linux.” 2018. [Online]. Available:

https://01.org/sites/default/files/documentation/intel_

sgx_sdk_developer_reference_for_linux_os_pdf.pdf

10. J. Van Bulck, F. Piessens, and R. Strackx, “SGX-Step:

A practical attack framework for precise enclave

execution control,” SysTEX, Shanghai, China, 2017.

11. F. McKeen et al., “Innovative instructions and software

model for isolated execution,” in Proc. 2nd Int.

Workshop Hardware Archit. Support Security Privacy,

2013, Paper 10.

12. J. Van Bulck et al., “Foreshadow: Extracting the keys to

the Intel SGX kingdomwith transient out-of-order

execution,” inProc. 27th USENIX Security Symp., 2018,

pp. 991–1008.

Jo Van Bulck is currently a PhD student in com-

puter science at imec-DistriNet, Katholieke Universi-

teit Leuven, Belgium. Contact him at jo.vanbulck@cs.

kuleuven.be.

Marina Minkin is currently a PhD student in

computer science and engineering at the University of

Michigan. The work was performed when she was

with Technion—Israel Institute of Technology. Contact

her at minkin@umich.edu.

Ofir Weisse is currently a PhD student in computer

science and engineering at the University of Michigan.

Contact him at oweisse@umich.edu.

Daniel Genkin is an assistant professor of com-

puter science and engineering at the University of

Michigan. Contact him at genkin@umich.edu.

Baris Kasikci is an assistant professor of com-

puter science and engineering at the University of

Michigan. Contact him at barisk@umich.edu.

Frank Piessens is a professor of computer science

at imec-DistriNet, Katholieke Universiteit Leuven,

Belgium. Contact him at frank.piessens@cs.kuleuven.be.

Mark Silberstein is an associate professor of

electrical engineering at Technion—Israel Institute of

Technology. Contact him at mark@ee.technion.ac.il.

Thomas F. Wenisch is an associate professor of

computer science and engineering at the University

of Michigan. Contact him at twenisch@umich.edu.

Yuval Yarom is a senior lecturer in computer

science at the University of Adelaide and Data61,

CSIRO. Contact him at yval@cs.adelaide.edu.au.

Raoul Strackx is a postdoctoral research fellow

in computer science at imec-DistriNet, Katholieke

Universiteit Leuven, Belgium. Contact him at

raoul.strackx@cs.kuleuven.be.

Top Picks

74 IEEE Micro

https://software.intel.com/security-softwareguidance/api-app/sites/default/files/336996Speculative-Execution-Side-ChannelMitigations.pdf
https://software.intel.com/security-softwareguidance/api-app/sites/default/files/336996Speculative-Execution-Side-ChannelMitigations.pdf
https://software.intel.com/security-softwareguidance/api-app/sites/default/files/336996Speculative-Execution-Side-ChannelMitigations.pdf
https://software.intel.com/security-softwareguidance/api-app/sites/default/files/336996Speculative-Execution-Side-ChannelMitigations.pdf
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
https://foreshadowattack.eu/foreshadow-NG.pdf
https://foreshadowattack.eu/foreshadow-NG.pdf
https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_reference_for_linux_os_pdf.pdf
https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_reference_for_linux_os_pdf.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

