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What do corona and computer viruses have in common?

1. No vaccine: adapt to a new reality. ..




What do corona and computer viruses have in common?

1. No vaccine: adapt to a new reality. ..

2. Need for physical distancing — software isolation




What do corona and computer viruses have in common?

1. No vaccine: adapt to a new reality. ..

2. Need for physical distancing — software isolation

3. Need for testing — software attestation






A crash course on computer architecture







Processor security: Hardware isolation mechanisms
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Processor security: Hardware isolation mechanisms
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e Different software protection domains: applications, virtual machines, enclaves

e CPU builds “walls” for memory isolation between applications and privilege levels
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Enclaved execution: Reducing the bubble
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Traditional layered designs: large trusted computing base
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Enclaved execution: Reducing the bubble
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Overview: Processor enclaves for self-quarantining

~ Vault for sensitive code and data

— Trusted “bubble” in untrusted world

e 2008-2014: Research prototypes (e.g., Sancus)
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Overview: Processor enclaves for self-quarantining

~ Vault for sensitive code and data

— Trusted “bubble” in untrusted world

e 2008-2014: Research prototypes (e.g., Sancus)
e 2015: Intel Software Guard Extensions (SGX)

@ ‘ﬁ‘lﬁﬁﬁfﬁﬁ Intel alters design of ‘Skylake’ processors to enhance security

= & AntonShilov @ October3,2015 8 APU, CPU

! Intel to begin shipping Skylake CPUs with SGX enabled

EPSRT; @ oo
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Evolution of “side-channel attack” research
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Side-channel attacks and trusted computing (focus of this PhD)
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Enclave adversary model

Abuse privileged operating system powers

— unexpected “bottom-up” attack vectors




Case study: Comparing a secret password
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Case study: Comparing a secret password
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Building the side-channel oracle with execution timing?
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Building the side-channel oracle with execution timing?

"= |) Too noisy: modern x86 processors are lightning fast. ..
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Analogy: Studying galloping horse dynamics

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop 18


https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop

Copyright, 1878, by MUYBRIDGE. i MORSE’S Gallery, 417 Montgomery St., San Francisco,
" n
7 THE ﬁORSE IN OTION.

)

\7} Tllustrated by

i MUYBRIDGE. AUTOMATIC ELECTRO-PHOTOGRAPH.
*“SALLIE GARDNER,” owned by LELAND STANFORD; running atga 1.40 gait over the Palo Alto track, 19th June, 1878.



SGX-Step: Executing enclaves one instruction at a time

——> OUTPUT

"
INPUT —».

y

20



SGX-Step: Executing enclaves one instruction at a time

A,
0

~~
.T‘ —> OUTPUT

'
INPUT —>

D

INTERRUPT

20



SGX-Step: Executing enclaves one instruction at a time

SGX-Step

) https://github.com/jovanbulck/sgx-step

© Watch 22 % Star 245 % Fork 52
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SGX-Step: Executing enclaves one instruction at a time
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SGX-Step: Executing enclaves one instruction at a time
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SGX-Step: Executing enclaves one instruction at a time
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SGX-Step: Executing enclaves one instruction at a time

o~
((Q,) Interrupt handler

/" Enclave N\

if secret do
instl —<€«—]

>[ libsgxstep

else

inst2
i

e o = g = -

OS kernel

;j\ [/dev/;;x—step]

20



Building a deterministic password oracle with SGX-Step

[idt.c] DTR.base=0xfffffe0000000000/size=4095 (256 entries)

[idt.c] established user space IDT mapping at 0x7f7ff8e9a000

[idt.c] installed asm IRQ handler at 10:0x56312d19b000

[idt.c] IDT[ 45] @Ox7f7ff8e9%9a2dd = 0x56312d19b00O (seg sel 0x10); p=1; dpl=3; type=14; ist=0
[file.c] reading buffer from '/dev/cpu/1l/msr' (size=8)

[apic.c] established local memory mapping for APIC BASE=0xfee00000 at 0x7f7ff8e99000
[apic.c] APIC ID=2000000; LVTT=400ec; TDCR=0

[apic.c] APIC timer one-shot mode with division 2 (lvtt=2d/tdcr=0)

[attacker] steps=15; guess='X*¥¥¥¥k!
[attacker] found pwd len = 6

[attacker] steps=35; guess='SECRET' --> SUCCESS

[apic.c] Restored APIC LVTT=400ec/TDCR=0)

[file.c] writing buffer to '/dev/cpu/l/msr' (size=8)
[main.c] all done; counted 2260/2183 IRQs (AEP/IDT)
jo@breuer:~/sgx-step-demo$ i

21



From architecture. ..
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From architecture... to microarchitecture




Back to basics: Fetch decode execute CPU operation
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Fetch instruction Decode Execute
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Back to basics: Fetch decode execute CPU operation

Fetch instruction Decode Execute

)

Interrupt

23



Back to basics: Fetch decode execute CPU operation

ﬁ Interrupts delayed till instruction retirement
3 = >
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Fetch instruction Decode Execute

Interrupt
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Wait a cycle: Interrupt latency as a side channel

CLK _A A A A A -
CMD 7% NOP X  IRQlogic ISR
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Nemesis attack: Inferring key strokes from Sancus enclaves
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‘3‘ Enclave x-ray: Start-to-end trace enclaved execution
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Nemesis attack: Inferring key strokes from Sancus enclaves
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Nemesis attack: Inferring key strokes from Sancus enclaves
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Intel SGX microbenchmarks: Measuring x86 cache misses
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Single-stepping Intel SGX enclaves in practice

[ ‘3‘ Enclave x-ray: Start-to-end trace enclaved execution ]
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Single-stepping Intel SGX enclaves in practice
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De-anonymizing SGX enclave lookups with interrupt latency

l Adversary: Infer secret lookup in known sequence (e.g., DNA) ]
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De-anonymizing SGX enclave lookups with interrupt latency

Goal: Infer lookup — reconstruct bsearch control flow

A ] K Left  Right> Hit®

7950 A

IRQ latency (cycles)
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Y

Interrupt (instruction number)
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Thesis outline: Privileged side-channel attacks
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Thesis outline: Transient-execution attacks
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Out-of-order and speculative execution

Key discrepancy:

— Programmers write sequential instructions

A
Y

int area(int h, int w)

{
int triangle = (w*h)/2;
int square = (W*w) ;
return triangle + square;

}

30



Out-of-order and speculative execution

Key discrepancy:

— Programmers write sequential instructions

< Modern CPUs are inherently parallel

A
Y

= Execute instructions ahead of time

int area(int h, int w)
{
int triangle = (w*h)/2;
Cint square = (W*WwW) ;
return triangle + square;:’
}
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Out-of-order and speculative execution

Key discrepancy:

h
— Programmers write sequential instructions
< Modern CPUs are inherently parallel
«— >
Overflow = Execute instructions ahead of time
Roll-back exception
int area(int h, int w) )
{ Best effort: What if triangle fails?
int triangle = (w*h)/2; @
int square = (w*w); — Commit in-order, roll-back square
return triangle + square; J

}

30






Transient-execution attacks: Welcome to the world of fun!
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The transient-execution zoo

https://transient.fail
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Meltdown: Transiently encoding unauthorized memory

]
== N\
0=
=

Unauthorized access

Listing 1: x86 assembly Listing 2: C code.
1 meltdown: 1 void meltdown (
2 %rdi: oracle 2 uint8_t =xoracle,
3 %rsi: secret_ptr 3 uint8_t *xsecret_ptr)
4 4 |
5 movb (%rsi), %al 5 uint8_t v = xsecret_ptr;
6 shl $0xc, %rax 6 v = v x 0x1000;
7 movq (%rdi, %rax), %rdi 7 uint64_t o = oracle[v];
retq 8 }

33



Meltdown: Transiently encoding unauthorized memory

C
= N\
ﬁ
=
=
Unauthorized access Transient out-of-order window
Listing 1: x86 assembly. Listing 2: C code.
1 meltdown: 1 void meltdown ( oracle array
2 %rdi: oracle 2 uint8_t =xoracle, RTINS x
3 %rsi: secret_ptr 3 uint8_t *xsecret_ptr) ]
4 4 { ] =
5 movb (%rsi), %al 5 uint8_t v = xsecret_ptr; o | S
6 shl $0xc, %rax 6 v = v x 0x1000; [RESS 9
7 movq (%rdi, %rax), %rdi 7 uint64_t o = oracle[v];
retq s } L
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Meltdown: Transiently encoding unauthorized memory

S SR g
—_— —_—
=
= F~

Unauthorized access Transient out-of-order window Exception
(discard architectural state)

Listing 1: x86 assembly. Listing 2: C code.
1 meltdown: 1 void meltdown (
2 %rdi: oracle 2 uint8_t =xoracle,
3 %rsi: secret_ptr 3 uint8_t *xsecret_ptr)
4 4 |
5 movb (%rsi), %al 5 uint8_t v = xsecret_ptr;
6 shl $0xc, %rax 6 v = v x 0x1000;
7 movq (%rdi, %rax), %rdi 7 uint64_t o = oracle[v];
retq 8 }
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Meltdown: Transiently encoding unauthorized memory

S

N o oo w
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o

Unauthorized access

Listing 1: x86 assembly.

Transient out-of-order window

Listing 2: C code.

meltdown :
%rdi: oracle
%rsi: secret_ptr

movb (%rsi), %al

shl $0xc, %rax

movq (%rdi, %rax), %rdi
retq

ah W N R

© ~N o

void meltdown (

{

}

uint8_t =xoracle,
uint8_t xsecret_ptr)

uint8_t v = xsecret_ptr;
v = v x 0x1000;
uint64_t o = oracle[v];

Exception handler

oracle array

&

cache hit

33



&) () B
< By

Inside” Inside” Inside”



Rumors: Meltdown immunity for SGX enclaves?

Meltdown melted down everything, except
for one thing

“[enclaves] remain protected and completely secure”

— International Business Times, February 2018

ANJUNA'S SECURE-RUNTIME CAN PROTECT CRITICAL APPLICATIONS
AGAINST THE MELTDOWN ATTACK USING ENCLAVES

“[enclave memory accesses| redirected to an abort page, which has no value”

— Anjuna Security, Inc., March 2018

34


https://web.archive.org/web/20180617022540/https://www.ibtimes.co.uk/meltdown-melted-down-everything-except-one-thing-1663785
https://web.archive.org/web/20180720144203/https://www.anjuna.io/blog/2018/2/7/meltdown-spectre-sgx

SPECTRE-LIRE FLAW
UNDERMINES INTEL
PROCESSORS” MOST SECURE
ELEMENT

Intel’s SGX blown wide open by, you
guessed it, a speculative execution attack

Speculative execution attacks truly are the gift that keeps on giving.

https://wired.com and https://arstechnica.com

34
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Building Foreshadow: Evade SGX abort page semantics
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Building Foreshadow: Evade SGX abort page semantics
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Building Foreshadow: Evade SGX abort page semantics
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Page fault
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Foreshadow-SGX: Breaking enclave isolation

CPU mncroarchltecture

Abort page

Page fault
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Foreshadow-NG: Breaking virtual machine isolation

CPU microarchitecture

Ay
Pass to out-of-order ] %ﬁ

Abort page

Page fault Page fault
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Terminal T3 W = @ =00%) ) 1221AM
O © % Foreshadow Demo
SGX enclave: secret string at 0x7f19ee646000

Press enter to natvely read en:lave memory at address Ox7f19ee646000...

Segment 0: 0x7f19ee646000 - 0x7f19ee646317
Victim address = 0x7f19ee646316...
Actual success rate = 0/791 = 0.00 %
i Press enter to use Foreshadow to read enclave memory at address 0x7f19ee646000 ...

Segment 0: 0x7f19ee646000 - 0x7f19ee646317

Victim address = 0x7f19ee6460dd... Ox69

EXEracted BYtes === - -rcmm oo cmoe e o o e el e e S e = = e e R n S S = e = e el e R R

49 74 20 77 61 73 20 6F 6E 65 20 6F 66 20 74 68 6F 73 65 20 70 69 63 74 75 72 65 73 20 77 68 69 63 68 It was one of those pictures which

20 61 72 65 20 73 6F 20 63 6F 6E 74 72 69 76 65 64 20 74 68 61 74 20 74 68 65 20 65 79 65 73 20 66 6F are so contrived that the eyes fo

sc sc AF 77 2@ 79 6F 75 20 61 62 6F 75 er 77 sa Frln 70 sr 75 20 AN 6F 75 65 2F 20 42 49 47 20 llow you about when you move. BIG
i

E 15, 20,40 S0 0T 41 5/\C £ 7/At] 61 70 74 69 BROTHER IS WATCHING YOU, the capti
owev e /B
61 G -6 1" 6/ 63 AR ]

A3 6C 61 74 20 on beneath it ran.Inside the flat
(/A -5 74 20 61 20 6C a fruity voice was reading out a 1
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Mitigating Foreshadow: Flush CPU microarchitecture




Mitigating Foreshadow: Flush CPU microarchitecture

e ’iﬁ" .

10BH | 267 1A32_FLUSH_CMD Flush Command (WO) If any one of the

Gives software a way to invalidate enumeration conditions for
structures with finer granularity than other | defined bit field positions

architectural methods. holds.
0 L1D_FLUSH: Writeback and invalidate the | If CPUID.(EAX=07H,
L1 data cache. ECX=0):EDX[28]=1
63:1 Reserved

i
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Idea: Can we turn Foreshadow around?

Qutside view Intra-enclave view
e Meltdown: out-of-reach e Access enclave + outside memory
e Foreshadow: cache emptied

39



Idea: Can we turn Foreshadow around?

Outside view Intra-enclave view
e Meltdown: out-of-reach e Access enclave + outside memory
e Foreshadow: cache emptied — Abuse in-enclave code gadgets!

39



Reviving Foreshadow with Load Value Injection (LVI)

Attacker domain
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[ Faulting load &encl
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Transient gadget D
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N

Page table manipulation
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Reviving Foreshadow with Load Value Injection (LVI)

Attacker domain Enclave domain

Y% N

Faulting load &encl ]

Transient gadget 4
@ 7 <
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Page table manipulation
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Mitigating LVI: Fencing vulnerable load instructions




Mitigating LVI: Fencing vulnerable load instructions
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Intel architectural enclaves: 1fence counts libsgx_ge.signed.so

23 fences

October 2019— “surgical precision”
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Intel architectural enclaves: 1fence counts libsgx_ge.signed.so

23 fences 49,315 fences

October 2019— “surgical precision” March 2020— “big hammer”

42






LVI performance impact https://www.phoronix.com

GNU Assembler Adds New Options For Mitigating Load
Value Injection Attack

Written by Michael Larabel in GNU on 11 March 2020 at 02:55 PM EDT. 14 Comments
The Brutal Performance Impact From Mitigating The LVI
Vulnerability

Written by Michael Larabel in Software on 12 March 2020. Page 1 of 6. 76 Comments

LLVM Lands Performance-Hitting Mitigation For Intel LVI
Vulnerability

M e

Looking At The LVI Mitigation Impact On Intel Cascade Lake
Refresh

VA

44
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Conclusions and takeaway

= Trusted execution environments (Intel SGX) # perfect(!)
= Importance of fundamental side-channel research; no silver-bullet defenses

= Security cross-cuts the system stack: hardware, OS, compiler, application
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