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What do corona and computer viruses have in common?

1. No vaccine: adapt to a new reality. . .

2. Need for physical distancing → software isolation

3. Need for testing → software attestation
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A crash course on computer architecture
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Processor security: Hardware isolation mechanisms

VM OS

AppApp

Hypervisor (VMM)

VM OS

EnclaveApp

• Different software protection domains: applications, virtual machines, enclaves

• CPU builds “walls” for memory isolation between applications and privilege levels
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https://informationisbeautiful.net/visualizations/million-lines-of-code/

https://informationisbeautiful.net/visualizations/million-lines-of-code/




Enclaved execution: Reducing the bubble

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 AppApp

Traditional layered designs: large trusted computing base
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Enclaved execution: Reducing the bubble
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Hypervisor

 Enclave app

Intel SGX promise: hardware-level isolation and attestation
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Overview: Processor enclaves for self-quarantining

≈ Vault for sensitive code and data

→ Trusted “bubble” in untrusted world

• 2008-2014: Research prototypes (e.g., Sancus)

• 2015: Intel Software Guard Extensions (SGX)
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Evolution of “side-channel attack” research
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YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/
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Side-channel attacks and trusted computing (focus of this PhD)
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Enclave adversary model

Abuse privileged operating system powers

→ unexpected “bottom-up” attack vectors



Case study: Comparing a secret password

p a s s w o r d

Overall execution time reveals correctness of individual password bytes!
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Building the side-channel oracle with execution timing?

Too noisy: modern x86 processors are lightning fast. . .
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Analogy: Studying galloping horse dynamics

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop
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SGX-Step: Executing enclaves one instruction at a time

INPUT OUTPUT
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SGX-Step: Executing enclaves one instruction at a time

SGX-Step

https://github.com/jovanbulck/sgx-step
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SGX-Step: Executing enclaves one instruction at a time

user space

OS kernel
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SGX-Step: Executing enclaves one instruction at a time
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Building a deterministic password oracle with SGX-Step
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From architecture. . .



From architecture. . . to microarchitecture
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Back to basics: Fetch decode execute CPU operation

Fetch instruction Decode Execute
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Back to basics: Fetch decode execute CPU operation

Fetch instruction Decode Execute

 

    Interrupt 

Interrupts delayed till instruction retirement
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Wait a cycle: Interrupt latency as a side channel

CLK

CMD NOP IRQ logic ISR

IRQ

CMD ADD IRQ logic ISR

IRQ
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Nemesis attack: Inferring key strokes from Sancus enclaves
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Enclave x-ray: Start-to-end trace enclaved execution
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Intel SGX microbenchmarks: Measuring x86 cache misses

Timing leak: reconstruct microarchitectural state
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Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Start-to-end trace enclaved execution
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Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Zooming in on bsearch function
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De-anonymizing SGX enclave lookups with interrupt latency

Adversary: Infer secret lookup in known sequence (e.g., DNA)

left
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De-anonymizing SGX enclave lookups with interrupt latency

Goal: Infer lookup → reconstruct bsearch control flow
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Thesis outline: Privileged side-channel attacks
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Thesis outline: Transient-execution attacks
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Out-of-order and speculative execution

Key discrepancy:

→ Programmers write sequential instructions

↔ Modern CPUs are inherently parallel

⇒ Execute instructions ahead of time

Best effort: What if triangle fails?

→ Commit in-order, roll-back square

30
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Out-of-order and speculative execution

Overflow
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Transient-execution attacks: Welcome to the world of fun!
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The transient-execution zoo https://transient.fail

Transient cause

Spectre-type

Meltdown-type
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Spectre-BTB
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Meltdown-NM-REG
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Cross-address-space
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Meltdown: Transiently encoding unauthorized memory

Unauthorized access
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Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window
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Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window Exception

(discard architectural state)

33



Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

cache hit

Exception handler
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Rumors: Meltdown immunity for SGX enclaves?

“[enclaves] remain protected and completely secure”

— International Business Times, February 2018

“[enclave memory accesses] redirected to an abort page, which has no value”

— Anjuna Security, Inc., March 2018

34
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Rumors: Meltdown immunity for SGX enclaves?

https://wired.com and https://arstechnica.com
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Building Foreshadow: Evade SGX abort page semantics

OS? SGX?

1 2
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Foreshadow-SGX: Breaking enclave isolation
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Foreshadow-NG: Breaking virtual machine isolation
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Mitigating Foreshadow: Flush CPU microarchitecture



Mitigating Foreshadow: Flush CPU microarchitecture







Idea: Can we turn Foreshadow around?

Outside view

• Meltdown: out-of-reach

• Foreshadow: cache emptied

Intra-enclave view

• Access enclave + outside memory

→ Abuse in-enclave code gadgets!
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Reviving Foreshadow with Load Value Injection (LVI)

Faulting load &encl

Transient gadget

Attacker domain Enclave domain

Page table manipulation
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Mitigating LVI: Fencing vulnerable load instructions



Mitigating LVI: Fencing vulnerable load instructions



Intel architectural enclaves: lfence counts libsgx qe.signed.so

23 fences

October 2019—“surgical precision”

:
49,315 fences

March 2020—“big hammer”
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LVI performance impact https://www.phoronix.com
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Conclusions and takeaway

⇒ Trusted execution environments (Intel SGX) ≠ perfect(!)

⇒ Importance of fundamental side-channel research; no silver-bullet defenses

⇒ Security cross-cuts the system stack: hardware, OS, compiler, application
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Thank you!
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