e ot

Microarchitectural Side-Channel Attacks
for Privileged Software Adversaries

Jo Van Bulck
Public PhD defense, September 14, 2020

@A imec-DistriNet, KU Leuven £ jo.vanbulck®@cs.kuleuven.be

DistriN=t

https://distrinet.cs.kuleuven.be/people/jo
mailto:jo.vanbulck@cs.kuleuven.be

www.freepik.com

SOCIAL DISTANCING

STOP

www.freepik.com

CoviD-19
RAPID TEST

-

www.freepik.com

Bitdefender

CYBERTHREAT
REAL-TIME MAP

B UKRAINE
o T (e G0 ED || TR : = Y O aes
MON 31 AUG 5:34:44 PM n/a UKRAINE UNITED STATES = BRAZIL
@ INFECTIONS MON 31 AUG 6:00:54 PM JS: ADWARE.LNKR.A INFECTION BRAZIL /A B GERMANY
MON 31 AUG 5:34:43 PM /A UKRAINE UNITED STATES W FRANCE
® SPAM MON 31 AUG 5:59:52 PM ADWARE.DEALPLY . 1.GEN INFECTION BRAZIL N/A @ CANADA
W ITALY
MON 31 AUG 5:59:49 PM N/A SPAM UNITED STATES N/A
W& UNITED KINGDOM

https://threatmap.bitdefender.com/

https://threatmap.bitdefender.com/

What do corona and computer viruses have in common?

1. No vaccine: adapt to a new reality. ..

What do corona and computer viruses have in common?

1. No vaccine: adapt to a new reality. ..

2. Need for physical distancing — software isolation

What do corona and computer viruses have in common?

1. No vaccine: adapt to a new reality. ..

2. Need for physical distancing — software isolation

3. Need for testing — software attestation

A crash course on computer architecture

Processor security: Hardware isolation mechanisms

[[| o [

VM 05 VM 05 A
L

v v
\ W Hypervisor (VMM)

e Different software protection domains: applications, virtual machines, enclaves

Processor security: Hardware isolation mechanisms
/ App ﬁ"‘ APP | App %Enclaveﬁj
NS LT 1 " =
VM 0S 11 VMOS A
1.1 D¢
v_v
\ %%) Hypervisor (VMM)

e Different software protection domains: applications, virtual machines, enclaves

e CPU builds “walls” for memory isolation between applications and privilege levels

o.nz

@STOUXSIEW @XTOTL thespinoff.c

25 Microsoft Office 2001
Windows 2000

Microsoft Office for Mac

2006

! ymbian

mobile operating syster

Windows 7

2009

Windows XP

7001

Microsoft Office 2013

- 50 Large Hadron Co]lide‘r
otal code

Windows Vista

2007

Microsoft Visual Studio 2012

Facebook

US Army Future Combat System

fast batflefield network system (aborted)

Debian 5.0 codebase

e, open-source operating systerr

Mac OS X “Tiger™

104
_].(X) Car software

Mouse*

fotal DNA basepairs in genome

Dhie

https://informationisbeautiful.net/visualizations/million-lines-of-code/

https://informationisbeautiful.net/visualizations/million-lines-of-code/

Enclaved execution: Reducing the bubble

App]

App] App

OS kernel

Hypervi or@"

TPM CPU Mem HDD

Traditional layered designs: large trusted computing base
10

Enclaved execution: Reducing the bubble

App

App Enclave app

OS kernel x

y i v A

Hypervisor —/

TPM] CPUdé

Intel SGX promise: hardware-level isolation and attestation

Mem M HDD

10

Overview: Processor enclaves for self-quarantining

~ Vault for sensitive code and data

— Trusted “bubble” in untrusted world

e 2008-2014: Research prototypes (e.g., Sancus)

11

Overview: Processor enclaves for self-quarantining

~ Vault for sensitive code and data

— Trusted “bubble” in untrusted world

e 2008-2014: Research prototypes (e.g., Sancus)
e 2015: Intel Software Guard Extensions (SGX)

@ ‘ﬁ‘lﬁﬁﬁfﬁﬁ Intel alters design of ‘Skylake’ processors to enhance security

= & AntonShilov @ October3,2015 8 APU, CPU

! Intel to begin shipping Skylake CPUs with SGX enabled

EPSRT; @ oo

11

©) «,

i =
) 3
s @ -
S @ —f VAULT DOOR .T? @
y L4 ", S @ &

Evolution of “side-channel attack” research

A
4000 —
3000 —
2000 —
DO WE JUST SUCK
AT... COMPUTERS?
QP. ESPECIALLY SHARED ONES.
1000 — S/
| | | | | | | >
1990 1994 1998 2002 2006 2010 2014 2018

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/ 14

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

Evolution of “side-channel attack” research

A
4000 —
’ (lntel)
° - SG

3000 | <
2000 —

DO WE JUST SUCK

AT... COMPUTERS?

QP. ESPECIALLY SHARED ONES.
1000 — S/
| | | | | | | >
1990 1994 1998 2002 2006 2010 2014 2018

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/

14

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

Side-channel attacks and trusted computing (focus of this PhD)

A
4000 —
. (Int
® -

3000 %-
2000 —

DO WE JUST SUCK

AT... COMPUTERS?

QP. ESPECIALLY SHARED ONES.
1000 — S/
| | | | | | | >
1990 1994 1998 2002 2006 2010 2014 2018

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/ 14

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

o

Enclave adversary model

Abuse privileged operating system powers

— unexpected “bottom-up” attack vectors

Case study: Comparing a secret password

password

16

Case study: Comparing a secret password
! No!

password

E\l
olalsltla 2

16

Case study: Comparing a secret password

~I\

password

plajs|tla]

16

Case study: Comparing a secret password

v

password

plas|tl|a

16

Case study: Comparing a secret password

NS Wy

password

plas|tl|a

16

Case study: Comparing a secret password

YWY

password

plas|tl|a

16

Case study: Comparing a secret password

ANOE o

password ®

plas|tl|a

16

Case study: Comparing a secret password

NS Wy

password

2

plals|s|a

16

Case study: Comparing a secret password

YWY

password

2

pla/s|s|a

16

Case study: Comparing a secret password

OOV Cx

password ®

pla/s|s|a

16

Case study: Comparing a secret password

ANV YE

password

pla/s|s|a

\
N
~@ Overall execution time reveals correctness of individual password bytes!]

16

Building the side-channel oracle with execution timing?

30000

[Z1 100,000 runs, strlen=1
25000 EEm 100,000 runs, strlen=2

20000

15000

Frequency

=
o
o
o
o

5000

% A A i Z ‘ A A
100 120
Execution time (cycles)

17

Building the side-channel oracle with execution timing?

"= |) Too noisy: modern x86 processors are lightning fast. ..

30000

[Z1 100,000 runs, strlen=1
25000 EEm 100,000 runs, strlen=2

20000

15000

Frequency

10000

5000

J A A /] J A
% 90 120
Execution time (cycles)

17

Analogy: Studying galloping horse dynamics

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop 18

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop

Copyright, 1878, by MUYBRIDGE. i MORSE’S Gallery, 417 Montgomery St., San Francisco,
" n
7 THE ﬁORSE IN OTION.

)

\7} Tllustrated by

i MUYBRIDGE. AUTOMATIC ELECTRO-PHOTOGRAPH.
*“SALLIE GARDNER,” owned by LELAND STANFORD; running atga 1.40 gait over the Palo Alto track, 19th June, 1878.

SGX-Step: Executing enclaves one instruction at a time

——> OUTPUT

"
INPUT —».

y

20

SGX-Step: Executing enclaves one instruction at a time

A,
0

~~
.T‘ —> OUTPUT

'
INPUT —>

D

INTERRUPT

20

SGX-Step: Executing enclaves one instruction at a time

SGX-Step

) https://github.com/jovanbulck/sgx-step

© Watch 22 % Star 245 % Fork 52

20

https://github.com/jovanbulck/sgx-step

SGX-Step: Executing enclaves one instruction at a time

/" Enclave N\
if secret do
instl
else
inst2
-
\\ ,/ user space

OS kernel

20

SGX-Step: Executing enclaves one instruction at a time

/" Enclave N\
if secret do
instl
else
inst2
-
\\ ,/ user space

OS kernel

;j\ [/dev/sgx—step]

20

SGX-Step: Executing enclaves one instruction at a time

libsgxstep
/" Enclave N\
if secret do
instl
else A
inst2
o
\\ ,/ Leerttt user space

K OS kernel
4

;j\ [/dev/sgx—step]

20

SGX-Step: Executing enclaves one instruction at a time

libsgxstep

/" Enclave N\

if secret do
instl —<€«—]

else A
inst2
s |
\\ ,/ e user space
OS kernel

;j\ [/dev/;;x—step]

20

SGX-Step: Executing enclaves one instruction at a time

o~
((Q,) Interrupt handler

/ Enclave \ IRQ

if secret do
instl —<€«—]

>[libsgxstep

else A
inst2
s |
\\ ,/ """"" user space
OS kernel

;j\ [/dev/;;x—step]

20

SGX-Step: Executing enclaves one instruction at a time

o~
((Q,) Interrupt handler

/" Enclave N\

if secret do
instl —<€«—]

>[libsgxstep

else

inst2
i

e o = g = -

OS kernel

;j\ [/dev/;;x—step]

20

Building a deterministic password oracle with SGX-Step

[idt.c] DTR.base=0xfffffe0000000000/size=4095 (256 entries)

[idt.c] established user space IDT mapping at 0x7f7ff8e9a000

[idt.c] installed asm IRQ handler at 10:0x56312d19b000

[idt.c] IDT[45] @Ox7f7ff8e9%9a2dd = 0x56312d19b00O (seg sel 0x10); p=1; dpl=3; type=14; ist=0
[file.c] reading buffer from '/dev/cpu/1l/msr' (size=8)

[apic.c] established local memory mapping for APIC BASE=0xfee00000 at 0x7f7ff8e99000
[apic.c] APIC ID=2000000; LVTT=400ec; TDCR=0

[apic.c] APIC timer one-shot mode with division 2 (lvtt=2d/tdcr=0)

[attacker] steps=15; guess='X*¥¥¥¥k!
[attacker] found pwd len = 6

[attacker] steps=35; guess='SECRET' --> SUCCESS

[apic.c] Restored APIC LVTT=400ec/TDCR=0)

[file.c] writing buffer to '/dev/cpu/l/msr' (size=8)
[main.c] all done; counted 2260/2183 IRQs (AEP/IDT)
jo@breuer:~/sgx-step-demo$ i

21

From architecture. ..

\iu i

H
M‘Hfiiw ,.h‘.l |

Tir ™

From architecture... to microarchitecture

Back to basics: Fetch decode execute CPU operation

.;.‘—><ib —>QQ

Fetch instruction Decode Execute

23

Back to basics: Fetch decode execute CPU operation

Fetch instruction Decode Execute

)

Interrupt

23

Back to basics: Fetch decode execute CPU operation

ﬁ Interrupts delayed till instruction retirement
3 = >

e @
x';-‘ — —_— QQ

Fetch instruction Decode Execute

Interrupt
P 23

Wait a cycle: Interrupt latency as a side channel

CLK _A A A A A -
CMD 7% NOP X IRQlogic ISR
rRQ@ [\
CMD 77X ADD X IRQlogic ISR
) N —

<

24

TIMING LEAKS

&L
SO
y “' ; «f

' o EVERYWHERE

imgflip.com

Nemesis attack: Inferring key strokes from Sancus enclaves

A

Y

~ IRQ latency »

Instruction (interrupt number)

‘3‘ Enclave x-ray: Start-to-end trace enclaved execution
25

Nemesis attack: Inferring key strokes from Sancus enclaves

A

0O 1/ 0 0 0 00O OOOOOOODO

Y

~ IRQ latency »

Instruction (interrupt number)

‘A‘ Enclave x-ray: Keymap bit traversal (ground truth)
25

Nemesis attack: Inferring key strokes from Sancus enclaves

0 100 000O0OO0ODODOOOODO

~ IRQ latency ~

N N

0 (no press) 1 (key pressed) 0 (no press)

' W

IRQ latency (cycles)

11]
Instruction (interrupt number) 25

Intel SGX microbenchmarks: Measuring x86 cache misses

‘ - - 3 -
3@ Timing leak: reconstruct microarchitectural state

load cache hit

7

Frequency

Y

7700 7900 IRQ latency (cycles) 8300 8500
26

Single-stepping Intel SGX enclaves in practice

[‘3‘ Enclave x-ray: Start-to-end trace enclaved execution]
]
g
>
£
[}
%
o W‘fw
«

Instruction (interrupt number)

27

Single-stepping Intel SGX enclaves in practice

[“‘ Enclave x-ray: Zooming in on bsearch function]
]
&
>
£
[}
%
«

Instruction (interrupt number)

27

De-anonymizing SGX enclave lookups with interrupt latency

l Adversary: Infer secret lookup in known sequence (e.g., DNA)]

28

De-anonymizing SGX enclave lookups with interrupt latency

Goal: Infer lookup — reconstruct bsearch control flow

A] K Left Right> Hit®

7950 A

IRQ latency (cycles)

7800 A

Y

Interrupt (instruction number)
28

Thesis outline: Privileged side-channel attacks

e N

Enclave app Metadata

\)

. ‘\ 101”00000000000000‘ !
CPU d‘ @ [Mem ﬁ

|\

29

Thesis outline: Transient-execution attacks

e N

Enclave app Metadata

Z@l g‘x Skerne|) pata
vt~ O [wn @

|\

29

WHAT IFITOLD YOU

|

YOU CAN CHANGE RULES MID-GAME

Out-of-order and speculative execution

Key discrepancy:

— Programmers write sequential instructions

A
Y

int area(int h, int w)

{
int triangle = (w*h)/2;
int square = (W*w) ;
return triangle + square;

}

30

Out-of-order and speculative execution

Key discrepancy:

— Programmers write sequential instructions

< Modern CPUs are inherently parallel

A
Y

= Execute instructions ahead of time

int area(int h, int w)
{
int triangle = (w*h)/2;
Cint square = (W*WwW) ;
return triangle + square;:’
}

30

Out-of-order and speculative execution

Key discrepancy:

h
— Programmers write sequential instructions
< Modern CPUs are inherently parallel
«— >
Overflow = Execute instructions ahead of time
Roll-back exception
int area(int h, int w))
{ Best effort: What if triangle fails?
int triangle = (w*h)/2; @
int square = (w*w); — Commit in-order, roll-back square
return triangle + square; J

}

30

Transient-execution attacks: Welcome to the world of fun!

T Py

-~

The transient-execution zoo

https://transient.fail

-

(Gt)
PHT-CA-OP

Spectre PHT

-

i)
PHT-SA-OP

-

T
BTB-CA-OP

Spectre-BTB

Spectretype BTB-SA-IP
Same-address-space
@

-

(i)
RSB-CA-OP

Spectie RSB

Spectre-STL

Meltdown-PF

Meltdown-SM-SB

WMeltdown-type

(@i CPLREQ
Meltdown-NC-SB

Meltdown-GP

Meltdown-MCA

32

https://transient.fail

CENS

Inside” Inside” Inside”

Meltdown: Transiently encoding unauthorized memory

]
== N\
0=
=

Unauthorized access

Listing 1: x86 assembly Listing 2: C code.
1 meltdown: 1 void meltdown (
2 %rdi: oracle 2 uint8_t =xoracle,
3 %rsi: secret_ptr 3 uint8_t *xsecret_ptr)
4 4 |
5 movb (%rsi), %al 5 uint8_t v = xsecret_ptr;
6 shl $0xc, %rax 6 v = v x 0x1000;
7 movq (%rdi, %rax), %rdi 7 uint64_t o = oracle[v];
retq 8 }

33

Meltdown: Transiently encoding unauthorized memory

C
= N\
ﬁ
=
=
Unauthorized access Transient out-of-order window
Listing 1: x86 assembly. Listing 2: C code.
1 meltdown: 1 void meltdown (oracle array
2 %rdi: oracle 2 uint8_t =xoracle, RTINS x
3 %rsi: secret_ptr 3 uint8_t *xsecret_ptr)]
4 4 {] =
5 movb (%rsi), %al 5 uint8_t v = xsecret_ptr; o | S
6 shl $0xc, %rax 6 v = v x 0x1000; [RESS 9
7 movq (%rdi, %rax), %rdi 7 uint64_t o = oracle[v];
retq s } L

33

Meltdown: Transiently encoding unauthorized memory

S SR g
—_— —_—
=
= F~

Unauthorized access Transient out-of-order window Exception
(discard architectural state)

Listing 1: x86 assembly. Listing 2: C code.
1 meltdown: 1 void meltdown (
2 %rdi: oracle 2 uint8_t =xoracle,
3 %rsi: secret_ptr 3 uint8_t *xsecret_ptr)
4 4 |
5 movb (%rsi), %al 5 uint8_t v = xsecret_ptr;
6 shl $0xc, %rax 6 v = v x 0x1000;
7 movq (%rdi, %rax), %rdi 7 uint64_t o = oracle[v];
retq 8 }

33

Meltdown: Transiently encoding unauthorized memory

S

N o oo w

-I
“ R Ji‘?
—_— —_—
=
o

Unauthorized access

Listing 1: x86 assembly.

Transient out-of-order window

Listing 2: C code.

meltdown :
%rdi: oracle
%rsi: secret_ptr

movb (%rsi), %al

shl $0xc, %rax

movq (%rdi, %rax), %rdi
retq

ah W N R

© ~N o

void meltdown (

{

}

uint8_t =xoracle,
uint8_t xsecret_ptr)

uint8_t v = xsecret_ptr;
v = v x 0x1000;
uint64_t o = oracle[v];

Exception handler

oracle array

&

cache hit

33

&) () B
< By

Inside” Inside” Inside”

Rumors: Meltdown immunity for SGX enclaves?

Meltdown melted down everything, except
for one thing

“[enclaves] remain protected and completely secure”

— International Business Times, February 2018

ANJUNA'S SECURE-RUNTIME CAN PROTECT CRITICAL APPLICATIONS
AGAINST THE MELTDOWN ATTACK USING ENCLAVES

“[enclave memory accesses| redirected to an abort page, which has no value”

— Anjuna Security, Inc., March 2018

34

https://web.archive.org/web/20180617022540/https://www.ibtimes.co.uk/meltdown-melted-down-everything-except-one-thing-1663785
https://web.archive.org/web/20180720144203/https://www.anjuna.io/blog/2018/2/7/meltdown-spectre-sgx

SPECTRE-LIRE FLAW
UNDERMINES INTEL
PROCESSORS” MOST SECURE
ELEMENT

Intel’s SGX blown wide open by, you
guessed it, a speculative execution attack

Speculative execution attacks truly are the gift that keeps on giving.

https://wired.com and https://arstechnica.com

34

https://wired.com
https://arstechnica.com

Building Foreshadow: Evade SGX abort page semantics

@ © .
0s?

Page fault

36

Building Foreshadow: Evade SGX abort page semantics

k
0S? ° SGX?

fail

Page fault Abort page

36

Building Foreshadow: Evade SGX abort page semantics

ok

Page fault

36

Foreshadow-SGX: Breaking enclave isolation

CPU mncroarchltecture

Abort page

Page fault

36

Foreshadow-NG: Breaking virtual machine isolation

CPU microarchitecture

Ay
Pass to out-of-order] %ﬁ

Abort page

Page fault Page fault

36

Terminal T3 W = @ =00%)) 1221AM
O © % Foreshadow Demo
SGX enclave: secret string at 0x7f19ee646000

Press enter to natvely read en:lave memory at address Ox7f19ee646000...

Segment 0: 0x7f19ee646000 - 0x7f19ee646317
Victim address = 0x7f19ee646316...
Actual success rate = 0/791 = 0.00 %
i Press enter to use Foreshadow to read enclave memory at address 0x7f19ee646000 ...

Segment 0: 0x7f19ee646000 - 0x7f19ee646317

Victim address = 0x7f19ee6460dd... Ox69

EXEracted BYtes === - -rcmm oo cmoe e o o e el e e S e = = e e R n S S = e = e el e R R

49 74 20 77 61 73 20 6F 6E 65 20 6F 66 20 74 68 6F 73 65 20 70 69 63 74 75 72 65 73 20 77 68 69 63 68 It was one of those pictures which

20 61 72 65 20 73 6F 20 63 6F 6E 74 72 69 76 65 64 20 74 68 61 74 20 74 68 65 20 65 79 65 73 20 66 6F are so contrived that the eyes fo

sc sc AF 77 2@ 79 6F 75 20 61 62 6F 75 er 77 sa Frln 70 sr 75 20 AN 6F 75 65 2F 20 42 49 47 20 llow you about when you move. BIG
i

E 15, 20,40 S0 0T 41 5/\C £ 7/At] 61 70 74 69 BROTHER IS WATCHING YOU, the capti
owev e /B
61 G -6 1" 6/ 63 AR]

A3 6C 61 74 20 on beneath it ran.Inside the flat
(/A -5 74 20 61 20 6C a fruity voice was reading out a 1
69 73 74 20 GF 66 20 66 69 67 75 72 65 73 ZG 77

canread ’rhe oc’ruol
enclave memory

ﬂu

MIEIBQII

Mitigating Foreshadow: Flush CPU microarchitecture

Mitigating Foreshadow: Flush CPU microarchitecture

e ’iﬁ" .

10BH | 267 1A32_FLUSH_CMD Flush Command (WO) If any one of the

Gives software a way to invalidate enumeration conditions for
structures with finer granularity than other | defined bit field positions

architectural methods. holds.
0 L1D_FLUSH: Writeback and invalidate the | If CPUID.(EAX=07H,
L1 data cache. ECX=0):EDX[28]=1
63:1 Reserved

i

74

Inside” Inside” Inside”

Ny

") *
THE WHITE HOUSE
6:14 PM

I“g dgn i1y

™ YHITE HOUSI
R VASHINGTON

2.8t /
¢ a

PRES. TRUMP UPDATES PUBLIC ON FEDERAL RESPONSE TOVIRUS &i2MSNBC
v/ m

Idea: Can we turn Foreshadow around?

Qutside view Intra-enclave view
e Meltdown: out-of-reach e Access enclave + outside memory
e Foreshadow: cache emptied

39

Idea: Can we turn Foreshadow around?

Outside view Intra-enclave view
e Meltdown: out-of-reach e Access enclave + outside memory
e Foreshadow: cache emptied — Abuse in-enclave code gadgets!

39

Reviving Foreshadow with Load Value Injection (LVI)

Attacker domain

/

[Faulting load &encl

/

Transient gadget D
<

A\

S

Enclave domain

.
K
.t
.....
.....
............

N

Page table manipulation

40

Reviving Foreshadow with Load Value Injection (LVI)

Attacker domain Enclave domain

Y% N

Faulting load &encl]

Transient gadget 4
@ 7 <

Page table manipulation

40

FOOD POISONING

S

. m
S i ' 4
4 % oo
X
N
[
Overdue products Medicine

4
- L&‘
/' , —

Intestinal colic Diarrhea Headache

www.freepik.com

www.freepik.com

Mitigating LVI: Fencing vulnerable load instructions

Mitigating LVI: Fencing vulnerable load instructions
b SR
\ .\—

Intel architectural enclaves: 1fence counts libsgx_ge.signed.so

23 fences

October 2019— “surgical precision”

42

Intel architectural enclaves: 1fence counts libsgx_ge.signed.so

23 fences 49,315 fences

October 2019— “surgical precision” March 2020— “big hammer”

42

LVI performance impact https://www.phoronix.com

GNU Assembler Adds New Options For Mitigating Load
Value Injection Attack

Written by Michael Larabel in GNU on 11 March 2020 at 02:55 PM EDT. 14 Comments
The Brutal Performance Impact From Mitigating The LVI
Vulnerability

Written by Michael Larabel in Software on 12 March 2020. Page 1 of 6. 76 Comments

LLVM Lands Performance-Hitting Mitigation For Intel LVI
Vulnerability

M e

Looking At The LVI Mitigation Impact On Intel Cascade Lake
Refresh

VA

44

https://www.phoronix.com

Conclusions and takeaway

= Trusted execution environments (Intel SGX) # perfect(!)
= Importance of fundamental side-channel research; no silver-bullet defenses

= Security cross-cuts the system stack: hardware, OS, compiler, application

K -

ocO

45

	Appendix
	Appendix

