
Microarchitectural Side-Channel Attacks

for Privileged Software Adversaries

Jo Van Bulck

Public PhD defense, September 14, 2020

� imec-DistriNet, KU Leuven Q jo.vanbulck@cs.kuleuven.be

https://distrinet.cs.kuleuven.be/people/jo
mailto:jo.vanbulck@cs.kuleuven.be

www.freepik.com

www.freepik.com

www.freepik.com

www.freepik.com

www.freepik.com

www.freepik.com

https://threatmap.bitdefender.com/

https://threatmap.bitdefender.com/

What do corona and computer viruses have in common?

1. No vaccine: adapt to a new reality. . .

2. Need for physical distancing → software isolation

3. Need for testing → software attestation

3

What do corona and computer viruses have in common?

1. No vaccine: adapt to a new reality. . .

2. Need for physical distancing → software isolation

3. Need for testing → software attestation

3

What do corona and computer viruses have in common?

1. No vaccine: adapt to a new reality. . .

2. Need for physical distancing → software isolation

3. Need for testing → software attestation

3

A crash course on computer architecture

5

Processor security: Hardware isolation mechanisms

VM OS

AppApp

Hypervisor (VMM)

VM OS

EnclaveApp

• Different software protection domains: applications, virtual machines, enclaves

• CPU builds “walls” for memory isolation between applications and privilege levels

7

Processor security: Hardware isolation mechanisms

VM OS

AppApp

Hypervisor (VMM)

VM OS

EnclaveApp

• Different software protection domains: applications, virtual machines, enclaves

• CPU builds “walls” for memory isolation between applications and privilege levels

7

https://informationisbeautiful.net/visualizations/million-lines-of-code/

https://informationisbeautiful.net/visualizations/million-lines-of-code/

Enclaved execution: Reducing the bubble

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 AppApp

Traditional layered designs: large trusted computing base
10

Enclaved execution: Reducing the bubble

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Intel SGX promise: hardware-level isolation and attestation
10

Overview: Processor enclaves for self-quarantining

≈ Vault for sensitive code and data

→ Trusted “bubble” in untrusted world

• 2008-2014: Research prototypes (e.g., Sancus)

• 2015: Intel Software Guard Extensions (SGX)

11

Overview: Processor enclaves for self-quarantining

≈ Vault for sensitive code and data

→ Trusted “bubble” in untrusted world

• 2008-2014: Research prototypes (e.g., Sancus)

• 2015: Intel Software Guard Extensions (SGX)

11

Evolution of “side-channel attack” research

1990 1994 1998 2002 2006 2010 2014 2018

3000

4000

2000

1000

DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/
14

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

Evolution of “side-channel attack” research

1990 1994 1998 2002 2006 2010 2014 2018

3000

4000

2000

1000

SGX

DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/
14

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

Side-channel attacks and trusted computing (focus of this PhD)

1990 1994 1998 2002 2006 2010 2014 2018

3000

4000

2000

1000

SGX

DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/
14

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

Enclave adversary model

Abuse privileged operating system powers

→ unexpected “bottom-up” attack vectors

Case study: Comparing a secret password

p a s s w o r d

Overall execution time reveals correctness of individual password bytes!

16

Case study: Comparing a secret password

p a s s w o r d

p a s t a

pasta?

No!

Overall execution time reveals correctness of individual password bytes!

16

Case study: Comparing a secret password

p a s s w o r d

p a s t a

Overall execution time reveals correctness of individual password bytes!

16

Case study: Comparing a secret password

p a s s w o r d

p a s t a

Overall execution time reveals correctness of individual password bytes!

16

Case study: Comparing a secret password

p a s s w o r d

p a s t a

Overall execution time reveals correctness of individual password bytes!

16

Case study: Comparing a secret password

p a s s w o r d

p a s t a

Overall execution time reveals correctness of individual password bytes!

16

Case study: Comparing a secret password

p a s s w o r d

p a s t a

Overall execution time reveals correctness of individual password bytes!

16

Case study: Comparing a secret password

p a s s w o r d

p a s s a

Overall execution time reveals correctness of individual password bytes!

16

Case study: Comparing a secret password

p a s s w o r d

p a s s a

Overall execution time reveals correctness of individual password bytes!

16

Case study: Comparing a secret password

p a s s w o r d

p a s s a

Overall execution time reveals correctness of individual password bytes!

16

Case study: Comparing a secret password

p a s s w o r d

p a s s a

Overall execution time reveals correctness of individual password bytes!

16

Building the side-channel oracle with execution timing?

Too noisy: modern x86 processors are lightning fast. . .

60 70 80 90 100 110 120
Execution time (cycles)

0

5000

10000

15000

20000

25000

30000

F
re

q
u

e
n

c
y

100,000 runs, strlen=1

100,000 runs, strlen=2

17

Building the side-channel oracle with execution timing?

Too noisy: modern x86 processors are lightning fast. . .

60 70 80 90 100 110 120
Execution time (cycles)

0

5000

10000

15000

20000

25000

30000

F
re

q
u

e
n

c
y

100,000 runs, strlen=1

100,000 runs, strlen=2

17

Analogy: Studying galloping horse dynamics

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop
18

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop

SGX-Step: Executing enclaves one instruction at a time

INPUT OUTPUT

20

SGX-Step: Executing enclaves one instruction at a time

INPUT OUTPUT

INTERRUPT

20

SGX-Step: Executing enclaves one instruction at a time

SGX-Step

https://github.com/jovanbulck/sgx-step

20

https://github.com/jovanbulck/sgx-step

SGX-Step: Executing enclaves one instruction at a time

user space

OS kernel

20

SGX-Step: Executing enclaves one instruction at a time

user space

OS kernel

20

SGX-Step: Executing enclaves one instruction at a time

libsgxstep

user space

OS kernel

20

SGX-Step: Executing enclaves one instruction at a time

libsgxstep

user space

OS kernel

20

SGX-Step: Executing enclaves one instruction at a time

libsgxstep

user space

OS kernel

Interrupt handler

20

SGX-Step: Executing enclaves one instruction at a time

libsgxstep

user space

ERESUME

OS kernel

Interrupt handler

20

Building a deterministic password oracle with SGX-Step

21

From architecture. . .

From architecture. . . to microarchitecture

22

Back to basics: Fetch decode execute CPU operation

Fetch instruction Decode Execute

23

Back to basics: Fetch decode execute CPU operation

Fetch instruction Decode Execute

 Interrupt
23

Back to basics: Fetch decode execute CPU operation

Fetch instruction Decode Execute

 Interrupt

Interrupts delayed till instruction retirement

23

Wait a cycle: Interrupt latency as a side channel

CLK

CMD NOP IRQ logic ISR

IRQ

CMD ADD IRQ logic ISR

IRQ

24

Nemesis attack: Inferring key strokes from Sancus enclaves

1

4

IR
Q

 l
a
te

n
c
y

Instruction (interrupt number)

Enclave x-ray: Start-to-end trace enclaved execution

25

Nemesis attack: Inferring key strokes from Sancus enclaves

1

4

IR
Q

 l
a
te

n
c
y 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Instruction (interrupt number)

Enclave x-ray: Keymap bit traversal (ground truth)

25

Nemesis attack: Inferring key strokes from Sancus enclaves

1

4

IR
Q

 l
a
te

n
c
y 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

2

3

4

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

Instruction (interrupt number)

0 (no press) 1 (key pressed) 0 (no press)

25

Intel SGX microbenchmarks: Measuring x86 cache misses

Timing leak: reconstruct microarchitectural state

load cache hit

load cache miss

IRQ latency (cycles)

F
re

q
u

e
n

c
y

26

Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Start-to-end trace enclaved execution

Instruction (interrupt number)

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

27

Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Zooming in on bsearch function

Instruction (interrupt number)

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

27

De-anonymizing SGX enclave lookups with interrupt latency

Adversary: Infer secret lookup in known sequence (e.g., DNA)

left

right

hit

28

De-anonymizing SGX enclave lookups with interrupt latency

Goal: Infer lookup → reconstruct bsearch control flow

7800

7950

Interrupt (instruction number)

Left Right Hit

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

28

Thesis outline: Privileged side-channel attacks

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mem

 Enclave app

CPU

2

Metadata

29

Thesis outline: Transient-execution attacks

Mem

OS kernel

 Enclave app

CPU

3

Metadata

Data

29

Out-of-order and speculative execution

Key discrepancy:

→ Programmers write sequential instructions

↔ Modern CPUs are inherently parallel

⇒ Execute instructions ahead of time

Best effort: What if triangle fails?

→ Commit in-order, roll-back square

30

Out-of-order and speculative execution

Key discrepancy:

→ Programmers write sequential instructions

↔ Modern CPUs are inherently parallel

⇒ Execute instructions ahead of time

Best effort: What if triangle fails?

→ Commit in-order, roll-back square

30

Out-of-order and speculative execution

Overflow
exceptionRoll-back

Key discrepancy:

→ Programmers write sequential instructions

↔ Modern CPUs are inherently parallel

⇒ Execute instructions ahead of time

Best effort: What if triangle fails?

→ Commit in-order, roll-back square

30

Transient-execution attacks: Welcome to the world of fun!

31

The transient-execution zoo https://transient.fail

Transient cause

Spectre-type

Meltdown-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Meltdown-NM-REG

Meltdown-PF

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK-L1

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

Meltdown-CPL-REG

Meltdown-NC-SB

Meltdown-AD

Meltdown-AVX-LP

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-AD-LFB

Meltdown-AD-SB

32

https://transient.fail

Meltdown: Transiently encoding unauthorized memory

Unauthorized access

33

Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

s
e
c
re

t
id

x

33

Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window Exception

(discard architectural state)

33

Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

cache hit

Exception handler

33

Rumors: Meltdown immunity for SGX enclaves?

“[enclaves] remain protected and completely secure”

— International Business Times, February 2018

“[enclave memory accesses] redirected to an abort page, which has no value”

— Anjuna Security, Inc., March 2018

34

https://web.archive.org/web/20180617022540/https://www.ibtimes.co.uk/meltdown-melted-down-everything-except-one-thing-1663785
https://web.archive.org/web/20180720144203/https://www.anjuna.io/blog/2018/2/7/meltdown-spectre-sgx

Rumors: Meltdown immunity for SGX enclaves?

https://wired.com and https://arstechnica.com

34

https://wired.com
https://arstechnica.com

Building Foreshadow: Evade SGX abort page semantics

OS? SGX?

1 2

36

Building Foreshadow: Evade SGX abort page semantics

SGX?OS?

36

Building Foreshadow: Evade SGX abort page semantics

SGX?OS?

36

Foreshadow-SGX: Breaking enclave isolation

SGX?

L1D

vadrs

CPU microarchitecture

padrs

Tag? Pass to out-of-order

PT
walk?

36

Foreshadow-NG: Breaking virtual machine isolation

SGX?

L1D

vadrs

CPU microarchitecture

Tag? Pass to out-of-order

PT
walk?

EPT
walk?

host
padrs

guest
padrs

36

Mitigating Foreshadow: Flush CPU microarchitecture

Mitigating Foreshadow: Flush CPU microarchitecture

Idea: Can we turn Foreshadow around?

Outside view

• Meltdown: out-of-reach

• Foreshadow: cache emptied

Intra-enclave view

• Access enclave + outside memory

→ Abuse in-enclave code gadgets!

39

Idea: Can we turn Foreshadow around?

Outside view

• Meltdown: out-of-reach

• Foreshadow: cache emptied

Intra-enclave view

• Access enclave + outside memory

→ Abuse in-enclave code gadgets!

39

Reviving Foreshadow with Load Value Injection (LVI)

Faulting load &encl

Transient gadget

Attacker domain Enclave domain

Page table manipulation

40

Reviving Foreshadow with Load Value Injection (LVI)

Faulting load &encl

Transient gadget

Attacker domain Enclave domain

Page table manipulation

40

www.freepik.com

www.freepik.com

Mitigating LVI: Fencing vulnerable load instructions

Mitigating LVI: Fencing vulnerable load instructions

Intel architectural enclaves: lfence counts libsgx qe.signed.so

23 fences

October 2019—“surgical precision”

:
49,315 fences

March 2020—“big hammer”

42

Intel architectural enclaves: lfence counts libsgx qe.signed.so

23 fences

October 2019—“surgical precision”

:
49,315 fences

March 2020—“big hammer”

42

LVI performance impact https://www.phoronix.com

44

https://www.phoronix.com

Conclusions and takeaway

⇒ Trusted execution environments (Intel SGX) ≠ perfect(!)

⇒ Importance of fundamental side-channel research; no silver-bullet defenses

⇒ Security cross-cuts the system stack: hardware, OS, compiler, application

45

Thank you!

	Appendix
	Appendix

