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ABSTRACT

The ongoing surge in side-channel attacks on trusted execution
environments has prompted the application of formal methods to
eliminate these vulnerabilities once and for all. Recently, research
has focused on mitigating interrupt-driven side channels on small
microcontrollers, resulting in a provably secure mechanism to main-
tain enclave isolation in the presence of arbitrary timer interrupts.

This paper uncovers a subtle flaw in the formal model’s handling
of illegal memory-access exceptions, showing how this oversight
can compromise contextual equivalence through a strategic combi-
nation of interrupts and exceptions. We propose a minimal adjust-
ment to rectify themodel and reinstate formal assurances. Our study
underscores the importance of precisely modeling interrupts and
exceptions, drawing remarkable parallels with controlled-channel
and single-stepping attacks on higher-end processors.

1 INTRODUCTION

Recent years have seen increasing adoption of trusted execution
environments (TEEs) to safeguard sensitive data from privileged
adversaries with full control over the operating system on the target
device. This surge has, in turn, led to a long line of privileged side-
channel attacks exploiting the TEE adversary’s control over privi-
leged processor features such as interrupts [10–12] and memory-
access exceptions [1, 7, 13]. In response to these threats, various
hardware-software co-designs have been proposed to mitigate these
side channels, raising questions about how to assess the security
assurances of these implementations. Focusing on interrupt-driven
attacks on small microcontrollers, recent research has devised a
promising mechanism [4, 5] to provably preserve enclave isolation
in the presence of arbitrary timer interrupts, with practical im-
plementation on the Sancus security architecture [8]. Subsequent
studies [2, 3] have emphasized the importance of verifying the real-
world implementation’s alignment with the pen-and-paper formal
model. Notably, to date no oversights have been identified in the
(non-mechanised) proof logic itself.

Our research uncovers a subtle flaw in the formal model’s han-
dling of illegal memory-access exceptions. Specifically, we demon-
strate how an attacker can break contextual equivalence by strate-
gically combining interrupts and exceptions, mirroring tactics ob-
served in combined page-fault [13] and single-stepping interrupt [6,
7, 11] attacks on real-world Intel SGX platforms. We propose a mini-
mal adjustment to rectify the model and reinstate formal guarantees.
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In conclusion, our study highlights the intricacies of formally mod-
eling interrupts and exceptions and draws attention on the hurdles
of formal proofs when not supported by tools (e.g., proof assistants).

2 FULL ABSTRACTION BREACH

In the original 𝑆𝑎𝑛𝑐𝑢𝑠𝑉 papers [4, 5] the authors developed two
formal models: SancusH reflecting the mental programming model
of the programmer and the corresponding attacker and SancusL

expressing the actual runtime model of 𝑆𝑎𝑛𝑐𝑢𝑠𝑉 with interrupt-
enabled attacker. These two models were then proved to be fully
abstract [5, Theorem 6.3], meaning that any attack that can be per-
formed in SancusL has a counterpart in Sancus

H and vice versa.
More precisely, we say that two enclaves 𝑀 and 𝑀′ are indistin-
guishable, written 𝑀 ≃H 𝑀′ (resp. 𝑀 ≃L 𝑀′) for SancusH (resp.
SancusL), whenever they equi-terminate in any context, i.e., a pro-
gram with a hole acting as the attacker. Theorem 6.3 states that if a
context C distinguishes two enclaves𝑀 and𝑀′ in SancusL, then it
exists a context C distinguishing them in Sancus

H (and vice versa).
Investigation on 𝑆𝑎𝑛𝑐𝑢𝑠𝑉 by Bognar et al. [2] uncovered vulner-

abilities in the real-world Verilog implementation, while the formal
models were apparently solid. Recently, Busi et al. [3] proposed
ALVIE, a tool to automate the discovery of such implementation-
model mismatches. ALVIE helped uncovering two new bugs in
the 𝑆𝑎𝑛𝑐𝑢𝑠𝑉 implementation that exploit the default behavior of
resetting the CPU on memory-access violations.

Memory-Access Violations. To address the new bugs discov-
ered by ALVIE and bring the 𝑆𝑎𝑛𝑐𝑢𝑠𝑉 implementation in line with
the formal model, Busi et al. [3] recommend that the CPU raises a
dedicated exception that can be explicitly handled by both SancusH
and SancusL adversaries. This can be achieved with a minimal
change that explicitly clears the RESET_ON_VIOLATION variable (on
by default) in the existing Verilog implementation of 𝑆𝑎𝑛𝑐𝑢𝑠𝑉 . In
line with the formal model, whenever an instruction 𝑖 violates
memory-access permissions in enclave mode, a separate, attacker-
controlled exception handler at 0xFFFE is called at time 𝑡 +cycles(𝑖)
(while CPU registers and any pending timer interrupts are cleared).

Breaking Contextual Equivalence. We could break indistin-
guishability because the formal semantics overlooked the way it
handles exceptions (e.g., memory violations). Indeed, we show a
specific enclave pair that is indistinguishable to a SancusH adver-
sary capable of observing exceptions but not triggering interrupts,
yet distinguishable to a SancusL adversary who can additionally
exploit interrupts. Consider the following minimal code snippet
that branches based on an enclave-internal secret:
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j z 1 f ; nop ; nop ; mov r8 , &pu b l i c # 1 + 1 + 4 c y c l e s
1 : mov &p r i v a t e , &pu b l i c # 6 c y c l e s

As the 𝑆𝑎𝑛𝑐𝑢𝑠𝑉 semantics explicitly prohibits writing to public
(unprotected) memory addresses outside the enclave, a memory-
access exception is invariably triggered by the mov instruction. Note
that, both in 𝑆𝑎𝑛𝑐𝑢𝑠𝑉 ’s semantics and the Verilog implementation,
exceptions are always deferred until instruction retirement. Conse-
quently, enclave pairs containing an internal secret of either zero
or non-zero will appear identical to a SancusH adversary lacking
interrupt capabilities, who will consistently observe an identical ex-
ception occurrence in both branches at the same time (i.e., 6 cycles
after the jz instruction). However, a SancusL adversary can easily
differentiate between the two enclaves by strategically scheduling a
timer interrupt immediately after the jz instruction and observing
whether the associated interrupt handler gets called:

(1) if the secret is non-zero, the timer interrupt arrives during
the 1-cycle nop instruction and the interrupt handler in the
attacker context is invoked before any exception arises;

(2) if the secret is zero, the timer interrupt arrives during the 6-
cycle mov instruction; however, upon instruction retirement,
the pending timer interrupt is superseded by the memory-
access violation and a distinct exception handler in the at-
tacker’s context is triggered.

The above behavior is formallymodeled in theCpu-Violation-PM
and Int-PM-P rules of 𝑆𝑎𝑛𝑐𝑢𝑠𝑉 ’s operational semantics. Addition-
ally, we experimentally validated the contextual-equivalence breach
in the publicly available Verilog implementation.

3 RECOVERING FULL ABSTRACTION

Recall that, the proof of full abstraction in Theorem 6.3 of [5] first
shows that SancusL is backwards compatible with Sancus

H by
proving reflection of behaviors, i.e., ∀𝑀,𝑀′ . 𝑀 ≃L 𝑀′ ⇒ 𝑀 ≃H 𝑀′.
Then it proves that 𝑀 ≃H 𝑀′ ⇒ 𝑀 ≃L 𝑀′ (★), thus establishing
preservation of behaviors, i.e., that the SancusL semantics is as se-
cure as the original SancusH. This proof relies on traces – finite
sequences of attacker-visible runtime actions – to show the contra-
positive of (★) by providing an algorithm that constructs a context
in SancusH that distinguishes two enclaves when they are not trace
equivalent (backtranslation [9]). Finally, the proof is completed by
establishing that two modules that are trace equivalent are also
indistinguishable in SancusL. However, the above counterexample
requires to fix the model to recover full abstraction.

Dissecting the Counterexample. In the counterexample the
two enclaves differ just by the secret and they execute as follows:

(1) If the secret is non-zero, the computation is INIT𝑠≠0 →∗

nop and then, by Int-PM-P, nop → IRQ where INIT𝑠≠0 is
the initial state of the processor with the enclave and IRQ
denotes the processor state at the beginning of the interrupt
handling routine. The execution of nop gives the control
back to the attacker. Depending on the nature of the attacker,
the trace semantics of [5, Fig. 9] either records a • denoting
convergence, or no observable if the attacker decides to
diverge, or a jmpOut!(Δ𝑡 ;R), for some timing Δ𝑡 and register
file R, if the attacker resumes enclaves execution and waits
for it to finish.

(2) If the secret is zero, the computation is INIT𝑠=0 →∗ mov
&private, &public → EXC, where EXC denotes an ex-
ception state. In this case, since upon exception the con-
trol goes back to the attacker, the trace semantics emits
jmpOut!(Δ𝑡 ′;R0 [pc ↦→ exc]) where exc is the address of the
exception handler. Here Δ𝑡 ′ = 2 + 6 = 8 where 2 + 6 is the
sum of instructions timings inside the enclave. Note that
here there is no padding for mitigation and that no setup
time is needed for exceptions (see rule CPU-Violation-PM).

Harmonizing Exception Timing. The fix consists of harmoniz-
ing the management of time of rule CPU-Violation-PM (resp. CPU-
Violation-PM) with that of CPU-Decode-Fail (resp. CPU-Decode-
Fail), i.e., substituting 𝑡 + cycles(𝑖) with 𝑡 . To see why this works
in general, consider any two enclaves𝑀 and𝑀′, distinguishable in
SancusL by an interrupt happening at time 𝑡𝑖𝑛𝑡 and such that (1) 𝑀
has an instruction 𝑖 starting at time 𝑡𝑒𝑥𝑐 causing an exception; and
(2) 𝑀′ has instruction 𝑖′ starting at time 𝑡 ′𝑒𝑥𝑐 also causing an ex-
ception. With the old rule, in Sancus

H the exception handler starts
at time 𝑡𝑒𝑥𝑐 + cycles(𝑖) for 𝑀 and 𝑡 ′𝑒𝑥𝑐 + cycles(𝑖′) for 𝑀′, making
the two enclaves indistinguishable in cases like ours. Instead, with
the updated rule the exception handler starts at time 𝑡𝑒𝑥𝑐 for𝑀 and
𝑡 ′𝑒𝑥𝑐 for𝑀′ making the two cases always distinguishable because
𝑡𝑒𝑥𝑐 ≠ 𝑡 ′𝑒𝑥𝑐 , otherwise both enclaves would have been interrupted
at time 𝑡𝑖𝑛𝑡 in SancusL, contrary to our assumption that one of
them caused an exception.

With our proposed fix, the SancusL attacker can learn the secret
by distinguishing1 ISR from EXC, and the formal model correctly
accounts for that. Since the SancusH attacker is built by backtrans-
lation from the traces, it mimics the SancusL attacker but tries
to learn the secret without the use of interrupts by letting the
enclaves exit at their will. The minimal change in the semantics
mentioned above, excludes the scenario of the counterexample and
calls for minimal adjustments to the proof, in particular to the back-
translation. In detail, this means that both enclaves execute until
rule CPU-Violation-PM fires and the attacker starts to execute code
at address exc at time 𝑡 if the secret is zero, 𝑡 ′ otherwise. However,
𝑡 = 𝑡 ′: if the secret is zero, the offending instruction is the 6-cycles
mov &private, &public, otherwise the exception is caused by the
4-cycles mov r8, &public that follows 2, 1-cycle nops.

Implementation Considerations. While the proposed fix re-
quires only minimal changes in the formal semantics, implement-
ing our fix as-is in the real-world 𝑆𝑎𝑛𝑐𝑢𝑠𝑉 processor would ne-
cessitate non-trivial modifications to the underlying openMSP430
pipeline design. Particularly, our proposal requires the CPU to de-
tect exceptions before the offending instruction is actually executed,
while the actual openMSP430 processor detects exceptions dur-
ing attempted instruction execution (i.e., when the operands are
known/computed) and delays handling them until instruction re-
tirement [1, 12]. Thus, we propose a slight variation of our fix below
that is semantic-preserving and straightforward to implement on
the real-world 𝑆𝑎𝑛𝑐𝑢𝑠𝑉 processor. It suffices to ensure that the time

1The attacker could distinguish the address of the interrupt-service routine (isr) from
that of the exception handler (exc) or use timing to distinguish the two enclaves since
it always takes Sancus 12 cycles to jump to isr , while the time between an exception
and the jump to exc is ≤ 6, i.e., the duration of the longest Sancus instruction.
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between the start of the offending instruction and that of the excep-
tion handler is a constant, e.g., MAX_TIME, which is already defined
in the 𝑆𝑎𝑛𝑐𝑢𝑠𝑉 implementation and equals the number of cycles
taken by the longest instruction (i.e., 6 cycles).

clk :

(if) 𝑠 ≠ 0:
nop nop mov r8, &public EXC

(else) 𝑠 = 0:
mov &private, &public EXC

𝑡 𝑡 + MAX_TIME

𝑡 ′ 𝑡 ′ + MAX_TIME

Figure 1: Graphical representation of an implementation

of the proposed fix. The countermeasure re-uses existing

Sancus mechanisms, in particular time padding, represented

by the dashed rectangle.

Figure 1 illustrates a possible execution of our modified coun-
terexample on a fixed 𝑆𝑎𝑛𝑐𝑢𝑠𝑉 implementation. When the secret
𝑠 ≠ 0, the CPU executes two single-cycle nop instructions and
starts executing mov r8, &public at time 𝑡 , raising an exception
during its execution. In this case, since mov r8, &public lasts 4
cycles, the CPU waits for MAX_TIME − 4 = 2 additional cycles (dashed
rectangle in the figure) after the end of the offending instruction.
Therefore, the exception handler starts at time 𝑡 + MAX_TIME. When
𝑠 = 0, on the other hand, the exception is raised during the mov
&private, &public instruction, that starts at time 𝑡 ′. In this case,
the instruction lasts 6 cycles and the CPU needs not to wait addi-
tional cycles. The exception handler, therefore, starts at a different
time 𝑡 ′ + MAX_TIME.

4 CONCLUSIONS AND INSIGHTS

The identified contextual-equivalence breach illustrates how TEE
adversaries can exploit a strategic combination of side-channel
information leakage from interrupts and exceptions to their ad-
vantage. Notably, while we are the first to study this amplification
effect on small microcontrollers, similar tactics have previously
been showcased on real-world Intel SGX enclave processors, where
single-stepping frameworks like SGX-Step [10, 11] enable precise
tracking of the number of enclave instructions leading up to an
observable exception. The instruction-level temporal resolution pro-
vided by SGX-Step has proven particularly effective in enhancing
the relatively coarse-grained (page-level) spatial resolution associ-
ated with attacker-induced exceptions like page faults [7, 13].

In a wider perspective, our discovery of a contextual-equivalence
breach within the provably secure 𝑆𝑎𝑛𝑐𝑢𝑠𝑉 architecture calls for
tool-supported formal models and mechanized proofs and under-
scores the criticality of precisely modeling asynchronous processor
features like interrupts and exceptions. We anticipate that our for-
malization can contribute to enhancing interrupt defenses in diverse
TEE architectures.
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