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Abstract

Recent developments on hardware-based trusted execution environments, such
as the Software Guard Extensions (SGX) included in recent Intel x86 processors,
hold the promise of securely outsourcing sensitive computations to untrusted
remote platforms. The compelling aspect of these architectures is that they
aim to protect small software components, called enclaves, even against a very
powerful type of root adversaries that have full control over the operating system
on the target device. This thesis shows, however, that the protection offered
by today’s trusted execution environments is not sufficiently understood and
should be nuanced in terms of microarchitectural attack surface.

In the first part of this dissertation, we develop several innovative side-channel
attack techniques that allow a privileged software adversary to reliably derive
metadata from an enclaved execution. These results show that traditionally
privileged x86 processor interfaces, such as page tables and interrupts, can be
abused in new and unexpected ways to construct highly accurate side-channel
oracles that reveal code and data access patterns performed by a victim enclave.
In several practical attack scenarios, we furthermore demonstrate that these
metadata access patterns can lead to full disclosure of application-level secrets.

In the second part, we move from metadata exposure to direct data extraction
in a critical new line of transient-execution attacks. These results show that
current out-of-order processors fail to safeguard enclave secrets against subtle
microarchitectural leakage coming from instructions that were tentatively
executed before a CPU exception is raised. Building upon these insights,
we demonstrate several innovative attacks that led to a full collapse of the Intel
SGX ecosystem and required extensive hardware and software updates.

We conclude this dissertation with a systematization of the last five years of SGX
attacks, and we outline several promising defense avenues for next-generation
hardened trusted execution architectures.
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Beknopte samenvatting

Recente ontwikkelingen op het gebied van hardware-gebaseerde vertrouwde
uitvoeringsomgevingen, zoals de SGX-extensies die in recente Intel x86-
processoren zijn opgenomen, houden de belofte in om op een veilige manier
gevoelige berekeningen uit te besteden aan niet-vertrouwde externe platformen.
Het overtuigende aspect van deze architecturen is dat ze bedoeld zijn om
kleine softwarecomponenten, genaamd enclaves, te beschermen, zelfs tegen
een zeer krachtig type tegenstanders die volledige controle hebben over het
besturingssysteem op het doelapparaat. Deze thesis toont echter aan dat de
bescherming geboden door hedendaagse vertrouwde uitvoeringsomgevingen niet
voldoende begrepen wordt en meer bepaald moet worden genuanceerd in termen
van microarchitecturale aanvallen.

In het eerste deel van dit proefschrift ontwikkelen we verschillende innovatieve
side-channel aanvalstechnieken die een geprivilegieerde software-tegenstander in
staat stellen om op betrouwbare wijze metadata af te leiden tijdens de uitvoering
van een enclave. Deze resultaten laten zien dat traditioneel geprivilegieerde
x86-processor interfaces, zoals paginatabellen en interrupts, op nieuwe en
onverwachte manieren kunnen worden misbruikt om zeer nauwkeurige side-
channel orakels te construeren die de code- en gegevenstoegangspatronen
van een getroffen enclave aan het licht brengen. In verschillende praktische
aanvalsscenario’s tonen we bovendien aan dat deze toegangspatronen kunnen
leiden tot de onthulling van gevoelige gegevens op het niveau van de applicatie.

In het tweede deel gaan we over naar directe gegevensextractie in een kritische
nieuwe lijn van transitieve uitvoeringsaanvallen. Deze resultaten tonen aan dat
huidige out-of-order processoren er niet in slagen om enclave data te beschermen
tegen subtiele microarchitecturale lekken afkomstig van instructies die tentatief
werden uitgevoerd alvorens een exceptie op te roepen. Voortbouwend op deze
inzichten demonstreren we verschillende innovatieve aanvallen die hebben geleid
tot een volledige ineenstorting van het Intel SGX-ecosysteem en die vergaande
hardware- en software-updates vereisen.

v
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We sluiten deze dissertatie af met een systematisering van de laatste vijf jaar
van SGX-aanvallen, en we schetsen verschillende veelbelovende verdedigings-
technieken voor de volgende generatie van versterkte beveiligingsarchitecturen.
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Chapter 1

Introduction

“It’s a terrifying moment. And then when I start, I’m
always amazed—so that wasn’t so bad.”

— Frank Gehry (Sketches of Frank Gehry, 2006)

In today’s increasingly connected world, we interface with software systems
on a daily basis. These interactions reach from entrusting valuable personal
data to our phones or computers, to the critical infrastructure that keeps
our society afloat—think about communications networks, data centers, cloud
systems, up to the power grid and hospital equipment. Not only do we entrust
sheer amounts of personal data to these systems, their complexity has also
grown to proportions that exceed our levels of understanding. Consider a
sizable modern web application, for instance, which is commonly interpreted
by a highly optimized JavaScript engine, embedded inside a multi-layered
web browser application, supported by a monolithic operating system kernel,
potentially managed by a virtual machine monitor, all of this on top of a
modern out-of-order CPU which itself is decomposed into several layers of
microcode and silicon. Alarmingly, each of these components is designed by
error-prone humans, and a single vulnerability in one of the critical lower layers
may jeopardize the security of the system as a whole. The Linux kernel, for
instance, recently exceeded 27.8 million lines of code, more than a doubling over
the last decade, and modern cars are estimated to even have over 100 million
lines of code [172].

An important research question in this respect is how to isolate software
components from mutually distrusting parties executing on the same platform.

1
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To this end, processor vendors have developed several effective memory isolation
hardware mechanisms over the past decades, most notably virtual memory
and privilege rings, which allow trusted system software to govern untrusted
applications running at higher levels in the system stack. More recently, in light
of the steady stream of vulnerabilities in mainstream operating systems, enclaves
have been proposed as a promising new trusted execution paradigm that anchors
security primitives directly in the processor, without having to trust any of the
intermediate software layers. This thesis, however, develops several novel attack
techniques to compromise enclave security on commodity Intel x86 platforms.
Our findings show that, while enclaves hold the compelling potential of securely
offloading sensitive computations to untrusted remote platforms, their security
limitations in terms of microarchitectural attack surface are not sufficiently
understood. This thesis contributes to building a systematic understanding
of enclave limitations, which will ultimately be instrumental to the success of
emerging trusted execution technology.

1.1 The need for trust

To enforce security guarantees, a computer system should be able to protect the
internal state of a running software entity against other potentially malicious
entities. This requirement is commonly referred to as software isolation. For
decades, software isolation has been one of the key principles underpinning secure
system design, and widespread solutions have been established in commodity
computing platforms.

Memory isolation is traditionally rooted in the processor, by extending the
hardware-software contract with a notion of privilege rings and address
translation that allow to separate a privileged Operating System (OS) and
different applications in their respective security domains [240, 114]. Virtual
memory techniques introduce a level of indirection between the virtual addresses
used by programs and the actual locations in physical memory. A dedicated
Memory Management Unit (MMU) hardware component is responsible to
automate the virtual-to-physical address mapping by consulting an in-memory
page-table tree data structure configured by the trusted operating system.
Conventional operating systems allocate separate page tables per process and
update an MMU register that points to the root of the current page-table
tree on context switch. Beyond the convenience of simulating a memory space
much larger than the system’s available physical memory, virtual address spaces
provide the basis for software security. Specifically, since each process has its
own virtual-to-physical address mapping, one process cannot access the physical
memory assigned to another process, unless such a mapping is explicitly created
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Figure 1.1: Overview of protection rings and software isolation in modern Intel
x86 processors. Application software executes in user space (ring 3) in a separate
virtual address space setup by the trusted operating system, which is itself isolated
as a privileged program in kernel space (ring 0). Additionally, in a virtualization
environment, the operating system and its applications may be further confined in a
guest-physical address space managed by an even more privileged hypervisor (ring -1).

to realize shared memory. Memory protection guarantees via private address
spaces of course only hold if user programs are prevented from compromising the
OS, or from changing the page tables themselves. Modern processors, therefore,
additionally enforce protection rings that allow the OS kernel to run more
privileged, as illustrated in Fig. 1.1. Regular user programs can request services
from the privileged OS through system calls, which switch the processor into
kernel mode and start executing the appropriate handler code. More recent
processors, with hardware extensions for virtualization, furthermore offer an
extra privilege level to support a hypervisor or Virtual Machine Monitor (VMM)
software layer. Similar to traditional software isolation for user applications,
VMMs confine an untrusted operating system via an additional level of hardware-
backed address translation, this time configured through extended page tables
that map guest-physical addresses onto the actual machine’s host-physical
address space.

Already since the early days of computing, the traditionally layered approach
to software isolation via virtual memory and privilege rings has been criticized
from a security perspective [60, 240, 159]. In this respect, a particularly relevant
metric when reasoning about the security of a system is the Trusted Computing
Base (TCB), which denotes the set of hardware and software components that
need to be trusted in order to ensure the correct execution of a software program.
Since the privileged operating system kernel traditionally belongs to the TCB
of any user program, a single kernel vulnerability can often lead to a complete
collapse of all security guarantees in the entire system. Over the past decades,
considerable research efforts have focused on making operating systems more
trustworthy, exemplified through, for instance, the extensive and ongoing line
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Figure 1.2: Trusted execution environments, like Intel SGX, offer hardware-level
isolation and attestation for unprivileged software components, called enclaves, using
a cryptographic key that never leaves the CPU package. The processor furthermore
prevents unauthorized accesses to enclave-private memory by any outside software,
including traditionally privileged operating system or hypervisor layers.

of work on microkernels [159, 142, 57]. However, as mentioned in the beginning
of this chapter, the tendency is for real-world software systems to grow only
more complex, and critical vulnerabilities continue to be found in today’s widely
deployed operating systems [41].

In response to these challenges, recent efforts from both academia [174, 173,
238, 191, 100, 147, 48] and industry [10, 136, 176, 14, 11] have developed
Trusted Execution Environments (TEEs) that support the secure and isolated
execution of critical application compartments, called enclaves, with a minimal
TCB. From a high level, as illustrated in Fig. 1.2, TEEs provide enclaves with
strong confidentiality and integrity guarantees regarding their internal state,
without having to trust any other software executing on the platform, including
traditionally privileged operating system or hypervisor code.1 To this end,
TEEs enforce rigid access control on enclave secrets while they reside inside the
processor and transparently encrypt and integrity protect all enclave memory
while it resides in untrusted DRAM outside the processor. Besides strong
memory isolation, TEEs typically offer an attestation primitive that allows local
or remote stakeholders to cryptographically verify at runtime that a specific
enclave has been loaded on a genuine TEE processor, without having been
tampered with. By embedding a root-of-trust directly in the processor, TEEs
drastically reduce the trusted computing base, to the point where application
developers solely rely on the correctness of the CPU and the implementation of

1We note that some TEE designs, like ARM TrustZone [205] or RISC-V Keystone [153],
do rely on a small trusted software layer to manage enclave transitions. However, this thesis
has an explicit focus on hardware-only TEEs, like Intel SGX [176] or Sancus [189].
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their own enclaves. Enclaved execution hence holds the promise of enforcing
strong security and privacy requirements for local and remote computations.

As a relevant instance of a real-world TEE, recent Intel x86 processors from
2015 onwards ship with Software Guard Extensions (SGX) [176, 14] which
bring strong, hardware-enforced security guarantees to commodity computing
devices, while remaining backwards compatible with legacy virtual memory and
privilege rings. Particularly, SGX enclaves live in the virtual address space of a
conventional user-space host application. While the untrusted operating system
remains in charge of resource management and memory mappings, SGX enclaves
are directly protected and measured by the processor itself. For this, the address
translation logic is extended with an additional level of SGX sanitization checks
that block any unauthorized access to enclave memory regardless of the current
CPU privilege level. SGX furthermore comes with several new x86 instructions
to create and destroy enclaves, to switch the processor in and out of enclave
mode, and to aid secure cryptographic key derivations.

1.2 Software-based microarchitectural attacks

The protection model envisioned by TEEs, such as Intel SGX, outlines clear-cut
architectural isolation between an enclave and its untrusted surroundings:
no outside code, at any privilege level, is ever allowed to access enclave-
private memory. While such rigid enclave encapsulation is well-understood in a
mathematical sense, including even successful formal modeling and verification
efforts [62, 194, 203], this section explains that architectural protection
boundaries in real-world processors are not absolute and should be nuanced in
terms of side channels.

Modern processors are exceptionally complex pieces of engineering comprising
several abstraction layers. The highest abstraction layer, the Instruction
Set Architecture (ISA), describes the processor’s hardware-software contract,
including the supported instructions, the available registers and addressing
modes, and the execution semantics. Modern ISAs furthermore specify several
important security mechanisms to configure access restrictions for the software
running on top, e.g., virtual memory, privilege rings, and enclaves. The
processor’s microarchitecture then describes how exactly the ISA is implemented
in terms of, for instance, the CPU pipeline, the execution units, the memory
hierarchy, and the interconnection between these elements. In contrast to the
ISA specification, microarchitectural implementation details are generally ill-
documented as they are considered important intellectual property. By shielding
off microarchitectural implementation aspects, the ISA-level abstraction has
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furthermore proven to be a crucial enabler for processor extensibility and
performance gains over the last decades. Consider the popular x86 ISA, for
instance, where several competing vendors, including Intel and AMD, have
developed a succession of ever-faster microarchitectures while maintaining strict
backwards compatibility with the original x86 software specification.

Abstraction levels are only relative in the eyes of attackers, however, and
a long line of research has shown that unconstrained microarchitectural
optimizations can be abused to bypass security restrictions imposed at the
ISA level. Particularly, by exploiting timing or other observable side effects
of execution, confined adversaries can infer secret-dependent traces left in
the shared microarchitectural state during victim execution. This class of
software-based microarchitectural side-channel attacks has been recognized
for over two decades and has received growing attention from the research
community [71]. More recently, in early 2018, the disruptive real-world impact
of microarchitectural side channels became acutely evident when they were
used as building blocks for the high-profile Meltdown [162], Spectre [146], and
Foreshadow [249] line of transient-execution attacks.

In the following, we first overview how execution metadata can be reconstructed
through microarchitectural side-channel analysis and thereafter zoom in on the
threat of direct data leakage through transient execution. Note that this section
only serves to introduce the main concepts, and we defer a systematic overview
of microarchitectural attacks and the various ways in which they have been
abused to dismantle enclave isolation to Chapter 8.

1.2.1 Timing side-channel attacks

Software-based microarchitectural side channels commonly rely on contention in
a shared microarchitectural element, e.g., branch predictors or caches. Generally,
adversaries proceed by first initializing the shared microarchitectural element
in a known state and subsequently measuring state changes during or after
victim execution. The observed microarchitectural state updates allow to gain
insight into the victim’s behavior, even when attackers are strictly isolated at
the architectural level and are supposedly only allowed to interact with the
victim in a black-box style, via well-defined input and output channels.

Hence, in order to mount a successful side-channel attack, adversaries need
some way to gain insight into the underlying microarchitectural behavior,
which, however, is designed to be transparent to the programmer. Depending
on the attacker’s capabilities, some insights can be derived via, for instance,
transactional memory aborts [54] or performance monitoring counters [79,
29, 156], but by far the most common way to observe microarchitectural
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state changes is through timing [71]. That is, whenever microarchitectural
optimizations rely on global stateful elements, such as translation-lookaside
buffers, caches, or branch predictors, any updates to these elements during
victim execution will cause measurable timing differences in the attacker domain.
Perhaps the most widely studied subcategory of microarchitectural timing side
channels are cache timing attacks [202, 280, 88, 87]. These attacks exploit that
the time to load a memory location depends on whether or not that location
was recently accessed and brought into the CPU cache. The basic idea behind
caching is to speed up repeated accesses to the same or neighboring memory
locations by maintaining local copies of the recently accessed data near the
processor, through an intricate hierarchy of hidden cache levels. Caching has
become an indispensable performance optimization for modern processors, which
can process data several orders of magnitude faster than it can be fetched from
DRAM. However, the crucial role of cache memories to maintain performance in
today’s processors also makes them prime candidates for side-channel analysis
for at least two reasons. First, to avoid costly flushes or partitioning, caches are
commonly shared across protection domains and privilege levels. Second, the
high latency of DRAM transactions makes cache misses distinctly observable,
with timing penalties of up to hundreds of CPU cycles.

As an exemplary cache timing attack, Flush+Reload [280] has become a
standard method in recent years. This attack technique is conceptually very
simple, yet has proven to be extremely powerful and versatile to mount high-
resolution and low-noise cache timing attacks in practice. Flush+Reload has,
for instance, recently been leveraged as one of the building blocks for transient-
execution attacks, including Meltdown [162], Spectre [146], Foreshadow [249],
and LVI [251]. Assuming that the attacker and the victim share some read-
only memory locations, e.g., as is commonly the case for shared library code,
Fig. 1.3 illustrates how the Flush+Reload attack proceeds in three phases to
determine whether a victim program accessed a shared memory location A:

1. Flush. The attacker first initializes the shared microarchitectural CPU
cache in a known state by explicitly flushing the memory location A from
the cache. This phase ensures that any subsequent access to address A
will suffer a cache miss and will hence have to be served from memory.

2. Victim execution. Now the attacker waits for the victim to execute. In
our example code, the victim only accesses A if a certain application-level
secret is true. In this case, the victim’s access to A causes the processor
to initiate a memory transaction and to cache the result, speeding up
future references to A. If the secret is false, on the other hand, the victim
loads some other memory location B into the cache.
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Figure 1.3: Overview of a Flush+Reload side-channel attack to learn whether a
victim program accessed a shared memory region in three phases: (1) the attacker
flushes the shared memory region from the CPU cache; (2) the victim program
conditionally accesses the shared memory region, depending on some secret; (3) the
attacker learns whether the victim brought the shared memory location into the CPU
cache by measuring the amount of time it takes to reload that location.

3. Reload. After completing the victim execution, the attacker carefully
measures the amount of time it takes to reload the shared memory location
A. If the access is fast, the attacker learns that the application-level secret
is true, as the victim’s execution must have brought A into the shared
CPU cache in step 2 above. In case of a slow access, on the other hand, A
was not accessed during the victim’s execution and the attacker concludes
that the secret was false.

The above attack procedure serves as a minimal, yet clear example of how
unconstrained optimizations at the microarchitectural level can break security
objectives imposed at higher levels. Particularly, the only requirements for the
Flush+Reload attack is that the processor features a cache and that attacker
and the victim share some read-only memory mapping. At the architectural
level, both processes can be fully isolated in their own separate virtual address
spaces or privilege rings. In our example, the read-only restriction for the
shared memory region implies that the attacker and victim have no direct
communication channel and are conceptually isolated from each other. However,
despite these strict architectural restrictions, the attacker and the victim still
implicitly share the underlying CPU cache at the microarchitectural level. By
resorting to subtle timing differences, attackers can learn execution metadata
in terms of the trace of memory addresses accessed by the victim. A special use
case of side channels, where the attacker controls both the sender and receiver
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processes, is referred to as a “covert channel” and allows to setup hidden
communication channels to bypass architectural information-flow restrictions.

Note that we focused on Flush+Reload in the above example for its
simplicity, but more advanced cache timing attacks based on the Prime+Probe
technique [202, 225], for instance, leverage similar procedures to establish
memory access patterns across arbitrary protection domains, without requiring
any form of shared memory. These attacks only assume a shared CPU cache and
have even been demonstrated in fully isolated virtualization environments [171].

1.2.2 Transient-execution attacks

Microarchitectural timing side-channel attacks, as outlined in the previous
section, have traditionally been strictly limited to leaking execution metadata,
e.g., the addresses of code or data accesses in a victim program. The preferred
way to defend against these attacks is to adopt a “constant-time” programming
model [44, 71], which ensures that the victim’s code and data memory access
patterns never depend on application secrets. For a long time, the side-
channel research landscape has been characterized by an ongoing cat-and-
mouse game, where attackers developed ever more accurate techniques to leak
execution metadata and reconstruct cryptographic keys, prompting developers
to refine constant-time code hardening patches in the affected libraries. This
fundamentally changed in early 2018, however, when several researchers [67, 101,
146, 162, 249] independently discovered that side channels can also be abused
in an entirely different way to reconstruct secret-dependent traces left in the
CPU’s microarchitectural state following branch mispredictions or exceptions.

Intuitively, this new class of transient-execution attacks2 broadens the threat
of microarchitectural side channels from relatively harmless metadata leakage
to direct data extraction of arbitrary victim secrets. We first overview CPU
pipeline concepts and outline the abstract phases of a transient-execution attack,
and we thereafter elaborate on the distinction between Spectre-type [146] and
Meltdown-type [162] attack categories.

2The term “transient execution” was originally coined in the Meltdown [162] and
Spectre [146] papers as an umbrella term to avoid confusion with the established concept of
“speculative execution”, which suggests a notion of optimistic prediction that does, however,
not clearly apply to attacks based on exception deferral. With Foreshadow, presented in
Chapter 6, and the subsequent transient systematization [36], we were among the early
adopters of the term and helped its spreading throughout the research community. More
recently, in the aftermath of our research on LVI, presented in Chapter 7, Intel [125] decided
to officially adopt transient-execution terminology in order to more accurately distinguish
between Spectre-type and Meltdown-type threats.
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Basic idea. Modern CPU pipelines are massively parallelized allowing
hardware logic in prior pipeline stages to perform operations for subsequent
instructions ahead of time or even out-of-order. Intuitively, however, pipelines
may stall when operations have a dependency on a previous instruction which has
not been executed and retired yet. Hence, to keep the pipeline full at all times,
it is essential to predict upcoming control flow decisions and data dependencies.
Modern processors, therefore, rely on intricate microarchitectural optimizations
to predict and sometimes even re-order the instruction stream. Crucially, as
these predictions may turn out to be wrong, computation results should only be
committed to the CPU’s architectural state according to the intended in-order
instruction stream specified by the programmer. Pipeline flushes may therefore
be necessary to recover from wrong predictions, or in case of an exception or
external interrupt request. The pipeline flush ensures functional correctness
by discarding any architectural effects of pending instructions that follow the
exception or misprediction event. Hence, these instructions are only executed
“transiently”: first they are, and then they vanish.

Transient instructions reflect unauthorized computations out of the program’s
intended code or data paths. For functional correctness, it is crucial that
transient computation results are never committed to the architectural state.
However, transient instructions may still leave secret-dependent traces in the
CPU’s microarchitectural state, which can later be recovered through side-
channel analysis. This observation has led to a proliferation of transient-
execution attacks [162, 146, 249, 36, 216, 223, 35, 251], which from a high-level
always follow the same abstract flow, as shown in Fig. 1.4. The attacker first
brings the microarchitecture into the desired state by flushing or populating
internal branch predictors and data caches. Next is the execution of a so-
called “trigger instruction”. This can be any instruction that causes subsequent
operations to be eventually squashed due to, for instance, an exception or a
mispredicted branch or data dependency. However, before completion of the
trigger instruction, the processor proceeds with the execution of a transient
instruction sequence. The attacker abuses the unintended transient instructions
to act as the sending end of a microarchitectural covert channel, e.g., by loading a
secret-dependent memory location into the CPU cache. Ultimately, at retirement
of the trigger instruction, the processor discovers the exception or misprediction
event and flushes the pipeline to discard any architectural effects of the transient
execution. However, in the final phase of the attack, unauthorized transient
computation results are recovered at the receiving end of the covert channel,
e.g., by timing memory accesses to deduce the secret-dependent loads from the
transient instructions, as in the Flush+Reload [280] procedure introduced in
the previous section.
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Figure 1.4: High-level overview of a transient-execution attack in 5 phases: (1)
prepare microarchitecture, (2) execute a trigger instruction, (3) transient instructions
encode unauthorized data through a microarchitectural covert channel, (4) CPU
retires trigger instruction and flushes transient instructions, (5) reconstruct secret
from microarchitectural state.

High-level classification: Spectre vs. Meltdown. All transient-execution
attacks have in common that they abuse transient instructions, whose results
are never architecturally committed, to encode unauthorized data in the
microarchitectural CPU state. With different instantiations of the abstract
phases in Fig. 1.4, a wide spectrum of transient-execution attack variants
emerges [36]. While some instantiations may be rather straightforward, e.g.,
plugging in another type of covert channel to transmit secrets between phases
3 and 5, a more fundamental distinction relates to the nature of the trigger
instruction in phase 2. In fact, on the basis of this distinction, the transient-
execution attack landscape can be separated into two groups named after the
initial attack in each category. Spectre-type attacks exploit transient execution
following a control or data flow misprediction, whereas Meltdown-type attacks
exploit illegal transient data flow following a faulting or assisted load instruction.

Intuitively, Spectre-type attacks [146, 148, 167, 23, 102] trick a victim program
into transiently diverting from its intended execution path. By poisoning the
processor’s branch predictor machinery, for instance, Spectre adversaries craftily
steer the victim’s transient execution to selected “gadget” code snippets, which
may inadvertently expose secrets through the shared microarchitectural state.
Much like in a confused-deputy scenario, Spectre gadgets execute entirely within
the victim domain and can hence transiently encode memory locations the victim
is authorized to access but the attacker not.

The perpendicular category of Meltdown-type attacks [162, 249, 234, 223, 216,
35], on the other hand, target architecturally inaccessible data by exploiting
illegal data flow from faulting or assisted instructions. Particularly, on vulnerable
processors, the results of unauthorized loads are still forwarded to subsequent
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transient operations, which may encode the data before an exception or
microcode assist is eventually raised. Note that, while Meltdown-type attacks
so far exploit out-of-order execution, even elementary in-order pipelines may
allow for similar effects [256]. Unlike Spectre-type attacks, a Meltdown attacker
in one security domain can directly exfiltrate architecturally inaccessible data
belonging to another domain, e.g., kernel or enclave memory. Meltdown-type
attacks have, therefore, been denounced to effectively “melt down” architectural
isolation barriers. However, our research on LVI [251] showed that Meltdown-
type incorrect transient forwarding effects can also be inversely exploited as
an injection primitive to arbitrarily hijack transient execution in a victim
domain. Intuitively, LVI combines Spectre-style confused-deputy code gadgets
in the victim application with Meltdown-type illegal data flow from faulting
or assisted memory load instructions to bypass existing defenses and inject
attacker-controlled data into a victim’s transient execution.

Importantly, Spectre and Meltdown exploit fundamentally different CPU
properties and hence require largely orthogonal defenses. Where the former
relies on indispensable performance optimizations via dedicated control or data
flow prediction machinery, the latter exploits that faulting load instructions
on vulnerable processors may forward incorrect data to transient instructions
ahead in the pipeline. In other words, Spectre-type leakage remains largely an
unintended consequence of important speculative performance optimizations
that are here to stay, whereas Meltdown reflects a failure of certain processors to
respect hardware-level protection boundaries for transient instructions. Overall,
mitigating Spectre should be considered an industry-wide, long-term challenge
that requires careful hardware-software co-design. Meltdown-type effects, on
the other hand, are generally more alarming but fortunately remain limited
to a subset of today’s processors and will expectedly be eradicated on the
medium term through silicon-level changes that properly block any data flow
from faulting or assisted load instructions.

1.3 Dissertation scope and contributions

In light of the strengthened adversary model pursued by trusted execution
environments, such as Intel SGX, the key research question we ask in this
dissertation is which new kinds of attack vectors can be exploited by TEE
adversaries. In contrast to a concurrent line of research [181, 225, 156, 154] which
focuses on developing improved exploitation techniques for conventional side-
channel or memory-safety vulnerabilities in a TEE setting, this dissertation has
an explicit aim at uncovering fundamentally new attack surfaces that were never
before considered relevant in a conventional, unprivileged attacker model. We
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Figure 1.5: Three types of enclave interactions for privileged adversaries: (1) pass
attacker-controlled arguments through the enclave interface; (2) derive execution
metadata during or after enclave invocation through side channels; (3) extract enclave
secrets from the CPU’s microarchitectural state through transient execution.

focus our attention on the Intel SGX [14, 176] TEE, given its real-world relevance
and widespread deployment in commodity Intel x86 processors. The inclusion of
SGX in recent Intel processors has been broadly acclaimed for bringing strong
hardware-enforced trusted computing guarantees to mass consumer devices,
and for protecting end user data in an untrusted cloud environment. However,
ever since its public release in 2015, Intel SGX has also sparked an ongoing
line of attack research that aims to build a better understanding of the security
limitations of this technology. A reoccurring element in most of these attacks,
including the ones presented in this dissertation, is that they commonly take
advantage of the attacker’s control over the untrusted operating system. This
dissertation develops novel attack techniques that abuse traditionally privileged
x86 processor features, like paging and interrupts, to mount new and unexpected
types of side-channel or transient-execution attacks against SGX enclaves.

Figure 1.5 summarizes three attack avenues for privileged adversaries explored
in this dissertation and further described below. At an abstract level, attackers
can pass rogue arguments through the enclave interface, observe execution
metadata through side channels, or transiently encode secrets in the CPU’s
microarchitectural state. Several of these interactions can be combined, e.g., LVI
attacks (Chapter 7) pass attacker-controlled data through the enclave interface
so as to hijack transient execution inside the enclave and encode secrets, which
can later be recovered through side-channel analysis. We further note that a
relatively small subset of SGX attacks [225, 7, 24] have also been demonstrated
for significantly less privileged adversaries, i.e., with just user-level privileges to
invoke the enclave. While this is also the case for some of the attack variants [254,
249] presented in Chapters 2 and 6, the overall scope of this dissertation has a
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clear focus on uncovering fundamentally new attack surfaces that arise from
SGX’s privileged adversary position.

1.3.1 Breaking memory safety through enclave interfaces

As a first contribution, Chapter 2 nuances the protection offered by TEEs by
zooming in on the enclave software itself. That is, even if the processor is
trusted and properly prevents any outside software from reading or writing
enclave memory, all software executing inside the enclave protection domain
still has unrestricted access to secrets and hence forms part of the TCB. Any
exploitable vulnerabilities in the enclave application would compromise the
security guarantees pursued by trusted execution. Apart from well-understood
software vulnerabilities like buffer overflows, which can be prevented using
safe programming languages [72, 68], the unique protection model offered by
TEEs also requires dealing with untrusted pointers or CPU state inside the host
application. TEE development environments therefore commonly include a small
trusted shielding runtime which intervenes on enclave context switches so as to
transparently maintain a secure interface between the enclave application and
its hostile environment. However, in a systematic study of 8 major open-source
TEE runtimes, we find that enclave shielding responsibilities are generally
not well-understood and we uncover a large and re-occurring vulnerability
landscape. For several of these runtimes, including production-quality SGX
SDKs maintained by Intel and Microsoft, we develop proof-of-concept3 exploits
demonstrating control flow hijacking, read or write primitives, and innovative
side-channel oracles caused by inadequate interface sanitization.

Our work draws lessons for TEE design and provides a foundation to
methodologically reason about enclave shielding responsibilities and pitfalls.
We show that Intel SGX’s design decision to model enclave interactions after
conventional user-to-kernel context switches also inherits many of the security
implications that arise from dealing with low-level CPU register state and
passing pointers in a shared address space. Even memory-safe languages cannot
fully protect against insufficient interface sanitization in the enclave trusted
runtime. Our findings emphasize the need to research more principled interface
hardening approaches and raise concerns about trusting sizable enclave software
layers with several thousands of lines of code [246, 17].

Publication data: J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. D.
Garcia, and F. Piessens. “A Tale of Two Worlds: Assessing the Vulnerability
of Enclave Shielding Runtimes”. In: 26th ACM Conference on Computer and

3Open-sourced at https://github.com/jovanbulck/0xbadc0de.

https://github.com/jovanbulck/0xbadc0de
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Communications Security (CCS). Nov. 2019, pp. 1741–1758

1.3.2 Leaking enclave access patterns through side channels

As a second contribution, Chapters 3 to 5 introduce a series of privileged
side-channel attack techniques to reconstruct memory accesses and instructions
executed in a victim enclave. These attacks demonstrate that even when TEEs
properly safeguard enclave applications against direct data extraction, kernel-
level adversaries may still monitor various side effects of the enclaved execution
to reliably derive metadata, e.g., instruction types and partial addresses of
enclave-private code or data accesses. We show in several case-study attacks
that such side-channel observations can effectively lead to full recovery of
application-level secrets when the victim enclave contains secret-dependent
code or data accesses. Fully mitigating against this class of attacks requires
enclave developers to write constant-time code [119], something that has proven
to be notoriously hard over the past decade for cryptographic libraries [71].
Moreover, several studies [277, 29, 256, 92] have shown that in the case of
enclave applications, sensitive data may be more ill-defined, and hence harder
to keep track of in constant-time code paradigms, compared to the typical
cryptographic keys of side-channel analysis.

Our work debunks several misconceptions and provides valuable insights for
designing effective TEE side-channel mitigations. In Chapter 3, we contribute
stealthy page-table attack techniques4 which for the first time recognize the
security implications of updating “accessed” or “dirty” bits and traversing
untrusted page tables in privileged operating system memory. This work
highlights the deficiency of initial controlled-channel defenses [230, 229] that
focus on merely detecting page-fault events and has since informed several
improved mitigations [237, 198, 139, 175, 200]. With the SGX-Step5 enclave
execution control framework, presented in Chapter 4, we shift our attention
to another crucial privileged x86 interface, namely interrupts. This work
contributes an innovative timer interrupt technique that for the first time allows
victim enclaves to be precisely single-stepped at a maximal temporal resolution,
i.e., exactly one instruction at a time. SGX-Step exports traditionally privileged
operating system features, such as page tables and interrupts, via a practical
user-space attack library and refines the enclaved execution threat landscape by
defeating any defenses [156, 69, 119] that are based on partial atomic behavior
of the instruction stream. The open-source SGX-Step framework has since been
employed in our own research [91, 249, 256, 223, 35, 254, 188, 182, 251], as

4Open-sourced at https://github.com/jovanbulck/sgx-pte.
5Open-sourced and actively maintained at https://github.com/jovanbulck/sgx-step.

https://github.com/jovanbulck/sgx-pte
https://github.com/jovanbulck/sgx-step
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well as by several independent researchers [270, 6, 105, 130, 269, 8, 208, 211, 5,
94], to enable a long line of new or improved high-resolution enclave attacks.
SGX-Step has furthermore guided several recent defensive works [103, 198, 9,
34, 110]. which now explicitly take single-stepping interrupt capabilities into
account. Finally, Chapter 5 presents the Nemesis6 attack, which builds on
SGX-Step and for the first time shows that interrupts can not only be used to
amplify the temporal resolution of other attacks, but also in themselves enable
subtle microarchitectural timing leakage. Particularly, Nemesis abuses interrupt
latency as an innovative side-channel attack vector to sample individual enclave
instruction timings, allowing to reconstruct secret-dependent code paths on
both commodity Intel x86 SGX platforms and embedded Sancus processors.

Publication data:

• J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx. “Telling
your Secrets Without Page Faults: Stealthy Page Table-Based Attacks on
Enclaved Execution”. In: 26th USENIX Security Symposium. Aug. 2017,
pp. 1041–1056

• J. Van Bulck, F. Piessens, and R. Strackx. “SGX-Step: A Practical Attack
Framework for Precise Enclave Execution Control”. In: 2nd Workshop on
System Software for Trusted Execution (SysTEX). ACM, Oct. 2017, 4:1–4:6

• J. Van Bulck, F. Piessens, and R. Strackx. “Nemesis: Studying
Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”.
In: 25th ACM Conference on Computer and Communications Security (CCS).
Oct. 2018, pp. 178–195

1.3.3 Stealing enclave secrets with transient execution

As a final set of contributions, Chapters 6 and 7 develop novel transient-
execution attack primitives that led to a complete collapse of the Intel SGX
ecosystem. Both of these works revisit untrusted page-table manipulations for
privileged adversaries to showcase arbitrary enclave secret extraction in the
transient domain. This research nuances the trust we place in the processor
itself and ultimately shows the fallacy of building a high-assurance trusted
execution environment, such as Intel SGX, on top of a complex out-of-order
CPU microarchitecture. That is, even if the TEE’s architectural design is
sound and the enclave software is free from any memory-safety or side-channel
vulnerabilities, subtle oversights in the underlying processor microarchitecture
can nullify all of the pursued security objectives.

6Open-sourced at https://github.com/jovanbulck/nemesis.

https://github.com/jovanbulck/nemesis
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With the high-impact Foreshadow attack, developed concurrently to other
transient-execution attacks like Spectre and Meltdown, we were among the
first to discover the security implications of transient execution in modern Intel
processors. Foreshadow, presented in Chapter 6, contributes an innovative page-
table manipulation technique that allows to reliably extract plaintext enclave
secrets from the CPU cache.7 At its core, Foreshadow exploits an incorrect
transient forwarding effect similar to Meltdown. On top of this leakage primitive,
we develop a novel exploitation methodology which for the first time allows
to decisively dismantle security guarantees in the Intel SGX ecosystem. We
demonstrate Foreshadow’s disruptive impact by extracting full cryptographic
keys from Intel’s vetted architectural enclaves, allowing to forge arbitrary local
and remote attestation reports that are indistinguishable from those signed by
a genuine Intel processor. In response to our findings, Intel initiated SGX TCB
recovery [122] and released microcode updates that flush the L1 cache on every
enclave transition [107]. Furthermore, following our disclosure, the underlying
technique used by Foreshadow was generalized by Intel engineers to also break
operating system process and even virtual machine isolation, leading to patches
in all major operating system and hypervisor implementations [107, 271]. In
the wider research landscape, Foreshadow led to important new insights by
recognizing that Meltdown was not a one-off bug to read kernel memory in
Intel processors, but instead comprises an extensive and expanding class of
Meltdown-type transient-execution attacks [36, 223, 216, 35, 251].

With Load Value Injection (LVI), presented in Chapter 7, we contribute
innovative techniques to reversely exploit Meltdown-type microarchitectural data
leakage.8 LVI shows that the microcode and silicon mitigations widely deployed
in response to transient data extraction attacks like Foreshadow are necessary,
but not sufficient. We develop novel, gadget-oriented exploitation methodologies
to bypass existing SGX microcode mitigations that flush microarchitectural data
buffers on enclave transitions, and we abuse privileged page-table manipulations
to cause faulting or assisted loads in a victim enclaved execution. At its core,
LVI abuses that such faulting or assisted loads may transiently forward dummy
values or attacker-controlled data from various microarchitectural buffers to
dependent instructions, before eventually being re-issued by the processor. Our
research shows that potentially every illegal microarchitectural data flow can
be inverted as an injection source to purposefully disrupt the victim’s transient
behavior. In a wider perspective, this work unifies the transient-execution
research landscape by for the first time applying gadget-driven techniques from
the Spectre world to reversely exploit prior Meltdown-type data leakages. LVI
furthermore marks the end of transparently patching Meltdown-type processor

7Further information and guidance via https://foreshadowattack.eu/.
8Further information and guidance via https://lviattack.eu/.

https://foreshadowattack.eu/
https://lviattack.eu/
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vulnerabilities in CPU microcode. In response to our findings, Intel initiated
SGX TCB recovery and developed expensive compiler software mitigations
that insert lfence barrier instructions to serialize the processor pipeline after
potentially every memory load [110].

Publication data:

• J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order
Execution”. In: 27th USENIX Security Symposium. Aug. 2018, pp. 991–1008

• J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin,
Y. Yuval, B. Sunar, D. Gruss, and F. Piessens. “LVI: Hijacking Transient
Execution through Microarchitectural Load Value Injection”. In: 41st IEEE
Symposium on Security and Privacy (S&P). May 2020, pp. 54–72

1.3.4 Ethical considerations and reproducibility

For all of the vulnerabilities discovered during this PhD trajectory, we adhered
to best practices of responsible disclosure by notifying the affected vendor well
before publicly releasing our findings. When applicable, we have engaged in
lengthy embargo periods which have allowed for the development of processor
microcode upgrades, compiler mitigations, and software fixes.

To ensure the reproducibility of our findings and to encourage further research
into effective defense mechanisms, we have released non-weaponized proof-
of-concept attack code for all of the research we conducted. Some of these
open-source projects, like SGX-Step, presented in Chapter 4, have gained
widespread recognition in the TEE community and have informed improved
defenses that take privileged adversary capabilities into account [103, 198, 9, 34,
110]. As a general guideline, for side-channel attacks falling outside of the scope
of Intel SGX’s official threat model [133], we released the full code for all of the
experiments. For more potent transient-execution attacks, on the other hand,
we took care to only release deliberately weakened proof-of-concept attacks
that still allow to reproduce our findings for legitimate research purposes while
avoiding targeted arbitrary secret extraction on unpatched systems.

1.4 Other contributions

The works included in this thesis are a subset of the research conducted over the
course of this PhD. Particularly, this dissertation presents selected first-author
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Figure 1.6: Overview of the relation between all publications. Solid arrows illustrate
direct flows of ideas or techniques from one paper to another, whereas dotted arrows
represent more loose influences. The highlighted papers are included in this thesis.

publications which collectively explore the security implications of privileged
side-channel attacks. Other research projects that I participated in are listed
below, together with a brief description of the obtained results.

Figure 1.6 illustrates the wider research context by exposing the flow of ideas
that interconnects all the papers. The vertical axis shows how all of the research
conducted during this PhD can be categorized into three main clusters: (i) a
mainly defensive line of work on embedded TEE security, built around the
Sancus [189] platform; (ii) an exploratory line of attack research developing new
side-channel techniques to extract execution metadata from Intel SGX enclaves;
and (iii) the emerging new research area on transient-execution attacks that
exposes the perils of today’s speculative and out-of-order processor pipelines.
It should be noted that this classification is by no means absolute, as ideas
freely flow between these clusters and some attacks [256, 254] have even been
demonstrated on both Sancus and Intel SGX platforms.

Towards Availability and Real-Time Guarantees for Protected Module
Architectures. This paper presents a design and partial implementation results
for an embedded security architecture that preserves real-time availability
guarantees using a combination of processor extensions for interruptible enclaves
and a novel multithreading scheme implemented by an unprivileged scheduler,
which itself also resides in an enclave. One of the key objectives of this design
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was to guarantee a strict upper bound on the worst-case interrupt response
time, which consequently let to the discovery of the Nemesis [256] interrupt
latency timing side channel (cf. Chapter 5) for Sancus and later also Intel SGX
platforms. The interruptible Sancus-enabled MSP430 processor,9 implemented
in this work, furthermore served as a basis for several master thesis student
projects.

This research was conducted in collaboration with Jan Tobias Mühlberg and
Job Noorman, under the supervision of Frank Piessens.

J. Van Bulck, J. Noorman, J. T. Mühlberg, and F. Piessens. “Towards
Availability and Real-Time Guarantees for Protected Module Architectures”.
In: Companion Proceedings of the 15th International Conference on
Modularity (MASS). Mar. 2016, pp. 146–151

Implementation of a High Assurance Smart Meter using Protected Module
Architectures. This paper presents a case study of a distributed enclave
application10 that implements secure smart meter functionality on top of the
Sancus platform [191, 189] and reports on design trade-offs and challenges for
preserving real-time requirements.

The principal author of this work is Jan Tobias Mühlberg who collaborated
with Sara Cleemput, Mustafa A. Mustafa, and me, under the supervision of
Bart Preneel and Frank Piessens.

J. T. Mühlberg, S. Cleemput, A. M. Mustafa, J. Van Bulck, B. Preneel,
and F. Piessens. “Implementation of a High Assurance Smart Meter using
Protected Module Architectures”. In: 10th WISTP International Conference
on Information Security Theory and Practice (WISTP). Aug. 2016, pp. 53–69

Sancus 2.0: A Low-Cost Security Architecture for IoT Devices. This
journal article describes extensions to the original Sancus [191] TEE architecture
and elaborates on insights derived from several years of building extensions and
case-study applications on top of Sancus.11

The principal author of this work is Job Noorman who collaborated with me,
Jan Tobias Mühlberg, Pieter Maene, Johannes Götzfried, and Tillo Müller,
under the supervision of Frank Piessens, Bart Preneel, Ingrid Verbauwhede,
and Felix Freiling.

9Interrupt extensions were upstreamed to https://github.com/sancus-tee/sancus-core.
10Open-sourced at https://distrinet.cs.kuleuven.be/software/sancus/wistp16/.
11Open-sourced and actively maintained at https://github.com/sancus-tee.

https://github.com/sancus-tee/sancus-core
https://distrinet.cs.kuleuven.be/software/sancus/wistp16/
https://github.com/sancus-tee
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J. Noorman, J. Van Bulck, J. T. Mühlberg, F. Piessens, P. Maene, B. Preneel,
I. Verbauwhede, J. Götzfried, T. Müller, and F. Freiling. “Sancus 2.0: A
Low-Cost Security Architecture for IoT Devices”. In: ACM Transactions on
Privacy and Security 20.3 (2017), pp. 1–33

VulCAN: Efficient Component Authentication and Software Isolation for
Automotive Control Networks. This paper presents a generic design for
efficient vehicle message authentication, plus software component attestation
and isolation using lightweight trusted computing technology.12 We implement
two previously proposed CAN authentication protocols on top of Sancus and
evaluate security benefits of enclave software isolation and performance gains of
hardware-level cryptography. Our security evaluation exposed a cryptographic
flaw in the previously published vatiCAN [195] authentication protocol, which
led to a revised specification by the original authors [196]. As part of this
research, we furthermore reverse-engineered real-world automotive components
and constructed an extended demo setup which was presented at several public
events and served as the basis for master thesis student projects. VulCAN was
nominated for a distinguished paper award at ACSAC 2017.

This research was conducted in collaboration with and under the supervision of
Jan Tobias Mühlberg and Frank Piessens.

J. Van Bulck, J. T. Mühlberg, and F. Piessens. “VulCAN: Efficient
Component Authentication and Software Isolation for Automotive Control
Networks”. In: 33rd Annual Computer Security Applications Conference
(ACSAC). Dec. 2017, pp. 225–237

Off-limits: Abusing Legacy x86 Memory Segmentation to Spy on Enclaved
Execution. This work presents a novel controlled-channel attack vector for
32-bit SGX enclaves.13 Particularly, we show that legacy IA32 segmentation
features can be abused in combination with SGX-Step (cf. Chapter 4) to
deterministically reconstruct memory accesses at an improved, byte-level
granularity in the first MiB of the enclave address space, and at a conventional
4KiB page-level granularity (cf. Chapter 3) for the remainder of the address
space. Our analysis revealed that Intel patched this behavior in recent microcode
updates.

The principal author of this work is Jago Gyselinck, who conducted this research
as part of his master thesis, which was supervised by me, Raoul Strackx, and
Frank Piessens.

12Open-sourced at https://distrinet.cs.kuleuven.be/software/vulcan/.
13Open-sourced at https://distrinet.cs.kuleuven.be/software/off-limits/.

https://distrinet.cs.kuleuven.be/software/vulcan/
https://distrinet.cs.kuleuven.be/software/off-limits/
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J. Gyselinck, J. Van Bulck, F. Piessens, and R. Strackx. “Off-limits:
Abusing Legacy x86 Memory Segmentation to Spy on Enclaved Execution”.
In: International Symposium on Engineering Secure Software and Systems
(ESSoS). June 2018, pp. 44–60

Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient
Out-of-Order Execution. This technical report was written in the aftermath
of the Foreshadow [249] transient-execution processor vulnerability presented in
Chapter 6. While our original attack only targeted Intel SGX enclaves, Intel’s
subsequent investigation [107] into the microarchitectural root cause behind
Foreshadow revealed that the same underlying vulnerability can also be abused
to break conventional process or even virtual machine isolation. The aim of this
technical report was to comprehensively analyze the microarchitectural root
cause driving this new class of “Foreshadow-NG” attacks and to derive insights
that can form the basis for subsequent scientific analyses. An important such
insight was to for the first time differentiate Meltdown-type attacks in terms of
the page-table bits used to trigger a page fault exception, which subsequently
led to our more systematic transient-execution attack classification [36].

This article was written in collaboration with all authors of the original
Foreshadow paper.

O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom. “Foreshadow-
NG: Breaking the Virtual Memory Abstraction with Transient Out-of-Order
Execution”. In: Technical Report (Aug. 2018)

Reflections on Post-Meltdown Trusted Computing: A Case for Open
Security Processors. In this opinion article and call for action, written in the
aftermath of Spectre [146], Meltdown [162], and Foreshadow [249], we argue that
the recent wave of microarchitectural vulnerabilities in commodity hardware
requires us to question our understanding of system security. We briefly survey
ongoing community efforts for developing a new generation of open-source
security architectures, like Sancus [189] and CHERI [275], for which we can
collectively attempt to build a clear understanding of execution semantics.

This opinion article emerged from several extended discussions with Jan Tobias
Mühlberg.

J. T. Mühlberg and J. Van Bulck. “Reflections on Post-Meltdown Trusted
Computing: A Case for Open Security Processors”. In: ;login: the USENIX
magazine 43.3 (2018), pp. 6–9
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Tutorial: Building Distributed Enclave Applications with Sancus and SGX.
In this abstract we outline a half-day interactive tutorial14 in which we taught
how to practically deploy and attest distributed I/O-driven enclave applications
where Intel SGX enclaves are securely interfaced with embedded Sancus devices.

This tutorial was jointly organized with Jan Tobias Mühlberg.

J. T. Mühlberg and J. Van Bulck. “Tutorial: Building Distributed Enclave
Applications with Sancus and SGX”. in: 48th International Conference on
Dependable Systems and Networks (DSN). June 2018

Tutorial: Uncovering and Mitigating Side-Channel Leakage in Intel SGX
Enclaves. This abstract for a half-day invited tutorial15 overviews known Intel
SGX side-channel leakages in order to arrive at a better understanding of best
practices and caveats for writing secure enclave applications.

This tutorial was prepared under the supervision of Frank Piessens.

J. Van Bulck and F. Piessens. “Tutorial: Uncovering and Mitigating Side-
Channel Leakage in Intel SGX Enclaves”. In: 8th International Conference
on Security, Privacy, and Applied Cryptography Engineering (SPACE). Dec.
2018, pp. 20–24

A Systematic Evaluation of Transient Execution Attacks and Defenses.
This paper responds to the ongoing wild growth of transient-execution attack
variants by presenting an extensible classification tree and uniform naming
scheme to reason about this new category of attacks and defenses. As part
of the classification effort in this paper, we discovered several new Meltdown
variants and mistraining strategies for Spectre.16 Several researchers [223, 35,
18, 251] have since extended our original classification tree, and we maintain an
up-to-date interactive tree at https://transient.fail. A subtree covering
all Meltdown-type attacks that have been demonstrated to date is furthermore
included in Appendix A.

The principal author of this work is Claudio Canella, who collaborated with
me, Michael Schwarz, Moritz Lipp, Benjamin von Berg, and Philipp Ortner,
under the supervision of Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss.

14All materials available at https://github.com/sancus-tee/tutorial-dsn18.
15All materials available at https://github.com/jovanbulck/sgx-tutorial-space18.
16Open-sourced at https://github.com/IAIK/transientfail.

https://transient.fail
https://github.com/sancus-tee/tutorial-dsn18
https://github.com/jovanbulck/sgx-tutorial-space18
https://github.com/IAIK/transientfail
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C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss. “A Systematic Evaluation of
Transient Execution Attacks and Defenses”. In: 28th USENIX Security
Symposium. Aug. 2019, pp. 249–266

Breaking Virtual Memory Protection and the SGX Ecosystem with
Foreshadow. Our original research on Foreshadow [249], presented in
Chapter 6, was selected to appear in a special IEEE Micro issue on “Top
picks from the 2018 computer architecture conferences”. This journal theme
article describes the original attack as well as its broader implications for a less
technical audience.

This article was written in collaboration with all authors of the original
Foreshadow paper.

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. “Breaking Virtual
Memory Protection and the SGX Ecosystem with Foreshadow”. In: IEEE
Micro Top Picks from the 2018 Computer Architecture Conferences 39.3
(2019), pp. 66–74

Fallout: Leaking Data on Meltdown-Resistant CPUs. This work presents a
new Meltdown-type transient-execution attack that can leak recently stored
kernel data from the processor’s internal store buffer. The paper also includes
several side-channel attack variants that abuse TLB and store buffer interactions
to reconstruct recent usage of virtual pages. Intel addressed the data leakage
aspect of Fallout in recent operating system and microcode updates that
overwrite the store buffer on context switches [108].

This research was conducted as a collaboration between TU Graz (Claudio
Canella, Lukas Giner, Daniel Gruss, Moritz Lipp, Michael Schwarz), University
of Michigan (Daniel Genkin, Marina Minkin), Worcester Polytechnic Institute
(Daniel Moghimi, Berk Sunar), KU Leuven (Frank Piessens and I), and
University of Adelaide and Data61 (Yuval Yarom).

C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin, D. Moghimi,
F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and Y. Yarom. “Fallout:
Leaking Data on Meltdown-Resistant CPUs”. In: 26th ACM Conference on
Computer and Communications Security (CCS). Nov. 2019, pp. 769–784

ZombieLoad: Cross-Privilege-Boundary Data Sampling. This work uncov-
ers a new Meltdown-type transient-execution attack that can leak recently loaded
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data brought into the line-fill buffer by the current or a sibling logical CPU.17

We develop novel data sampling noise elimination techniques and demonstrate
ZombieLoad’s effectiveness in a multitude of practical attack scenarios across
CPU privilege rings, OS processes, virtual machines, and SGX enclaves. Intel
addressed this data leakage in recent operating system and microcode updates
that overwrite the line-fill buffer on context switches [108].

The principal author of this work is Michael Schwarz, who collaborated with
Moritz Lipp, Daniel Moghimi, me, Julian Stecklina, and Thomas Prescher,
under the supervision of Daniel Gruss.

M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher,
and D. Gruss. “ZombieLoad: Cross-Privilege-Boundary Data Sampling”. In:
26th ACM Conference on Computer and Communications Security (CCS).
Nov. 2019, pp. 753–768

Plundervolt: Software-Based Fault Injection Attacks Against Intel SGX.
This work for the first time breaks Intel SGX’s integrity guarantees by abusing an
undocumented voltage scaling software interface in recent Intel Core processors
to reliably cause predictable faults in enclave computations.18 We show how
the induced faults can be leveraged to recover full cryptographic keys from
constant-time algorithms, as well as to induce memory safety misbehavior in
bug-free enclave code. In response to our findings, Intel released a microcode
update that disables the undocumented voltage scaling interface at boot time.

Our work on Plundervolt has furthermore been selected to appear in IEEE
S&P magazine’s special issue on hardware-assisted security. This journal theme
article describes the original attack as well as its broader implications for a less
technical audience.

The principal author of this work is Kit Murdock, who collaborated with me, in
further collaboration with and under the supervision of David Oswald, Flavio
Garcia, Daniel Gruss, and Frank Piessens.

• K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens. “Plundervolt: Software-Based Fault Injection Attacks Against
Intel SGX”. in: 41st IEEE Symposium on Security and Privacy (S&P).
May 2020, pp. 1466–1482

• K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens. “Plundervolt: How a Little Bit of Undervolting Can Create

17Further information and guidance via https://zombieloadattack.com/.
18Further information and guidance via https://plundervolt.com/.

https://zombieloadattack.com/
https://plundervolt.com/
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a Lot of Trouble”. In: IEEE Security & Privacy Magazine Special Issue
on Hardware-Assisted Security (2020)

Provably Secure Isolation for Interruptible Enclaved Execution on Small
Microprocessors. This work presents the design and a formal model of an
interruptible enclave processor which is subsequently proved to be free from
interrupt-based timing leaks, including the Nemesis [256] attack presented in
Chapter 5. As part of this work we discover several subtle Nemesis attack
variants, including side-channel leakage from interrupt counting and resume-
to-end timings. The proposed design was furthermore practically implemented
and evaluated on top of a modified version of Sancus [189].19

The principal author of this work is Matteo Busi, who collaborated with Job
Noorman and me, under the supervision of Letterio Galletta, Pierpaolo Degano,
Jan Tobias Mühlberg, and Frank Piessens.

M. Busi, J. Noorman, J. Van Bulck, L. Galletta, P. Degano, J. T. Mühlberg,
and F. Piessens. “Provably Secure Isolation for Interruptible Enclaved
Execution on Small Microprocessors”. In: 33rd IEEE Computer Security
Foundations Symposium (CSF). June 2020, pp. 262–276

CopyCat: Controlled Instruction-Level Attacks on Enclaves. This work
presents an improved controlled-channel attack technique that combines coarse-
grained 4KiB page-table access patterns (cf. Chapter 3) with fine-grained
interrupt counts harvested by SGX-Step (cf. Chapter 4) to break prior
assumptions and deterministically track intra-page enclave control flow decisions
at a maximal instruction-level granularity.

The principal author of this work is Daniel Moghimi, who collaborated with
me, in further collaboration with and under the supervision of Nadia Heninger,
Frank Piessens, and Berk Sunar.

D. Moghimi, J. Van Bulck, N. Heninger, F. Piessens, and B. Sunar. “CopyCat:
Controlled Instruction-Level Attacks on Enclaves”. In: 29th USENIX
Security Symposium. Aug. 2020, pp. 469–486

1.5 Outline

The remainder of this dissertation is structured as follows. Chapters 2 to 7 first
present the main contributions to the field, i.e., the selected peer-reviewed

19Open-sourced at https://github.com/sancus-tee/sancus-core/tree/nemesis.

https://github.com/sancus-tee/sancus-core/tree/nemesis
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publications that comprise this thesis. These chapters are based on the
previously published conference-proceeding versions of the corresponding papers,
which have been minimally modified to preserve a unified style and layout
throughout this thesis. Every chapter is furthermore introduced by a short
preamble reflecting on the wider research context and impact of the work.
Finally, Chapter 8 concludes by reviewing contributions, lessons learned, and
opportunities for future research.

The chapters in this thesis have been ordered to tell a coherent story by traversing
into ever-deeper realms of the system stack and the processor pipeline. Chapter 2
first explores the attack surface that stems from improper sanitization at the
software level and illustrates practical applications for some of the lower-level
techniques introduced later. Next, in Chapter 3, we zoom in on the hardware-
software boundary by exploiting the processor’s paging and interrupt interfaces
to mount new types of stealthy side-channel attacks. Chapter 4 takes this to the
next level by perfecting interrupt-driven enclave single-stepping attacks via the
practical SGX-Step framework. In Chapter 5, we then markedly traverse the
hardware-software boundary via the Nemesis attack, which exposes instruction-
granular microarchitectural CPU state through an innovative interrupt latency
side channel. Chapter 6 subsequently presents our work on Foreshadow, which
for the first time recognizes the dangers of transient execution and delayed
exception handling in the processor’s microarchitectural pipeline organization.
In Chapter 7, LVI attacks bypass existing microcode defenses and ultimately
pinpoint the root threat of incorrect transient forwarding in the processor
pipeline by cleverly inverting prior transient data sampling attacks, including
Foreshadow, into a dangerous new type of microarchitectural data injection.
Finally, Chapter 8 concludes and places our contributions in perspective by
comprehensively systematizing the SGX attack landscape, which unfolded over
the past five years, and formulating insights and recommendations for next-
generation, hardened TEE designs.





Chapter 2

Assessing the vulnerability of
enclave shielding runtimes

This chapter was previously published as:

J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. D. Garcia, and F. Piessens.
“A Tale of Two Worlds: Assessing the Vulnerability of Enclave Shielding
Runtimes”. In: 26th ACM Conference on Computer and Communications
Security (CCS). Nov. 2019, pp. 1741–1758

Preamble

This chapter analyzes the vulnerability space that arises when interfacing
a trusted enclave application with untrusted, potentially malicious code.
Considerable research and industry effort has gone into developing TEE runtime
libraries with the purpose of transparently shielding enclave application code
from an adversarial environment. However, our analysis reveals that shielding
requirements are generally not well-understood in today’s TEE runtimes. We
expose a large and reoccurring vulnerability landscape, categorized into 10
distinct shielding responsibility classes across the Application Binary Interface
(ABI) and the Application Programming Interface (API). Our analysis reveals
over 35 interface sanitization vulnerabilities across 8 major open-source shielding
frameworks for Intel SGX, RISC-V, and Sancus TEEs. We practically exploit
these vulnerabilities in several proof-of-concept attack scenarios, and we show
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that they can lead to memory-safety misbehavior and side-channel leakage in
the compiled enclave.

This main idea for this research dates back several years. Some of the initial
findings even originate from my master thesis [248], which uncovered several
subtle ABI sanitization vulnerabilities in the low-level enclave entry code for
Sancus. When working on the stealthy page-table attacks (cf. Chapter 3) in
2016, we found that some of these vulnerabilities also apply to Graphene-SGX,
and we reported a related issue that got patched. Having an intuition there
might be more of these issues, we deferred a thorough code review to later. In
2018, we reported a severe API sanitization side-channel vulnerability in the
official Intel SGX Software Development Kit (SDK), tracked via CVE-2018-3626.
Informed by these initial results, a research project was initiated in collaboration
with the University of Birmingham to explore interface attack surface across
major open-source TEE runtimes from both industry and academia, leading to
the more systematic understanding of enclave shielding responsibilities described
in this chapter. In the wider research landscape, our work on scrutinizing the
enclave interface also helped paving the way for later attacks, like LVI (cf.
Chapter 7) and Plundervolt [188], which similarly take advantage of pointer
passing in the shared address space.

Following responsible disclosure, the vulnerabilities described in this chapter led
to security patches in all of the open-source projects we studied, including the
Intel SGX SDK, Microsoft Open Enclave, Google Asylo, and the Rust compiler.
In the case of Intel and Microsoft, this can be tracked via 5 designated CVE
records. After the embargo on our paper publication had been lifted, when
reviewing patches rolled out in response to our earlier disclosure of insufficient
status flag sanitization in the Open Enclave SDK, we furthermore noticed that
Microsoft engineers additionally sanitized the x87 FPU control word and SSE
mxcsr control registers. This prompted us to more systematically study the
previously overlooked ABI-level attack surface from floating-point registers.
This follow-up research led to another vulnerability in the Intel SGX SDK,
tracked via CVE-2020-0561, allowing to influence the rounding and precision
of enclaved floating-point operations. Our analysis furthermore uncovered a
limited remaining attack surface in Open Enclave, tracked via CVE-2020-15107,
allowing to silently corrupt x87 computations.

All of the proof-of-concept attacks described in this chapter have been released
as open-source, which we hope will provide the community with a relevant
sample of vulnerable enclave programs to evaluate future enclave hardening
schemes and static analysis tools. We further disseminated our findings at the
2020 Free and Open-source Software Developers’ European Meeting (FOSDEM)
and the 2nd SGX Community Workshop.
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2.1 Introduction

Minimization of the Trusted Computing Base (TCB) has always been one of the
key principles underlying the field of computer security. With an ongoing stream
of vulnerabilities in mainstream operating system and privileged hypervisor
software layers, Trusted Execution Environments (TEEs) [166] have been
developed as a promising new security paradigm to establish strong hardware-
backed security guarantees. TEEs such as Intel SGX [47], ARM TrustZone [205],
RISC-V Keystone [153], or Sancus [189] realize isolation and attestation of
secure application compartments, called enclaves. Essentially, TEEs enforce a
dual-world view, where even compromised or malicious system software in the
normal world cannot gain access to the memory space of enclaves running in an
isolated secure world on the same processor. This property allows for drastic
TCB reduction: only the code running in the secure world needs to be trusted
for enclaved computation results. Nevertheless, TEEs merely offer a relatively
coarse-grained memory isolation primitive at the hardware level, leaving it up
to the enclave developer to maintain useful security properties at the software
level. This can become particularly complex when dealing with interactions
between the untrusted host OS and the secure enclave, e.g., sending or receiving
data to or from the enclave. For this reason, recent research and industry efforts
have developed several TEE runtime libraries that transparently shield enclave
applications by maintaining a secure interface between the normal and secure
worlds. Prominent examples of such runtimes include Intel’s SGX SDK [116],
Microsoft’s Open Enclave SDK [177], Graphene-SGX [246], SGX-LKL [207],
Google’s Asylo [77], and Fortanix’s Rust-EDP [68].

There are some differences in the way each trusted runtime handles input and
output to and from the enclave. At the system level, all TEEs offer some form of
ecall/ocall mechanism to switch from the normal to the secure word (and vice
versa). Building on this hardware-level isolation primitive, TEE runtimes aim to
ease enclave development by offering a higher level of abstraction to the enclave
programmer. Particularly, commonly used production-quality SDKs [116, 177]
offer a secure function call abstraction, where untrusted code is allowed to only
call explicitly annotated ecall entry points within the enclave. Furthermore,
at this level of abstraction the enclave application code can call back to the
untrusted world by means of specially crafted ocall functions. It is the TEE
runtime’s responsibility to safeguard the secure function call abstraction by
sanitizing low-level ABI state and marshalling input and output buffers when
switching to and from enclave mode. However, the SDK-based approach still
leaves it up to the developer to manually partition secure application logic and
design the enclave interface. As an alternative to such specifically written enclave
code, one line of research [20, 246, 17, 231] has developed dedicated enclave
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library OSs that seamlessly enforce the ecall/ocall abstraction at the system
call level. Ultimately, this approach holds the promise to securely running
unmodified executables inside an enclave and fully transparently applying TEE
security guarantees.

Over the last years, security analysis of enclaved execution has received
considerable attention from a microarchitectural side-channel [256, 156, 161,
257, 180] and more recently also transient-execution perspective [249, 39, 148].
However, in the era where our community is focusing on patching enclave
software against very advanced Spectre-type attacks, comparably little effort
has gone into exploring how resilient commonly used trusted runtimes are against
plain architectural memory-safety style attacks. Previous research [154, 24] has
mainly focused on developing techniques to efficiently exploit traditional memory
safety vulnerabilities in an enclave setting, but has not addressed the question
how prevalent such vulnerabilities are across TEE runtimes. More importantly,
it remains largely unexplored whether there are new types of vulnerabilities or
attack surfaces that are specific to the unique enclave protection model (e.g.,
ABI-level misbehavior, or API-level pointer poisoning in the shared address
space). Clearly, the enclave interface represents an important attack surface
that so far has not received the necessary attention and thus is the focus of this
chapter.

Our contribution. In this chapter, we study the question of how a TEE
trusted runtime can securely “bootstrap” from an initial attacker-controlled
machine state to a point where execution can be safely handed over to the actual
application written by the enclave developer. We start from the observation that
TEE runtimes hold the critical responsibility of shielding an enclave application
at all times to preserve its intended program semantics in a hostile environment.
As part of our analysis, we conclude that the complex shielding requirement
for an enclave runtime can be broken down into at least two distinct tiers of
responsibilities.

In a first ABI-level tier, we consider that upon enclave entry, the adversary
usually controls a significant portion of the low-level machine state (e.g., CPU
registers). This requires sanitization, typically implemented through a carefully
crafted enclave entry assembly routine to establish a trustworthy ABI state
as expected by the compiled application code. Examples of trusted runtime
responsibilities at this level include switching to a private call stack, clearing
status register flags that may adversely affect program execution, or scrubbing
residual machine state before enclave exit.

Secondly, we consider that the enclaved binary itself makes certain API-level
assumptions. Here we pay particular attention to pointers and size arguments,
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because in many TEE designs [47, 189, 153], at least part of the enclave’s
address space is shared with untrusted adversary-controlled code. Hence, the
enclaved binary may assume that untrusted pointer arguments are properly
sanitized to point outside of trusted memory, or that ocall return values have
been scrutinized. Our main contributions are:

• We categorize enclave interface shielding responsibilities into 10 distinct
classes, across the ABI and API tiers (cf. Table 2.1).

• We analyze 8 widely used enclave runtimes, revealing a recurring
vulnerability landscape, ranging from subtle side-channel leakage to more
grave types of memory safety infringements.

• We practically demonstrate according attacks in various application
scenarios by extracting full cryptographic keys, and triggering controlled
enclave memory corruptions.

• We show that state-of-the-art automated enclave interface sanitization
approaches such as edger8r, or even the use of safe languages like Rust,
fail to fully prevent our attacks, highlighting the need for more principled
mitigation strategies.

Responsible disclosure. All of the security vulnerabilities described in this
work have been responsibly disclosed through the proper channels for each
affected TEE runtime. In each case, the issues have been verified and
acknowledged by the developers. In the case of Intel, this can be tracked
via CVE-2018-3626 and CVE-2019-14565, and for Microsoft via CVE-2019-0876,
CVE-2019-1369, and CVE-2019-1370. The weakness found in Fortanix-EDP led
to a security patch in the Rust compiler. For other open-source projects, our
reports have been acknowledged in the respective commits or issues on GitHub.
We worked with the maintainers of said projects to ensure mitigation of the
problems reported in this chapter.

To ensure the reproducibility of our work, and to provide the community with
a relevant sample of vulnerable enclave programs for evaluating future attacks
and defenses, we published all of our attack code at https://github.com/
jovanbulck/0xbadc0de.

https://github.com/jovanbulck/0xbadc0de
https://github.com/jovanbulck/0xbadc0de
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2.2 Background and related work

This section reviews enclave operation and TEE design, introduces the trusted
runtime libraries we analyzed in this work, and finally summarizes related work
on TEE memory corruption attacks.

2.2.1 Enclave entry and exit

TEE design. The mechanisms to interface with enclaves vary depending on
the underlying TEE being used. Figure 2.1 shows how, from an architectural
point of view, we distinguish two types of TEE designs: those that rely on a
single-address-space model (e.g., Intel SGX [47] and Sancus [189]) vs. the ones
that follow a two-world view (e.g., ARM TrustZone [205] and Keystone [153]). In
the former case, enclaves are embedded in the address space of an unprivileged
host application. The processor orchestrates enclave entry/exit events, and
enforces that enclave memory can never be accessed from outside the enclave.
Since the trusted code inside the enclave is allowed to freely access unprotected
memory locations outside the enclave, bulk input/output data transfers are
supported by simply passing pointers in the shared address space.

In the case of a two-world design, on the other hand, the CPU is logically divided
into a “normal world” and a “secure world”. A privileged security monitor
software layer acts as a bridge between both worlds. The processor enforces
that normal world code cannot access secure world memory and resources,
and may only call a predefined entry point in the security monitor. Since the
security monitor has unrestricted access to memory of both worlds, an explicit
“world-shared memory” region can typically be setup to pass data from the
untrusted OS into the enclave (and vica versa).

Enclave entry/exit. Given that the runtimes we studied focus mainly on
Intel SGX (cf. Section 2.3.2), we now describe ecall/ocall and exception
handling following SGX terminology [47]. Note that other TEEs feature similar
mechanisms, the key difference for a two-world design being that some of the
enclave entry/exit functionality may be implemented in the privileged security
monitor software layer instead of in the processor.

In order to enter the enclave, the untrusted runtime executes the eenter
instruction, which switches the processor into enclave mode and transfers
execution to a predefined entry point in the enclave’s Trusted Runtime System
(TRTS). Any metadata information, including the requested ecall interface
function to be invoked, can be passed as untrusted parameters in CPU registers.
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Figure 2.1: Enclave interactions in a single-address-space TEE design (left) vs.
two-world design (right). The software components we study are bold, and the TCB
is green (solid lines).

TRTS first sanitizes CPU state and untrusted parameters before passing control
to the ecall function to be executed. Subsequently, TRTS issues an eexit
instruction to perform a synchronous enclave exit back to the untrusted runtime,
again passing any parameters through CPU registers. The process for ocalls
takes place in reverse order. When the enclave application calls into TRTS to
perform an ocall, the trusted CPU context is first stored before switching to
the untrusted world, and restored on subsequent enclave re-entry.

When encountering interrupts or exceptions during enclaved execution, the
processor executes an Asynchronous Enclave Exit (AEX) procedure. AEX first
saves CPU state to a secure State Save Area (SSA) memory location inside
the enclave, before scrubbing registers and handing control to the untrusted
OS. The enclave can subsequently be resumed through the eresume instruction.
Alternatively, the untrusted runtime may optionally first call a special ecall
which allows the enclave’s TRTS to internally handle the exception by inspecting
and/or modifying the saved SSA state.

2.2.2 TEE shielding runtimes

Intel SGX SDK. With the release of the open-source SGX SDK, Intel [116]
supports a secure function call abstraction to enable production enclave
development in C/C++. Apart from pre-built trusted runtime libraries, a
key component of the SDK is the edger8r tool, which parses a developer-
provided Enclave Description Language (EDL) file in order to automatically
generate trusted and untrusted proxy functions to be executed when crossing
enclave boundaries.



36 ASSESSING THE VULNERABILITY OF ENCLAVE SHIELDING RUNTIMES

Microsoft Open Enclave SDK. Microsoft developed the Open Enclave
(OE) SDK with the purpose of facilitating TEE-agnostic production enclave
development [177]. Currently, OE only supports Intel SGX applications, but
in the future TrustZone-based TEEs will also be supported through OP-TEE
bindings [177]. The OE runtime includes a custom fork of Intel’s edger8r tool.

Google Asylo. Google aims to provide a higher-level, platform-agnostic C++
API to develop production enclaves in a Remote Procedure Call (RPC)-like
fashion [77]. While the Asylo specification aims to generalize over multiple
TEEs, presently only a single SGX back-end is supported, which internally uses
Intel’s SGX SDK. From a practical perspective, the Asylo runtime can thus be
regarded as an additional abstraction layer on top of the Intel SGX SDK.

Fortanix Rust-EDP. As an alternative to Intel’s and Microsoft’s SDKs written
in C/C++, Fortanix released a production-quality SGX toolchain to develop
enclaves in the safe Rust language [68]. The combination of SGX’s isolation
guarantees with Rust’s type system aims to rule out memory safety attacks
against the trusted enclave code. Similar to libOS-based approaches, Rust-EDP
hides the enclave interface completely from the programmer and transparently
redirects all outside world interactions in the standard library through a compact
and scrutinized ocall interface.

Graphene-SGX. This open-source library OS approach allows to run unmod-
ified Linux binaries inside SGX enclaves [246]. The trusted Graphene-SGX
runtime transparently takes care of all enclave boundary interactions. For
this, the libOS offers a limited ecall interface to launch the application, and
translates all system calls made by the shielded application binary into untrusted
ocalls. While Graphene was originally developed as a research project, it is
currently meeting increasing industry adaption and thrives to become a standard
solution in the Intel SGX landscape [80].

SGX-LKL. This open-source research project offers a trusted in-enclave library
OS that allows to run unmodified Linux binaries inside SGX enclaves [207].
Similarly to Graphene-SGX, SGX-LKL intercepts all system calls in the shielded
application binary, but the libOS layer is internally based on the Linux Kernel
Library (LKL).

Keystone. Keystone [153] is an open-source research framework for developing
customized TEEs in RISC-V processors. Keystone adopts a “secure world” view
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similar to ARM TrustZone [205] where a privileged security monitor software
layer separates enclaves in their own address spaces, potentially including
explicit shared memory regions. Keystone enclaves feature a trusted runtime
which intercepts system calls and transparently tunnels all untrusted world
interactions through the underlying security monitor.

Sancus. The Sancus research TEE [189] offers lightweight enclave isolation
and attestation on an embedded 16-bit TI MSP430 processor featuring a
plain single-address-space without virtual memory. A dedicated C compiler
automates enclave creation and includes a small trusted runtime library that is
transparently invoked on enclave entry/exit. Trusted software may additionally
provide code confidentiality [78] or authentic execution [192] guarantees.

2.2.3 Related work

OS system call interface. During the last decade, significant research efforts
have been made to discover and mitigate vulnerabilities in OS kernels, such
as missing pointer checks, uninitialized data leakage, or buffer and integer
overflows [41]. By exploiting a single vulnerability in a kernel, unprivileged
adversaries may read or write arbitrary memory and gain root access. While
these vulnerabilities continue to be relevant in modern kernels, they are generally
well understood by the OS security community. However, they have received
less attention in the context of TEEs.

Checkoway et al. [38] first demonstrated that an untrusted OS can perform so
called Iago attacks to compromise legacy applications by supplying maliciously
crafted pointers or lengths as the return value of a traditionally trusted system
call like malloc(). These attacks are closely related to a small subset of the
vulnerabilities described in this work, specifically attack vector #9, which
exploits that pointers or buffer sizes returned by untrusted ocalls may not be
properly sanitized (cf. Section 2.5.5). Our work generalizes Iago attacks from
the OS system call interface to ocalls in general, and more broadly shows that
Iago attacks are but one instance of adversarial OS interactions. We show, for
instance, that legacy applications may also make implicit assumptions on the
validity of argv and envp pointers, which are not the result of system calls.

Memory corruption attacks on ARM TrustZone. ARM TrustZone [205] was
one of the first widely deployed TEEs, particularly in mobile devices, and
hence received considerable attention from security researchers. The code
running in the secure world largely depends on the device manufacturer, with
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widely used runtimes including Trustonic Kinibi, Qualcomm’s QSEE, Google’s
Trusty, and the open-source project OP-TEE. Over the past years, several
vulnerabilities [205, 242] have been discovered in TrustZone runtimes caused by
e.g., missing or incorrect pointer range or length checks, or incorrect handling
of integer arithmetic. Often, these vulnerabilities rely on the existence of a
shared memory region for data exchange between the normal and secure worlds:
if an adversary passes a pointer into trusted memory where a pointer to shared
memory is expected, memory corruption or disclosure may occur when the
pointer is not properly validated by the trusted runtime.

Machiry et al. [165] presented a related class of Boomerang attacks, which
leverage the fact that TrustZone’s secure world OS has full access to untrusted
memory, including the regions used by the untrusted OS. Boomerang exploits
that trusted pointer sanitization logic may only validate that pointers lie outside
of secure memory, allowing unprivileged code executing in the normal world to
read or write memory locations belonging to other applications or the untrusted
OS. In a sense, Boomerang vulnerabilities are orthogonal to a subset of the
vulnerabilities described in this chapter: both target incorrect pointer checks
within trusted code, but while Boomerang attacks relate to checks of pointers
into untrusted memory, we focus on pointers into trusted memory.

Memory corruption attacks on Intel SGX. Lee et al. [154] were the first
to execute a completely blind memory corruption attack against SGX by
augmenting code reuse attack techniques [228] with several side-channel oracles.
To successfully mount this attack, adversaries require kernel privileges and a
static enclave memory layout. Recently, these techniques were improved by
Biondo et al. [24] to allow even non-privileged adversaries to hijack vulnerable
enclaves in the presence of fine-grained address space randomization [227].
Their approach is furthermore made application-agnostic by leveraging gadgets
found in the trusted runtime library of the official Intel SGX SDK. In a
perpendicular line of research, Schwarz et al. [219] criticized SGX’s design
choice of providing enclaves with unlimited access to untrusted memory outside
the enclave. They demonstrated that malware code executing inside an SGX
enclave can mount stealthy code reuse attacks to hijack control flow in the
untrusted host application.

Importantly, all previous SGX memory safety research focused on contributing
novel exploitation techniques while assuming the prior presence of a vulnerability
in the enclave code itself. Hence, those results are complementary to the
vulnerabilities described in this work. We have indeed demonstrated control
flow hijacking for some of the pointer sanitization issues below, and these may
further benefit from exploitation techniques developed in prior work.
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2.3 Methodology and adversary model

2.3.1 Attacker model

We consider systems with hardware support for a TEE and where a trusted
runtime supports the secure, shielded execution of an enclaved binary produced
by the application developer. With enclaved binary, we specifically mean that
the binary is the output of a standard compiler, which is not aware of the TEE.
It is the responsibility of the shielding runtime to preserve intended program
semantics in a hostile environment. We focus exclusively on vulnerabilities in
the TEE runtime and assume that there are no application-level memory safety
vulnerabilities in the enclaved binary.

We assume the standard TEE attacker model [166], where adversaries have
full control over all software executing outside the hardware-protected memory
region. This is a powerful attacker model, allowing the adversary to, for instance,
modify page-table entries [277, 258], or precisely execute the victim enclave one
instruction at a time [257]; yet, this is the attacker that TEEs are designed
to defend against. It is important to note that some of the attacks we discuss
can also be launched by significantly less privileged attackers, i.e., with just
user-level privileges to invoke the enclave.

2.3.2 Research methodology

Our objective is to pinpoint enclave shielding responsibilities, and to find
vulnerabilities where real-world TEE runtimes fail to safeguard implicit interface
assumptions made by the enclaved binary.

TEE runtime code review. We base our research on manual code review, and
hence limited our study to open-source TEE runtimes. After reviewing the
literature and code repositories, we selected 8 popular runtimes to be audited.
Our resulting selection allows to compare tendencies in (i) production vs.
research code bases; (ii) SDK vs. libOS-based shielding abstractions; (iii) unsafe
C/C++ vs. safe Rust programming languages; and (iv) underlying TEE design
dependencies. Note that we opted not to include baidu-rust-sgx, as it is
merely a layer on top of Intel SGX SDK (and hence inherits all vulnerabilities of
the latter). After reviewing prior research [242] and relevant code, we found that
sanitization in the TrustZone runtime OP-TEE has already been thoroughly
vetted and we hence decided not to systematically audit this runtime. For
each of the selected TEE runtime implementations, we then reviewed the
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Table 2.1: Enclave runtime vulnerability assessment (our contribution, highlighted)
and comparison to related work on user-to-kernel exploits. Symbols indicate whether
a vulnerability was successfully exploited (�); acknowledged but without proof-of-
concept ( ); or not found to apply (#). Half-filled symbols (�, G#) indicate that
improper sanitization only leads to side-channel leakage.
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#1 Entry status flags sanitization � � G#  G#  # # [55]
#2 Entry stack pointer restore # # �  # # # � #A

B
I

#3 Exit register leakage # # # � # # # # #

#4 Missing pointer range check # � � � #  # � [41]
#5 Null-terminated string handling � � # # # # # # [41]
#6 Integer overflow in range check # #  #  #   [41]
#7 Incorrect pointer range check # #  # #  #  #
#8 Double fetch untrusted pointer # #  # # # # # [276, 218]
#9 Ocall return value not checked # � � � #  � # –T

ie
r2

(A
P

I)

#10 Uninitialized padding leakage [155] � #  #  � � [45]

sanitizations and defensive checks implemented by the trusted runtime between
entering the TEE and transferring control to the enclaved binary, and the
symmetrical path when exiting the TEE. We found new vulnerabilities in all
studied runtimes. Table 2.1 summarizes our findings, structured according to
the respective vulnerability classes, and relating to similar vulnerabilities in
the Linux kernel and prior TEE research. Our systematization revealed 10
distinct attack vectors across 2 subsequent tiers of TEE shielding responsibilities,
explored in Sections 2.4 and 2.5, respectively.

In our code review, we focus our attention on the assumptions that an enclaved
binary makes about two key interfaces, and we consider both integrity and
confidentiality concerns. A first level of interface sanitization we inspect is the
ABI, which unambiguously specifies function calling conventions regarding the
low-level machine state expected by the compiler [65]. We manually locate the
trusted runtime entry point, and review how the compact assembly routine
establishes a trustworthy ABI state on entry, and similarly scrubs residual
CPU state on exit. The second key interface, that we refer to as the API,
is the functional interface of the enclaved binary. We review how the TEE
runtime validates different kinds of arguments passed in through an ecall or
as the return value of an ocall. We focus in particular on the handling of
pointers and strings, where it is the TEE runtime’s responsibility to ensure that
variable-sized buffers lie entirely outside the enclave before copying them inside
and transferring execution to the enclaved binary. For confidentiality, we check
again that all memory copied outside the TEE only contains explicit return
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values, and that no avoidable side-channel leakage is introduced.

TEE design considerations. The communication between enclave and
untrusted code for all TEE runtimes considered in this chapter relies on some
form of “world-shared memory”, i.e., a memory region that is accessible to
both trusted and untrusted code. Depending on the specific TEE design (cf.
Fig. 2.1), this can be realized by either embedding the enclave in the address
space of a surrounding host process, as in Intel SGX [47] or Sancus [189], or
by explicitly mapping a dedicated virtual memory region into both worlds
as in ARM TrustZone [205] and Keystone [153]. Prior research has mainly
explored interface sanitization vulnerabilities in ARM TrustZone TEEs (cf.
Section 2.2.3). Given the prevalence of SGX in contemporary Intel processors,
our study focuses largely on SGX-style single-address-space TEE designs as
used in 7 out of 8 considered runtimes. However, the example of Keystone, and
prior research on ARM TrustZone [242, 205], shows that the attack surface
studied here is not necessarily limited to TEEs using the single-address-space
approach taken by SGX. As part of our analysis, we found that certain TEE-
specific design considerations may sometimes significantly impact exploitability.
When applicable, such TEE design considerations are discussed throughout the
chapter.

2.4 Establishing a trusted ABI

Similarly to traditional user/kernel isolation, TEE-enabled processors typically
only take care of switching to a fixed entry point and thereafter leave it up
to trusted runtime software to securely bootstrap the enclaved execution. In
practice, this implies that adversaries may still control a large fraction of the
low-level machine state (e.g., CPU registers) on enclave entry. Hence, a trusted
assembly entry routine is responsible to establish an ABI-compliant machine
state when transferring control to the shielded application, and to save and
scrub low-level machine state on enclave exit.

2.4.1 Sanitizing machine state on entry

After reviewing well-documented ABI-level calling conventions [65] expected
by popular C compilers, we concluded that most CPU registers can be left
unmodified, apart from the stack pointer explored in the next section. However,
a more subtle concern relates to the expected state of certain status register
flags on function entry.
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Attack vector #1 (status flags): Entry code should sanitize register flags that
may adversely impact program execution. ▷ Prevalent in production and research
runtimes, but exclusively Intel SGX (x86 CISC).

TEE design. The underlying processor architecture used in the specific TEE
design may greatly impact the resulting ABI-level attack surface. That is, in
comparison to Intel’s notoriously complex x86 CISC architecture [47], simpler
RISC-based TEEs such as Sancus [189], Keystone [153], or ARM TrustZone [205]
tend to impose less obligations for trusted software to sanitize low-level machine
state. For instance, we found that the Sancus runtime should only take care to
clear the interrupt flag. Likewise, TrustZone even transparently takes care to
save/restore secure world stack pointer registers. Our analysis further reveals the
trade-offs for implementing register and status flag clearing in either hardware
or software. For instance, we show that the Intel SGX design leaves this
responsibility largely to software, exposing a larger attack surface.

We methodically examined all the software-visible flags in the x86 rflags
register [114] and discovered two potentially dangerous flags that may adversely
impact enclaved execution if not properly cleared. First, the Alignment
Check (AC) flag may be set before entering the enclave in order to be
deterministically notified of every unaligned memory access performed by the
trusted enclave software. This novel side-channel attack vector is closely related
to well known page fault [277] or segmentation fault [91] controlled channels, but
this time abuses x86 #AC alignment-check exceptions. Also, note that #PF side
channels ultimately reflect fundamental hardware-level TEE design decisions
that cannot be avoided in software, whereas we argue that #AC leakage originates
from the trusted runtime’s failure to clear the associated status register control
flag. A second and more dangerous ABI-level attack vector arises from the
Direction Flag (DF), which can be set to change the loop behavior of x86
string instructions (e.g., rep movs) from auto-increment to auto-decrement.
Commonly used x86 ABIs [65] allow for compiler optimizations by mandating
that DF shall always be cleared on function call/return. However, in case this
subtle ABI requirement is not explicitly enforced in the assembly entry routine,
SGX adversaries may change DF to an unexpected “decrement” direction before
the ecall and thereby hijack the intended direction of all subsequent x86 string
instructions executed by the enclave. This opens a severe vulnerability that can
be successfully exploited to trigger enclave memory corruption and erroneous
computation results.

Intel SGX SDK. We experimentally confirmed that the trusted runtime in
Intel’s official SGX SDK [116] does not clear AC or DF on enclave entry. The
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Figure 2.2: Misaligned, intra-cache line secret data access.

latter can be tracked via CVE-2019-14565 (Intel SA-00293), leading to enclave
TCB recovery.

While unaligned data accesses (e.g., fetching a 16-bit word at an odd byte
address) are explicitly supported in the x86 architecture, the processor may
optionally be forced to generate an exception for such accesses when software
sets the AC bit in the rflags register. We developed a minimal sample enclave
to showcase how #AC exceptions may in certain scenarios reveal secret-dependent
data accesses at an enhanced byte-level granularity as compared to state-of-the-
art SGX side-channel attacks that are restricted to a coarser-grained 64B cache
line [225] or 4KiB page-level [277, 258] granularity. Figure 2.2 illustrates the
key idea behind the attack, where a 16-bit word is loaded by specifying a byte-
granular index in a small lookup table that has been explicitly aligned to a cache
line boundary (e.g., as might also be performed in a streamed data or string
processing enclave application). In the example, secret index 0 returns the data
AB, whereas secret index 1 returns BC. Our exploit deterministically reconstructs
the intra-cache line secret-dependent data access by observing whether or not
the enclaved execution generates an #AC alignment-check exception. One of the
challenges we encountered is to make the enclave progress after returning from
the untrusted signal handler. Since the processor automatically restores the
previous value of the rflags register (including the set AC bit) from enclave-
private SSA memory when resuming the enclave [47], the unaligned data access
will never be allowed to complete. To overcome this challenge, we make use
of the adversary’s root privileges to load a simple kernel module that clears
the processor’s Alignment Mask (CR0.AM) to temporarily disable alignment
checking. Combined with a single-stepping attack primitive like SGX-Step [257],
this approach allows to determine noise-free alignment side-channel information
for every single instruction in the victim enclave.

It should be noted that the oversight of not clearing the AC flag in the trusted
runtime merely leaks address-related side-channel information, which falls
explicitly outside of SGX’s threat model [47]. However, this is distinctly not
the case for the DF flag, which directly intervenes with the semantics of the
enclaved execution. We confirmed, for instance, that the popular gcc v5.4
compiler replaces common strlen() and memset() invocations with inlined
x86 string instructions at optimization level -Os. We developed a start-to-end
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attack scenario to show how forcibly inverting the direction of such string
operations when entering the enclave through an ecall can lead to controlled
heap corruption and memory disclosure. Our PoC exploit targets edger8r
bridge code that is automatically generated to copy input and output buffers
to and from the enclave (cf. Section 2.5.1 and Fig. 2.3). Particularly, we
abuse that edger8r code allocates the output buffers on the enclave heap and
thereafter uses memset() to securely initialize the newly allocated buffer to
all-zero. However, setting DF before the ecall causes the memset() direction to
be inverted and any preceding heap memory to be corrupted (i.e., zeroed). Due
to the way the SGX SDK enclave heap is organized, this will ultimately lead to a
crash on the next free() invocation in the edger8r code. Every heap frame is
preceded by a size field and a pointer to a metadata bookkeeping structure. Such
pointers are stored in xor-ed form with a randomly generated secret constant to
harden the code against traditional heap corruption attacks. We confirmed that
after erroneously zeroing the preceding heap frames, the resulting pointer will
most likely end up as a non-canonical 64-bit address and halt the enclave by
means of a general protection fault. However, before finally calling free() and
detecting the heap corruption, the trusted edger8r-generated code still copies
the allocated output buffer outside the enclave, potentially leading to secret
disclosure (as this buffer has never been properly zeroed). We note that the
heap corruption in itself may also be leveraged in application-specific scenarios,
e.g., zeroing out a cryptographic key residing in the preceding heap frame.

Microsoft Open Enclave SDK. We experimentally confirmed that OE suffers
from the same DF vulnerability described above (tracked via CVE-2019-1370).
However, we found that after entering the enclave with the DF flag set, the
trusted runtime already crashes early-on in the entry path. The reason for
this is that on our machines (gcc v5.4 using the default Makefile), one of
the compiled entry functions uses a rep string instruction to initialize a local
variable on the call stack. Hence, setting DF leads to memory corruption by
overwriting a piece of the trusted call stack with zeroes. We have not attempted
to further exploit this behavior.

Other SGX runtimes. When reviewing the assembly entry routines of the
other SGX-based shielding systems (cf. Table 2.1), we found that none of them
sanitizes AC, whereas interestingly both Rust-EDP and Graphene-SGX clear
DF on enclave entry. Note that Google’s Asylo framework is built on top of the
Intel SGX SDK and hence inherits all of the vulnerabilities described above.
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2.4.2 Maintaining the call stack abstraction

In order to safeguard enclave confidentiality and integrity, it is essential that
enclaves feature their own private call stack. When exiting the TEE by means
of an ocall, the trusted stack pointer should be stored and control flow should
continue at a location outside the enclave. After having performed an ocall,
upon receiving the next ecall, the private call stack should be restored so the
runtime can “return” into the shielded application.

Attack vector #2 (call stack): Entry code should safeguard the call stack
abstraction for ecalls and ocalls. ▷ Not applicable to TrustZone, well-understood
in production SGX SDKs, but not always in research code.

TEE design. We observed that TEE-specific design decisions may largely
impact the attack surface arising from call stack switching. That is, in
ARM TrustZone [205] the stack pointer CPU register is duplicated and fully
transparently stored/restored on secure world context switches. More versatile
TEE designs like Intel SGX [47] or Sancus [189], on the other hand, support
multiple mutually distrusting enclaves and leave it up to trusted runtime software
to store and restore the stack pointer across enclave boundaries. Another
illustration of the trade-offs between hardware and software responsibilities
arises in SGX’s eexit instruction, which was designed to explicitly fault when
supplying in-enclave continuation addresses [47]. Alternative TEE designs like
Sancus [189], on the other hand, expect such continuation pointer checks to be
performed by the trusted software, leaving a larger attack surface.

Graphene-SGX. After scrutinizing Graphene’s low-level bootstrapping code,
we discovered that enclave_entry.S does not properly safeguard the ocall
return abstraction. Listing 2.1 shows how the code unconditionally jumps to
the stack pointer restore logic after merely receiving an unchecked magic value
in the %rdi register. We experimentally confirmed that this can be abused
to illegally “return” into an enclave thread that is not waiting for a previous
ocall return. An adversary can exploit this weakness to erroneously initialize
the trusted in-enclave stack pointer of a newly started thread with the value of
the last ocall. The memory content at these locations determine the values
popped into registers, and ultimately ret control flow.

SGX-LKL. We found a highly similar vulnerability in the way SGX-LKL’s
low-level entry code distinguishes different ecall types. Specifically, we noticed
that the unchecked parameter in %rdi can be poisoned to trick the entry routine
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1 cmp $RETURN_FROM_OCALL, %rdi ; %RDI = attacker arg
2 je .Lreturn_from_ocall
3 ...
4 .Lreturn_from_ocall
5 ⭑ mov %gs:SGX_LAST_STACK, %rsp
6 ...
7 ret

Listing 2.1: Low-level ocall return path in Graphene-SGX.

into erroneously calling a signal handler for a thread that was never interrupted.
This is especially problematic as the signal handler code will then illegally
restore the stack pointer register from an uninitialized memory location.

Sancus. We reviewed the assembly code inserted at the entry point of a Sancus
enclave, and noticed that the Sancus TEE suffers from similar call stack switching
vulnerabilities. Particularly, we experimentally confirmed that it is possible to
supply illegal CPU register arguments and trick the enclave into “returning”
into a thread that was not waiting for a previous ocall return. In such a case,
the enclave stack will be falsely restored to the value of the last valid ocall,
leading to memory-safety violations from incorrect control flow and register
values. Sancus’s enclave entry assembly routine further expects a CPU register
parameter to specify the address where execution is continued after leaving
the enclave. The software does not properly validate this parameter. Unlike
SGX’s eexit hardware primitive, which refuses to jump to illegal continuation
addresses, Sancus enclaves are exited by means of an ordinary jmp instruction.
We experimentally confirmed the possibility of code reuse attacks [228] by forcing
the vulnerable entry routine to jump to an arbitrary in-enclave continuation
address.

2.4.3 Storing and scrubbing machine state on exit

Prior to exiting the TEE, the trusted runtime’s assembly routine should save
and clear all CPU registers that are not part of the calling convention, and
restore them on subsequent enclave re-entry. This is highly similar to how a
traditional operating system needs to context switch between processes, and
hence we found this to be a generally well-understood requirement.

Attack vector #3 (register state): Exit code should save and scrub CPU
registers. ▷ Generally well-understood across runtimes and architectures.
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TEE design. Similar to parameter passing across traditional user/kernel
boundaries, widespread TEE designs commonly preserve CPU register contents
when context switching between the normal and secure worlds. Prior
research [154, 24] on exploiting memory safety vulnerabilities in SGX enclaves
has, for instance, exploited that the eexit instruction does not clear register
values, leaving this as an explicit software responsibility. Further, while
scrubbing CPU registers on enclave interrupt is a hardware responsibility
in the Intel SGX design [47], we found that the AEX operation in current SGX
processors does not clear the x86 DF flag (cf. Section 2.4.1). We experimentally
confirmed that this can be exploited as a side channel to learn the direction of
private in-enclave string operations.

SGX-LKL. When reviewing the respective assembly routines, we noticed that
SGX-LKL is the only SGX runtime which does not properly scrub registers before
invoking eexit. The reason for this oversight is that LKL attempts to leverage
the setjmp/longjmp standard C library functions to easily store and restore
the execution state on enclave entry/exit without needing dedicated assembly
code. While indeed functionally correct, i.e., the integrity of CPU registers is
preserved across enclave calls, the approach cannot guarantee confidentiality.
This is because setjmp() still behaves as a normal C function, which—adhering
to calling conventions—does not clear all CPU state. We therefore advise to
use a dedicated assembly routine which overwrites confidential CPU registers
before invoking eexit. This issue highlights the necessity to explicate and
properly separate ABI and API-level shielding concerns in consecutive stages
of the trusted runtime (cf. Section 2.3). We experimentally confirmed this
vulnerability by loading an elementary AES-NI application binary inside SGX-
LKL, and modifying the untrusted runtime to dump x86 xmm registers—including
the AES state and round keys—after enclave exit.

2.5 Sanitizing the enclave API

Once a trustworthy ABI state has been established, the trusted bootstrapping
assembly code can safely transfer control to machine code emitted by a compiler
from a program description written in a higher-level language. Remarkably,
almost all runtimes [116, 177, 246, 207, 77, 153, 189] we studied are written
in C or C++, with the notable exception of Fortanix’s EDP platform [68],
which is written in the memory-safe Rust language. While the use of safe
languages is indeed preferable to rule out an important class of application-level
memory-safety vulnerabilities in the trusted runtime implementation, we show
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that safe languages by themselves cannot guarantee that the enclave interface
is safe.

That is, it remains the responsibility of the trusted runtime implementation to
marshal and scrutinize untrusted input parameters before passing them on to
the shielded application written by the enclave developer. Depending on the
specific runtime, developers may communicate trusted API sanitization and
marshalling requirements explicitly (e.g., using a domain-specific language like
in Intel’s edger8r or Microsoft’s oeedger8r), or the enclave interface may be
completely hidden from the programmer (e.g., libOS-based approaches).

In this section, we analyze shielding requirements for API sanitization based on
the different types of arguments that can be passed across the enclave boundary.
We pay particular attention to pointers and (variable-sized) input buffers, given
the prevalent weaknesses found in real-world code.

2.5.1 Validating pointer arguments

Whenever an enclave shares at least part of its address space with untrusted
code, an important new attack surface arises: malicious (untrusted) code can
pass in a pointer to enclave memory where a pointer to untrusted memory is
expected. Therefore, it is the responsibility of the shielding system to be careful
in never dereferencing untrusted input pointers that fall outside of the shared
memory region and point into the enclave. In case such sanity checks are missing,
the trusted enclave software may unintentionally disclose and/or corrupt enclave
memory locations. This is an instance of the well-known “confused deputy” [93]
security problem: the attacker is architecturally prohibited from accessing secure
enclave memory, but tricks a more privileged enclaved program to inadvertently
dereference a secure memory location chosen by the attacker.

Attack vector #4 (pointers): Runtimes should sanitize input pointers to lie
inside the expected shared memory region. ▷ Generally understood, but critical
oversights prevalent across research and production code.

TEE design. TEEs commonly support some form of shared memory which
allows trusted in-enclave code to directly read or write an untrusted memory
region outside the enclave (cf. Section 2.3.2). Input and output data transfers
can now easily be achieved by bulk-copying into the shared memory region and
passing pointers.

Pointer sanitization is a relatively well-known requirement for enclave
applications, and even bears some similarity with traditional user-to-kernel



SANITIZING THE ENCLAVE API 49

Enclave

EENTER Trusted runtime

Edger8r bridge

Application 

Input buffer
(shared memory)

Cloned buffer
(trusted memory) EDL

C

1

2

4
3

Figure 2.3: Automatically generated edger8r bridge code handles shielding of
application input and output buffers.

system call validation concerns [41]. However, the kernel system call interface
remains largely invisible, fairly stable, and is only modified by a select group of
expert developers. SDK-based enclave development frameworks on the other
hand expose ecalls and ocalls much more directly to the application developer
by means of a secure function call abstraction.

Intel SGX SDK. In line with trusted runtime shielding requirements, pointer
sanitization should preferably not be left to the application developer’s end
responsibility. As part of the official SGX SDK, Intel [116] therefore developed
a convenient tool called edger8r, which transparently generates trusted proxy
bridge code to take care of validating pointer arguments and copying input and
output buffers to/from the enclave. The tool automatically generates C code
based on ecall/ocall function prototypes and explicit programmer annotations
that specify pointer directions and sizes in a custom, domain-specific Enclave
Definition Language (EDL).

Figure 2.3 gives an overview of the high-level operation of the trusted edger8r
bridge code. After entering the enclave, the trusted runtime establishes a trusted
ABI (cf. Section 2.4), locates the ecall function to be called, and finally 1
hands over control to the corresponding edger8r-generated bridge code. At
this point, all input buffer pointers are validated to fall completely outside the
enclave, before being copied 2 from untrusted shared memory to a sufficiently-
sized shadow buffer allocated on the enclave heap. Finally, the edger8r bridge
transfers control 3 to the code written by the application developer, which can
now safely operate 4 on the cloned buffer in enclave memory. A symmetrical
path is followed when returning or performing ocalls to the untrusted code
outside the enclave.
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1 OE_ECALL void ecall_hello(hello_args_t* p_host_args) {
2 oe_result_t __result = OE_FAILURE;
3 if (!p_host_args || !oe_is_outside_enclave(p_host_args,
4 sizeof(*p_host_args)))
5 goto done;
6 ...
7 done:
8 ⭑ if (p_host_args) p_host_args->_result = __result;
9 }

Listing 2.2: Proxy function generated by oeedger8r (simplified) with illegal write
to arbitrary in-enclave pointer on failure.

Microsoft Open Enclave SDK. Microsoft [177] adopted the sanitization
strategy from the Intel SGX SDK by means of their own oeedger8r fork.
Interestingly, OE uses a “deep copy” marshalling scheme to generalize to TEEs
where the enclave cannot directly access host memory and every interaction
needs to be mediated in a security kernel with access to an explicit shared
memory region (cf. Fig. 2.1). With deep copy marshalling, instead of passing
the enclave pointers to the input buffer, the contents of the buffer are first
copied into the marshalling structure and then cloned into enclave memory.
The pointers in the argument structure are then modified such that they point
to the corresponding (cloned) memory buffer.

Nevertheless, we discovered several flaws in the way OE handles pointer
validation (tracked via CVE-2019-0876). A first subtle issue was found by
reviewing the oeedger8r-generated code skeleton itself. Listing 2.2 shows
a simplified snippet of the trusted bridge code generated for an elementary
hello() entry point. The code attempts to properly verify that the untrusted
p_host_args structure lies outside the enclave, and indeed rejects the ecall
when detecting a pointer poisoning attempt. However, in the done branch at
line 8, an error code is still written into the p_host_args structure, even if it
was found earlier to illegally point inside the enclave. At the time of our review,
this could only be exploited when calling the enclave through a legacy ecall
dispatcher that had unfortunately not been removed from OE’s trusted code
base (cf. Appendix B.1).

Secondly, we found that enclaves built with OE feature a small number of “built-
in” ecall entry points for infrastructural functionality directly serviced in the
trusted runtime without forwarding to the shielded application. Notably, OE
developers decided not to route these entry points through oeedger8r-generated
bridges, but instead opted to manually scrutinize arguments for these special
ecalls. We audited all eight built-in entry points, and confirmed that most of
them were carefully written to prevent pointer sanitization issues, as well as more
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subtle attack vectors like TOCTOU and speculative execution side channels.
However, we found a critical issue in the built-in _handle_get_sgx_report()
ecall involved in crucial attestation functionality (see Appendix B.2 for full
code). This function copies the untrusted report input buffer into enclave
memory, but never validates whether the argument pointer passed by the
untrusted runtime actually lies outside the enclave. This evidently leads to
corruption of trusted memory, e.g., when writing the return value in the fall-
through branch similar to the oeedger8r-generated code discussed above.

Both of the above vulnerabilities allow to write a fixed failure code (0x03000000
and 0x01000000) to an arbitrary in-enclave memory location. We developed a
PoC based on an existing file-encryptor OE example application, and successfully
exploited the above vulnerabilities to forcefully overwrite the first round keys of
the AES cipher. This could be extended by overwriting all but the final round
keys with known values to perform full key extraction.

Google Asylo. Because Google’s Asylo [77] framework is built on top the
existing Intel SGX SDK, it also inherits Intel’s edger8r-based input sanitization
scheme. Particularly, the Asylo trusted runtime features a small number of
predefined ecall entry points, specified in EDL, that implement the necessary
functionality to present a higher-level, RPC-like message passing abstraction
to the application programmer. Considering that Asylo’s runtime extends
the trusted computing base on top of Intel’s existing SGX SDK, we were
interested to assess whether the extra abstraction level may also bring additional
attack surface. This may, for instance, be the case when making use of the
unsafe [user_check] EDL attribute [116] that explicitly weakens edger8r
guarantees and puts the burden of pointer validation on the programmer (e.g.,
to allow for application-specific optimizations in performance-critical scenarios).
Manually scrutinizing the EDL specifications of Asylo’s trusted runtime, we
found 14 instances of the problematic [user_check] attribute. We reviewed
these instances and alarmingly found that several of them lacked proper pointer
validation, leaving critical vulnerabilities in the compiled enclave (e.g., a write-
zero primitive). Notably, the developers took care to validate second-level input
buffers in the untrusted argument structure, but failed to validate the argument
pointer itself (cf. Appendix B.3 for a relevant sample).

Graphene-SGX. While Graphene-SGX’s [246] untrusted world interaction
and pointer validation concerns are largely limited to ocalls (cf. Sections 2.5.3
and 2.5.5), our inspection of the narrow ecall interface revealed a rather subtle
type of implicit pointer passing that was overlooked. Namely, Graphene’s
trusted runtime never validates the argv and envp pointers, which are passed
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from the untrusted runtime all the way into the main function of the shielded
application binary. As a result, adversaries can, for instance, leak arbitrary
in-enclave memory when the trusted application outputs argv values (e.g., in
case of an unknown command line argument). We experimentally confirmed
this attack by means of an elementary echo program, which unknowingly prints
in-enclave secrets after overriding argv[1] in the untrusted runtime. With
respect to mitigations, note that properly sanitizing string arguments can be
non-trivial in itself, as explored in Section 2.5.2.

We also found that the special enclave_ecall_thread_start() trusted
runtime function unconditionally redirects control flow, without performing
any validation on the provided untrusted function pointer. We successfully
exploited this to jump to arbitrary in-enclave locations, hence allowing code
reuse attacks [228].

SGX-LKL. Our analysis of the open-source SGX-LKL ecall interface revealed
the exact same vulnerability. That is, the trusted __sgx_init_enclave()
libOS function passes the untrusted argv pointer directly to the shielded
application without any prior sanitization. We experimentally confirmed that
this vulnerability can be abused for information leakage, similar to the above
exploit.

Further, the in-enclave signal handler ecall entry point does not check that
the siginfo struct pointer provided by the untrusted runtime lies outside the
enclave. This vulnerability can be abused in certain scenarios to leak in-enclave
memory contents. For instance, we describe a full exploit for the SIGILL signal
in Appendix B.4.

Sancus. To demonstrate that untrusted pointer dereference vulnerabilities are
not limited to advanced virtual memory-based architectures, we also reviewed
the trusted runtime and infrastructural enclaves of the low-end open-source
Sancus [189] TEE for embedded TI MSP430 devices. As with the above runtimes,
we focused our security audit on the enclave boundary code only.

A first critical vulnerability was found in a recent extension [192] to the Sancus
compiler infrastructure, which implements a high-level authenticated message
passing abstraction to develop distributed event-driven enclave programs. Much
like Intel’s edger8r, the Sancus compiler fully automatically generates ecall
bridge code to transparently marshal, decrypt, and authenticate input buffers,
which can be subsequently processed by the shielded application. We found
that the compiler-generated bridge code does not sanitize untrusted pointer
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arguments (cf. Appendix B.5). This may be exploited to forcefully decrypt
enclave secrets.

A second input pointer validation vulnerability was found in an infrastructural
trusted loader enclave [78] that decrypts third-party application enclaves to
preserve code confidentiality. We noticed that the trusted loader enclave code
lacks any input pointer validation checks, allowing us to build an arbitrary write
primitive in enclave memory. We successfully exploited this vulnerability in a
PoC that launches a ROP-style [228] control flow hijacking attack by corrupting
the loader enclave call stack.

2.5.2 Validating string arguments

In case the enclave interface is written in a low-level language like C, string
arguments do not carry an explicit length and may not even have been properly
null-terminated. Thus, shielding runtimes need to first determine the expected
length and always include a null terminator when copying the string inside the
enclave.

Attack vector #5 (strings): Runtimes should avoid computing untrusted string
sizes, and always include a null byte at the expected end. ▷ At least one related
instance repeated across two production SDKs.

TEE design. We show below how computing on unchecked string pointers
may leak enclave secrets through side channels, even if the ecall is
eventually rejected. While side channels are generally a known issue across
TEE technologies [47, 205, 256, 153] and may even be observed by non-
privileged adversaries, for example by measuring overall execution time [180]
or attacker-induced cache evictions [225, 161], we show that TEE-specific
design decisions can still largely affect the overall exploitability of subtle side-
channel vulnerabilities. Particularly, we develop a highly practical attack that
abuses several privileged adversary capabilities that have previously proven to
be notorious in the Intel SGX design, e.g., untrusted page tables [277, 258],
interrupts [156, 257, 256], and storing interrupted CPU register contents in SSA
memory frames [249, 39].

Intel SGX SDK. We discovered that edger8r-generated code may be tricked
into operating on unchecked in-enclave pointers when computing the size of a
variable-length input buffer. While such illegal ecall attempts will always be
properly rejected, we found that adversaries can exploit the unintended size
computation as a deterministic oracle that reveals side-channel information
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1 static sgx_status_t SGX_CDECL sgx_my_ecall(void* pms)
2 {
3 CHECK_REF_POINTER(pms, sizeof(ms_my_ecall_t));
4 ms_my_ecall_t* ms = SGX_CAST(ms_my_ecall_t*, pms);
5 char* _tmp_s = ms->ms_s;
6

7 ⭑ size_t _len_s = _tmp_s ? strlen(_tmp_s) + 1 : 0;
8 char* _in_s = NULL;
9

10 CHECK_UNIQUE_POINTER(_tmp_s, _len_s);
11 __builtin_ia32_lfence(); // fence after pointer checks
12 ...

Listing 2.3: Proxy function generated by edger8r for the EDL specification: public
void my_ecall([in,string] char *s).

about arbitrary in-enclave memory locations. This vulnerability is tracked
via CVE-2018-3626 (Intel SA-00117), leading to enclave TCB recovery and
changes in the EDL specification [118]. Prior to our disclosure, EDL allowed
programmers to specify a custom [sizefunc] attribute that takes as an
argument an unchecked pointer to an application-specific structure, and returns
its size. Likewise, there is a dedicated [string] EDL attribute to specify
null-terminated string arguments. Essentially, this special case comes down to
[sizefunc=strlen].

Consider the code skeleton generated by edger8r in Listing 2.3 for an ecall that
expects a single string pointer argument. In order to verify that the complete
string is outside the enclave, the trusted edge routine first computes the size
of the argument buffer (through either strlen() or a dedicated sizefunc in
general), and only thereafter checks whether the entire buffer falls outside of the
enclave. It is intended that the edge code first determines the length in untrusted
memory, but we made the crucial observation that the strlen() invocation
at line 7 operates on an arbitrary unchecked pointer, potentially pointing into
enclave memory. Any pointer poisoning attempts will subsequently be rejected
at line 10, but the unintended computation may have already leaked information
through various side channels [156, 257]. In general, leakage occurs whenever
there is secret-dependent control or data flow in the specified sizefunc. This
is most obviously the case for the common [string] EDL attribute, since
the amount of loop operations performed by strlen() reveals the number of
non-zero bytes following the specified in-enclave pointer.

Our attack builds on top of the open-source SGX-Step [257] enclave interrupt
framework to turn the subtle strlen() side-channel leakage into a fully
deterministic oracle that reveals the exact position of all 0x00 bytes in enclave
private memory (thereby, for instance, fully breaking the confidentiality of
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Figure 2.4: Overview of the key extraction attack exploiting strlen() side-channel
leakage in Intel SGX SDK.

booleans or providing valuable information for cryptanalysis). Particularly,
we use SGX-Step to reliably step the strlen() execution, one instruction at
a time, leveraging the “accessed” bit in the page-table entry of the targeted
in-enclave memory location as a noise-free oracle that is deterministically set by
the processor for every strlen() loop iteration [258]. We confirmed that our
single-stepping oracle continues to work reliably even when the victim enclave
was compiled to a single, extremely compact rep movsb instruction (x86 string
operations can indeed be interrupted in between every loop iteration [114]).

We developed a practical end-to-end AES-NI key extraction PoC in an
application enclave built with a vulnerable version of edger8r. Our victim
enclave provides a single, multi-threaded ecall entry point that encrypts the
first 16 bytes of a given string using side-channel resistant AES-NI instructions
with a secret in-enclave key. Since AES-NI operates exclusively on CPU registers
(e.g., xmm0) and due to the limited nature of the strlen() side channel, we
cannot perform key extraction by directly targeting the AES state or key in
memory. Instead, our attack uses repeated encryption ecalls, assuming varying
(but not necessarily known) plaintext and known ciphertext. We further abuse
that the Intel SGX architecture enables a privileged adversary to precisely
interrupt a victim enclave at a chosen instruction-level granularity [257], thereby
forcing the processor to write the register state to a fixed SSA location in enclave
memory (this includes the xmm registers that are part of the XSAVE region of the
SSA frame). Figure 2.4 depicts the high-level phases of the attack flow, using
two threads A and B:
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Algorithm 1 strlen() oracle AES key recovery where S (⋅) denotes the AES SBox
and SR (p) the position of byte p after AES ShiftRows.
while not full key K recovered do

(P,C,L) ← random plaintext, associated ciphertext, strlen oracle
if L < 16 then

K [SR (L)] ← C [SR(L)]⊕ S (0)
end if

end while

(a) Invoke the encryption ecall from thread A 1 and interrupt the enclave 2
before the final round of the AES (i.e., before the aesenclast instruction).
To keep the PoC simple, we achieve this requirement by inserting an access
to a dummy page at the appropriate point, and catching accesses to this
page in a signal handler on the untrusted side. Note that in a real-world
attack, the single-stepping feature of SGX-Step could be used to execute
the victim enclave exactly up to this point, without relying on a more
coarse-grained page fault for interruption.

(b) While the ecall in thread A is interrupted, prepare the timer used by
SGX-Step 3 and launch a second thread B 4 to probe the position of
the first zero byte (if any) in the intermediate AES state. Concretely, this
involves a second ecall to the same entry point, but this time supplying
an illegal in-enclave target address pointing to the fixed memory location
containing the xmm0 register in the SSA frame of the interrupted thread
A. Each time when a timer interrupt arrives 5 , we monitor and clear 6
the “accessed” bit of the targeted SSA page-table entry.

(c) After the strlen() probing has finished, the obtained leakage is stored
alongside the corresponding ciphertext, and thread A is resumed by
restoring read/write access to the dummy page.

(d) Repeat from step (a) with a different plaintext until the full key has been
recovered (see Algorithm 1).

Experimentally, we determined that this attack succeeds with 881 AES
invocations on average (over 1000 runs with random keys, minimum: 306,
maximum: 3346), given a deterministic, noise-free strlen() oracle. Note that
this attack could also be adapted to work with noisy measurements, using
the so-called zero-value model known from hardware side-channel attacks [75].
Besides, the attack would also be applicable when targeting the first round of
the AES in a known-plaintext scenario.

Properly closing this side channel requires profound changes in the way edger8r
works. Notably, the bridge code includes an lfence instruction at line 11 to rule
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out advanced Spectre-v1 misspeculation attacks that might still speculatively
compute on unchecked pointers before they are architecturally rejected. However,
our attack is immune to such countermeasures because we directly observe side
effects of normal, non-speculative execution. Further, early rejecting the ecall
when detecting that the start pointer falls inside the enclave does not suffice in
general. In such a case, adversaries might still pass pointers below the enclave
base address, and observe secret-dependent behavior based on the first bytes
of the enclave. Intel implemented our recommended mitigation strategy by
dropping support for the superfluous [sizefunc] EDL attribute entirely, and
further abstaining from computing untrusted buffer sizes inside the enclave.
Instead, alleged buffer sizes are computed outside the enclave, and passed as
an untrusted argument, such that the CHECK_UNIQUE_POINTER test can take
place immediately. For the strlen() case, the untrusted memory can simply be
copied inside, and an extra null byte inserted at the alleged end. This solution
conveniently moves all secret-dependent control flow from the enclave into the
untrusted application context.

Microsoft Open Enclave SDK. After Intel had properly patched the strlen()
side-channel vulnerability in the SGX SDK, OE appears to have tried to adopt
our proposed mitigation strategy of passing an untrusted alleged string length
into the enclave. However, after reviewing the generated code, we found that
oeedger8r fails to include a 0x00 terminator byte after copying the untrusted
string inside enclave memory (cf. Appendix B.7). This critical oversight can
be exploited to trick the shielded enclave application into operating on non-
null-terminated strings. The trusted user function will incorrectly assume that
the string is properly terminated and may perform out-of-bounds memory
read/writes, hence turning a mitigation for a subtle and functionally correct
side-channel issue into a more dangerous source of enclave memory corruption.
This OE vulnerability is tracked via CVE-2019-0876 and specific to enclaves
that expect EDL string arguments, and output or manipulate them in-place,
e.g., strcpy().

We experimentally demonstrated this vulnerability by means of a minimal PoC
application enclave which overwrites all non-alphanumeric chars in a string with
0x20, until the null terminator is encountered. If this enclave operates on an
unterminated string, the length field of the subsequent heap frame is corrupted,
which subsequently can be further leveraged in more complex exploits.
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2.5.3 Validating variable-sized buffers

Multi-byte input buffers are commonly specified by passing a pointer to the
start of the buffer and an associated size. In order to properly validate such
buffers, the trusted runtime should first compute the end pointer by adding
the alleged size argument, and thereafter assert that the complete input buffer
address range falls outside the enclave. However, since the buffer size is an
adversary-controlled parameter, care should be taken to prevent the pointer
addition from overflowing and silently wrapping around the address space.

Attack vector #6 (integer overflow): Runtimes should use safe arithmetics when
computing addresses in a buffer with untrusted size. ▷ Relatively well-understood in
production SDKs, not in research code.

TEE design. We found that the address-related vulnerabilities in this section
are significantly more exploitable in TEE designs that provide increased attacker
control over the shared memory and enclave memory layouts. For instance,
some integer overflow vulnerabilities require the adversary to control the enclave
base address in a shared address space, as is the case for the Intel SGX [47]
and Sancus [189] designs, but not for ARM TrustZone [205] or Keystone [153].
Further, we found that logical errors may arise when checking variable sized
buffers in a shared address space. As detailed below, the exploitability of such
logic bugs depends heavily on the ability of the adversary to trigger certain
edge cases (e.g., passing a pointer that lies just before the enclave base address),
which might also be considerably easier in single-address space TEE designs
like Intel SGX or Sancus.

Fortanix Rust-EDP. In contrast to the other runtimes described in this
chapter, Fortanix’s EDP [68] leverages the type system of the safe Rust
language to disallow inadvertent untrusted pointer dereferences apart from
the dedicated UserSafe type, which transparently sanitizes any pointers passed
into the enclave. Rust-EDP’s shielding system has been explicitly designed to
avoid known enclave boundary attacks and implements libOS-like functionality
through a deliberately very narrow ocall interface that is kept invisible to
the application programmer. However, our analysis shows that the promising
approach of enforcing pointer sanitization through the use of a type system
may evidently still suffer from security issues if the implementation in the type
itself is incorrect.

We manually scrutinized the implementation of the confined UserSafe type (part
of the Rust compiler’s SGX-EDP target [68]) and found a potentially exploitable
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1 /// ‘true‘ if the specified memory range is in userspace.
2 pub fn is_user_range(p: *const u8, len: usize) -> bool {
3 let start = p as u64;
4 ⭑ let end = start + (len as u64);
5 end <= image_base() || start >= image_base() +
6 (unsafe { ENCLAVE_SIZE } as u64) // unsafe ok: link-time constant
7 }

Listing 2.4: Pointer validation in the Rust-EDP UserSafe type.

integer overflow vulnerability in the pointer validation logic. Listing 2.4 shows
the relevant is_user_range() function, which checks whether an untrusted
memory range specified by a pointer and length falls completely outside the
enclave. Concretely, we observed that the 64-bit integer addition to compute
the end pointer at line 4 may overflow. Note that Rust can automatically detect
integer overflows, but these runtime checks are only enabled in debug mode,
meaning that in production builds (e.g., rustc -C debug-assertions=off),
integer overflows do not cause an error by default [157].

We confirmed (after isolating the validation function in a dummy Rust test
program) that said function can be made to early-out and return true at line 5
even when passing an illegal in-enclave pointer if the enclave base is near the top
of the address space. Note that Intel SGX leaves the enclave base address under
explicit attacker control [47], so this requirement may be satisfied by real-world
attackers. For example, the untrusted runtime can return a specially-crafted
pointer from the alloc() usercall, potentially leading to in-enclave memory
disclosure or corruption, depending on how the pointer is further used within the
enclave. After our disclosure, the EDP trusted runtime now explicitly asserts
that untrusted sizes returned by alloc() do not overflow.

Google Asylo. Apart from the aforementioned [user_check] issues, the
entry points in Asylo’s trusted runtime take care to validate all second-
level input buffers. However, our code review also revealed a subtle logic
mistake in the input validation logic itself. That is, we observed that many
of the trusted runtime functions (cf. Appendix B.3 for a relevant sample) rely
on the TrustedPrimitives::IsTrustedExtent(input, input_size) library
function returning true to reject the ecall attempt when detecting that an
untrusted input buffer is completely contained within enclave memory.

Attack vector #7 (outside ≠ ¬inside): In a shared address space, input buffers
should not fall partially inside the trusted memory region. ▷ Generally understood
in production SDKs, not always in research code.
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While this function itself translates to the corresponding sgx_is_within_-
enclave() primitive from the SGX SDK, which is indeed correct and free
from integer overflow vulnerabilities, the logic mistake occurs when considering
malicious input buffers that only partly overlap with untrusted and enclave
memory. For instance, IsTrustedExtent() will properly return false and
the ecall will still be allowed when passing a lengthy adversarial input buffer
that starts one byte before the enclave base address but continues into the
enclave memory range. Evidently, this may subsequently lead to trusted enclave
memory corruption or disclosure. Hence, the trusted runtime should instead
make use of the proper sgx_is_outside_enclave() SGX SDK primitive.

Graphene-SGX. We discovered a critical integer overflow vulnerability in the
widely used pointer range validation function that often computes on untrusted
attacker-provided sizes (similar to the Rust-EDP issue described above). We
further found that Graphene-SGX suffers from the same subtle logic mistake
that we spotted in the Asylo code base: at the time of our review, there was no
sgx_is_outside_enclave() primitive, and all instances of the intended “abort
if not completely outside” were erroneously checked for “abort if completely
inside enclave” (cf. Listing 2.5 for a relevant sample). A related type of pointer
validation vulnerabilities arises when the libOS allocates variable-sized output
buffers in untrusted memory outside the enclave to be able to exchange data
for ocall arguments and return values. For performance reasons, Graphene-
SGX allocates such shared memory buffers directly on the untrusted host
stack. While the untrusted host stack pointer is indeed validated to lie outside
of enclave memory upon enclave entry, we observed that the trusted libOS
does not properly check whether the untrusted stack does not overflow into
enclave memory after allocating a new shared memory buffer in the widely
used OCALLOC macro. Depending on the specific ocall implementation, the
enclave will subsequently copy data to/from the inappropriately allocated buffer,
leading to information disclosure and/or memory corruption.

Keystone. While Keystone [153] is still a research prototype and lacked
essential functionality when we reviewed its code, we discovered and reported
a potential integer overflow vulnerability (cf. Appendix B.8) in the trusted
security monitor’s detect_region_overlap() function, which is used during
the creation of an enclave. However, this overflow was not directly exploitable
due to certain restrictions on region sizes in the Keystone codebase.

Sancus. We found both logical errors and integer overflow vulnerabilities
in the sancus_is_outside_sm() function provided by the trusted runtime.
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Particularly, the current implementation does not properly detect an untrusted
buffer that spans the entire enclave address range, or a rogue length specifier
that triggers an integer overflow to wrap around the 16-bit address space.

2.5.4 Pointer-to-pointer validation pitfalls

While the previous sections have focused on the spatial aspect of untrusted
pointer dereferencing, we also found more subtle vulnerabilities related to the
temporal aspect. That is, whenever a pointer points to an untrusted address or
size (as it is often the case, for instance, in marshalling structs), the runtime
should take care to first copy the second-level pointer value to a trusted location
in enclave memory before applying the sanitization logic. If this is not the
case, adversaries may overwrite the second-level pointer in untrusted memory
after the validation has succeeded but before the pointer is dereferenced in the
enclave code. This class of vulnerabilities is also referred to as “double fetch”
bugs in operating system kernels [276, 218].

Attack vector #8 (double fetch): Untrusted pointer values should be copied
inside the enclave before validation to avoid time-of-check time-of-use. ▷ Relatively
well-understood (once pointer sanitization is applied).

TEE design. Double fetch bugs typically rely on a very narrow vulnerability
time window and hence can be notoriously hard to exploit in traditional user-to-
kernel contexts. However, recent research demonstrated how some TEE design
decisions may considerably simplify exploitation of synchronization bugs in
enclaves. AsyncShock [266] exploits that Intel SGX adversaries may provoke
page faults in the enclaved execution, and SGX-Step [257] similarly abuses that
privileged SGX adversaries may abuse system timers to very precisely interrupt
a victim enclave after every single instruction. Finally, Schwarz et al. [218] use
a cache side channel to expose double fetch bugs in both Intel SGX and ARM
TrustZone TEEs.

Graphene-SGX. Scrutinizing Graphene-SGX’s ocall interface, we found
several instances of exploitable double fetch vulnerabilities. Listing 2.5 provides
a relevant code snippet that attempts to sanitize the result of the sock_accept
system call. First, at line 1, a buffer ms is allocated in untrusted memory
outside the enclave. The struct buffer pointed to by ms contains another
pointer ms->ms_addr that will be initialized by the untrusted runtime to point
to the socket address returned by the system call. As ms->ms_addr is an
untrusted pointer, the libOS shielding system attempts to properly validate
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1 OCALLOC(ms, ms_ocall_sock_accept_t *, sizeof(*ms));
2 ...
3 retval = SGX_OCALL(OCALL_SOCK_ACCEPT, ms);
4 if (retval >= 0) {
5 ⭑ if (len && (sgx_is_within_enclave(ms->ms_addr, len)
6 || ms->ms_addrlen > len)) {
7 OCALL_EXIT();
8 return -PAL_ERROR_DENIED;
9 }

10 ...
11 ⭑ COPY_FROM_USER(addr, ms->ms_addr, ms->ms_addrlen);

Listing 2.5: Double fetch vulnerability in Graphene-SGX.

that it lies outside the enclave at line 5 (modulo the logic bug described in
Section 2.5.3) before dereferencing ms->ms_addr a second time when copying
the socket address buffer inside at line 11. However, since the parent ms struct
was allocated in untrusted memory and has never been copied inside, SGX
adversaries can interrupt the enclave in between lines 5 and 11 and trivially
overwrite the ms_addr field with an arbitrary in-enclave address, potentially
leading to trusted memory disclosure.

2.5.5 Validating ocall return values

Apart from validating ecall arguments, the enclave trusted runtime should
also take care to properly scrutinize ocall return values when passing pointers
or sizes back into the enclave.

Attack vector #9 (Iago): Pointers or sizes returned through ocalls should be
scrutinized [38]. ▷ Understood, but still prevalent in research libOSs that shield
system calls; one instance in a production SDK.

TEE design. We found that the complexity of the shielding system may
largely affect this attack surface. That is, SDK-based approaches typically do
not feature a large built-in ocall interface, whereas libOSs should safeguard
against Iago attacks [38] by scrutinizing return values from the complex system
call interface before passing them on to the shielded application.

Microsoft Open Enclave SDK. OE’s trusted runtime includes a oe_get_-
report() function which is used to provide attestation functionality to the
enclaved binary. Internally, this function performs the same ocall twice; the
first time specifying the output buffer as a null pointer in order to obtain the
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required quote size. Based on this size, a buffer is allocated on the enclave
heap, and subsequently filled through a second ocall invocation. We found,
however, that the untrusted runtime can return different sizes for the two ocall
invocations (tracked via CVE-2019-1369). Particularly, the in-enclave buffer
is allocated based on the size obtained from the first ocall, whereas the size
returned by the second ocall is passed on to the caller of oe_get_report().
Hence, returning an unexpectedly large size in the second ocall invocation may
cause the enclave application to read or write out of bounds. We experimentally
confirmed that OE’s remote attestation example enclave can leak up to 10 kB
of trusted heap memory (this upper bound is due to an internal limit), possibly
at multiple heap locations depending on other memory allocations.

LibOS-based runtimes. We discovered several exploitable instances of Iago
attacks [38] in Graphene-SGX’s ocall interface. For example, an untrusted
system call return value len is later used to copy len bytes from untrusted
memory into a fixed-size buffer inside the enclave, leading to arbitrary write-
past the in-enclave buffer. To demonstrate this vulnerability, we developed
a PoC where the readdir() system call in the untrusted runtime returns an
unexpected length, causing an out-of-bounds write in the enclave.

Similarly, in SGX-LKL’s ocall interface, we found several instances of Iago
vulnerabilities where for example the untrusted pointers returned by mmap() are
not checked to lie outside of enclave memory, or the untrusted length returned by
write() is passed unsanitized back to the shielded application. To demonstrate
how this can be successfully exploited, we developed an elementary victim
application featuring a common programming idiom where write() is used to
output a buffer piecewise, each time advancing a pointer with the number of
bytes successfully written (i.e., the system call’s return value). We modified the
untrusted runtime to unexpectedly increment the return value of the write()
system call, causing the shielded application binary to output secret enclave
memory beyond the buffer bounds. Finally, we also confirmed and reported the
existence of similar issues in Google Asylo.

Keystone. Similar to the above SGX runtimes, Keystone provides system call
wrappers to simplify porting of existing code to an enclave. While Keystone
documentation indicates that the developers are aware of potential issues, the
codebase currently lacks mitigations against Iago attacks. Hence, we developed
an exploit using the write() system call, similar to the SGX-LKL PoC.
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2.5.6 Scrubbing uninitialized structure padding

Apart from pointers and size arguments, enclaves may also pass composite
struct types to the untrusted world. While, as with all output buffers, we
assume that enclave applications do not intentionally disclose secrets through
the program-visible state (i.e., the struct’s individual members), prior research
on operating system kernel [45] and SGX enclave [155] interfaces has shown
that padding bytes silently added by the compiler may still unintentionally leak
uninitialized secret memory.

Attack vector #10 (uninitialized padding): Scrubbing program-visible state
may not suffice for struct outputs [155]. ▷ Especially relevant for production SDKs
that expose the enclave interface to the programmer.

TEE design. This subtle attack vector cannot be easily mitigated by sanitizing
program-visible API state. Possible mitigations include securely initializing
the entire output struct using memset() and/or doing a member-wise deep-
copy, or declaring the output struct as “packed” so the compiler does not
unknowingly introduce padding. However, both solutions require application-
specific knowledge about the exact struct types being passed. As an important
insight, we therefore found that this attack vector can only be transparently
shielded when the enclave interface is predefined and fixed. That is, the fixed
ocall interface in libOS-based runtimes can indeed be manually scrutinized for
this type of vulnerabilities. However, this is not the case for SDK-based runtimes
that offer a generic enclave interface defined by the programmer, and hence
(opposed to their shielding responsibility) ultimately outsource the responsibility
of scrubbing uninitialized struct padding to the application developer.

SDK-based runtimes. Lee et al. [155] first demonstrated how uninitialized
struct padding may pose a subtle information leakage source in the edger8r-
generated code of the Intel SGX SDK. Building on their findings, we generalized
this attack vector to also demonstrate its applicability to oeedger8r-generated
code in Microsoft’s Open Enclave SDK, as well as in the Sancus TEE. Similarly,
we confirmed that padding leakage can also occur in Keystone, e.g., through
the padding of calc_message_t in the demo enclave.

LibOS-based runtimes. We reviewed the ocall interfaces in the libOS-based
runtimes we studied (Graphene-SGX, LKL, Rust-EDP). Rust-EDP appears to
be free of such issues, and Graphene-SGX explicitly enforces struct packing
through a compiler #pragma. However, SGX-LKL contains at least two
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instances of an ocall using a struct with potentially vulnerable padding
bytes (sigaction and siginfo_t). In Google Asylo, most structs passed
through an ocall are explicitly declared as packed, however, we found one
instance of a padded struct BridgeSignalHandler used in the syscall interface.

2.6 Discussion and general mitigations

The most intuitive solution to defend against our attacks is to incorporate
additional checks in the enclave code to properly sanitize ABI state and API
arguments/return values. When properly implemented, such checks suffice to
block all of the attacks described in this work, and they have indeed been
adopted by the various projects we analyzed. However, leaving the decision of
whether (and how) to correctly implement numerous interface validation checks
to enclave developers, who are likely unaware of this class of vulnerabilities,
may be problematic. Moreover, even when developers think about inserting the
necessary checks, our analysis has revealed several recurring pitfalls, including
subtle logical bugs, side channels, double fetches, and integer overflows. This
highlights the need for more principled approaches to rule out this class of
vulnerabilities at large, as well as defense-in-depth code hardening measures
that may raise the bar for successful exploitation.

Code hardening. Interface sanitization vulnerabilities are closely related to
a wider class of memory safety issues [154, 24], and their exploitation may
hence be partially hindered by established techniques such as heap obfuscation
(cf. Section 2.4.1). Furthermore, SGX-Shield [227] aims to obstruct memory
corruption attacks by randomizing the memory layout of enclaved binaries
shielded by the Intel SGX SDK. However, prior research [24] has shown that
SGX-Shield does not randomize the trusted runtime, meaning that the code we
studied would still feature a deterministic and static memory layout, and may
offer numerous gadgets for mounting code reuse attacks. Further, as the trusted
runtime also forms an integral part of SGX-Shield’s loader [227], any memory
safety or side-channel vulnerabilities in the trusted runtime itself may also be
used to disrupt the preliminary randomization stage. While randomizing the
memory layout of the trusted runtime would indeed be desirable, this constitutes
a non-trivial task [24, 227] given its low-level nature, including hand-written
assembly code and static memory addresses expected by SGX’s eenter and
eresume instructions. In this respect, we want to emphasize that some of the
attacks we presented are free from non-static address dependencies, and hence
remain inherently immune to software randomization schemes. For example, the
SGX SDK strlen() oracle in Fig. 2.4 depends solely on the fixed address of the



66 ASSESSING THE VULNERABILITY OF ENCLAVE SHIELDING RUNTIMES

victim’s SSA frame, which is deterministically dictated by the SGX hardware
and immutable from software.

As a perpendicular code hardening avenue, we recommend to implement more
aggressive responses when detecting pointer violations in the trusted runtime.
That is, most of the runtimes we studied merely reject the ecall attempt
when detecting pointer poisoning. In the SGX SDK strlen() oracle attack of
Section 2.5.2, we for example abused this to repeatedly call a victim enclave,
each time passing an illegal pointer and making side-channel observations
before the ecall is eventually rejected. To rule out such repeated attacks, and
reflecting that in-enclave pointers represent clear adversarial or buggy behavior,
we recommend to immediately destroy secrets and/or initiate an infinite loop
upon detecting the first pointer poisoning attempt in the trusted runtime.

Hardware-assisted solutions. As a more principled approach to rule out the
confused deputy attacks described in this chapter, solutions could leverage
finer-grained memory protection features in the processor. In particular, tagged
memory [267] or capability architectures [275] appear to be a promising approach
to inherently separate the memory domains of untrusted and trusted code. On
a capability machine [275], pointers are represented at run-time as unforgeable
objects carrying associated permissions and length fields. The machine ensures
that untrusted code can never create a valid capability that points inside enclave-
private memory and pass it as an argument to an ecall, thereby eradicating
an entire class of pointer dereference vulnerabilities architecturally.

As an example of an alternative tagged memory design, the recently proposed
Timber-V [267] architecture provides lightweight and strong enclaved execution
on embedded RISC-V platforms. Timber-V processors offer enhanced MPU
isolation by keeping track of a 2-bit tag for every memory word, allowing
individual memory locations to be associated with one out of 4 possible security
domains. The CPU further restricts tag updates, and offers checked memory
load/store operations, which take an expected tag as an argument and trap
whenever the actual memory location being dereferenced does not match the
expected tag. Hence, any pointer poisoning attempts by untrusted code outside
the enclave would be immediately caught by the hardware.

The untrusted pointer dereference issues we identified in this work bear some
similarities with how privileged OS kernel code needs to properly sanitize user
space pointers in e.g., system call arguments. As a defense-in-depth mechanism,
recent x86 processors support Supervisor Mode Access Prevention (SMAP)
features to explicitly disallow unintended user space pointer dereferences in
kernel mode [114]. We encourage further research to investigate porting such
CPU features to enclave mode.
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Safe programming languages. The combination of TEEs and safe program-
ming languages, such as Rust, has been proposed as a promising research
direction to safeguard enclave program semantics, but still requires additional
interface sanitizations [72]. The approach of Fortanix’s Rust-EDP [68] shows
how the compiler’s type system can be automatically leveraged to limit the
burden of pointer sanitization concerns from a cross-cutting concern throughout
the enclave code base to the correct implementation of a single untrusted pointer
type. However, it is important to note that safe languages by themselves are
not a silver bullet solution to our attacks. That is, the trusted runtime code
remains responsible to bootstrap memory safety guarantees by (i) establishing
expected ABI calling conventions in the low-level entry assembly code, and
(ii) providing a correct implementation of sanitization in the untrusted pointer
type. In this respect, the subtle integer overflow vulnerability in Fortantix’s
EDP, presented in Section 2.5.3, demonstrates that developing both the trusted
runtime libraries and the enclave in safe Rust may still not suffice to fully
eradicate pointer sanitization vulnerabilities.

Finally, as an alternative to Intel’s edger8r tool, the use of separation logic has
been proposed to automatically generate secure wrappers for SGX enclaves [73].
This approach aims to provide the advantages of safe languages, and even formal
verification guarantees, but still relies on explicit developer annotations.

2.7 Conclusions and future work

Our work highlights that the shielding responsibilities in today’s TEE runtimes
are not sufficiently understood, and that various security issues exist in the
respective trusted computing bases. We showed that this attack surface is large
and often overlooked: we have identified 35 interface sanitization vulnerabilities
in 8 open-source TEE runtimes, including production-quality SDKs written
by security-savvy developer teams. Our analysis further reveals that the entry
points into this attack surface are more pervasive than merely argument pointers:
we contributed a classification of 10 recurring vulnerability classes spanning the
ABI and API tiers.

In the defensive landscape, our work emphasizes the need to research more
principled interface sanitization strategies to safeguard the unique TEE shielding
responsibilities. We particularly encourage the development of static analysis
tools, and fuzzing-based vulnerability discovery and exploitation techniques to
further explore this attack surface.
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Stealthy page-table-based
attacks on enclaved execution
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Preamble

This chapter presents a new type of stealthy side-channel attack techniques that
enable an untrusted operating system to observe enclave page accesses without
resorting to page faults. Particularly, we contribute two novel attack vectors
that infer enclaved memory accesses from page-table attributes, as well as from
the caching behavior of unprotected page-table memory. We demonstrate the
effectiveness of our attacks by recovering full EdDSA session keys with little to
no noise from the popular Libgcrypt cryptographic software suite.

This research was the first to recognize the dangers of traversing enclave
page tables in untrusted operating system memory, beyond observing obvious
page fault exceptions. Our work, therefore, highlights the deficiency of initial
controlled-channel defenses [230, 229], which focus on merely detecting page-
fault events, and calls attention to the untrusted page-table walk itself. This
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observation makes page-table-based attacks very challenging to mitigate in a
principled way. We discuss various proposals and their trade-offs in Chapter 8.

In the context of a wider study of SGX memory access side channels, Wang
et al. [263] concurrently developed similar stealthy page-table attacks, yet only
monitoring A/D page-table attributes and at a significantly lower temporal
resolution without exploring the cache timing channel.

The stealthy page-table spy techniques described in this chapter have since
been leveraged in an ongoing line of SGX side-channel attacks [257, 256, 254,
139, 6, 182]. Notably, the observation that the processor’s page-miss handler
may cause contention in the CPU cache has even been generalized to non-
SGX attack scenarios as well [81, 259]. With our innovative application of
Flush+Flush [87] to monitor enclave page-table accesses, we established a
novel high-resolution and low-noise cache timing attack technique which for the
first time exploits increased timing differences from writing back modified cache
lines. Our work furthermore pioneered the security analysis of “accessed” and
“dirty” page-table attributes, which later turned out to be effective not only
for side-channel analysis, but also as a microcode assist primitive to trigger
transient-execution data sampling attacks [223, 35]. Likewise, as explained in
Chapter 6, the observation that SGX permissions are only applied after the
untrusted page-table walk has completed (cf. Fig. 3.1) was later leveraged to
evade SGX abort page semantics in the Foreshadow attack.

In anticipation of SGX-Step, introduced in Chapter 4, this chapter for the first
time explored the temporal dimension of the paging channel by showing that
enclaves can be precisely preempted at instruction-level granularity using inter-
processor interrupts. The tandem between interrupts and page-table interactions
has since become a reoccurring element in the SGX attack landscape, as discussed
in Chapter 8. Our recent work on CopyCat [182] made this even more explicit
by combining the techniques described in this chapter with SGX-Step single-
stepping interrupts to deterministically reconstruct enclave control flow within a
single 4KiB code page. Intuitively, CopyCat shows that the stealthy page-table
spy techniques introduced in this chapter are not only equivalent to, but strictly
stronger than page-fault controlled channels.

To mitigate the EdDSA attack described in this chapter, we contributed a
minimal patch that has been merged in Libgcrypt v1.7.7 [247]. We furthermore
publicly released all of the attack code and experimental data, and we have been
in contact with several independent research groups that successfully reproduced
our findings. At least one published work [198] explicitly ran our open-source
attack code to evaluate an improved defense technique.
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3.1 Introduction

Enclaved execution is a promising new security paradigm that makes it possible
to execute application code on a platform without having to trust the underlying
operating system or hypervisor. With the advent of Intel SGX [176], support
for Trusted Execution Environments (TEEs) is now available on mainstream
consumer hardware, and can be used to defend against malicious or compromised
system software, both in an untrustworthy cloud environment [20, 217] as well
as for desktop applications [99]. In particular, one line of research has developed
techniques and supporting software to make it relatively easy to run unmodified
legacy applications within an enclave [20, 17, 231, 246].

An essential aspect of enclaved execution is that the hardware prevents privileged
system software from reading or writing an enclave’s private memory directly,
or from tampering with its internal control flow. However, the OS remains in
charge of allocating platform resources (memory pages and CPU time), such
that the platform can be protected against misbehaving or buggy enclaves. One
consequence of this interaction between privileged system software and enclaves
is an entirely new class of powerful, indirect attacks on enclaved applications.
Xu et al. [277] first showed how a malicious OS can use page faults as a noise-free
controlled channel to extract rich information (full text and images) from a single
run of a victim enclave. This is particularly dangerous when legacy software is
running within an enclave, as these applications have not been hardened against
side-channel attacks. As a result, several authors have expressed their concerns
on side-channel vulnerabilities in a TEE setting in general, and the page fault
channel in particular [63, 47, 245, 229, 42].

The research community has since proposed a number of compile-time and
hardware-enabled defense techniques [230, 48, 229] that hide enclave page
accesses from the OS. We argue, however, that page faults are but one side
effect of the address translation process that is observable by untrusted system
software. More specifically, the main contribution of this chapter is that we
show that an adversarial OS can infer page accesses from an enclaved execution
that never suffers a page fault. Our attacks exploit the key property that the
SGX design leaves page-table memory under explicit control of the untrusted
OS. As such, other side effects of the page-table walk in enclave mode can be
observed by the OS with very little to no noise. We identify and successfully
exploit straightforward effects such as the setting of “accessed” and “dirty”
bits, as well as less obvious effects such as the caching of page-table memory
itself. An important consequence is that our novel attack vectors bypass recent
defenses that focus exclusively on suppressing page faults [230, 229].

In summary, the contributions of this chapter are:
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• We advance the state-of-the-art by defeating recently proposed defense
techniques, showing that we can infer page accesses without resorting to
page faults.

• We present a page-table-based technique to precisely interrupt an enclave
at instruction-level granularity.

• We implement our novel attack vectors as an extension to Graphene-SGX’s
untrusted runtime, facilitating eavesdropping on unmodified applications.

• We demonstrate the effectiveness of our attacks by extracting private
EdDSA session keys from the widely used Libgcrypt cryptographic library.

Our attack framework and evaluation scenarios are available as free software,
licensed under GPLv3, at https://github.com/jovanbulck/sgx-pte.

3.2 Background and state-of-the-art

In this section, we provide the necessary background on Intel SGX, refine the
attacker model, and discuss previous research results on controlled-channel
attacks.

3.2.1 Intel SGX

Recent Intel x86 processors from Skylake onwards are being shipped with
Software Guard Extensions (SGX) [176, 14, 114] that enable strong, hardware-
enforced trusted computing guarantees in an untrusted execution environment.
SGX extends the instruction set and memory access logic of the Intel architecture
to allow the execution of security-sensitive application logic in protected enclaves
in isolation from the remainder of the system, including privileged OS or
hypervisor.

Memory protection. An SGX-enabled processor sets aside a contiguous
physical memory area, referred to as Processor Reserved Memory (PRM).
A hardware-level memory encryption engine guarantees the confidentiality,
integrity, and freshness of PRM memory while it resides outside of the processor
package. The PRM region is subdivided into two data structures: the Enclave
Page Cache (EPC) and the Enclave Page Cache Map (EPCM). Protected
4KiB enclave code and data pages are allocated from the EPC, while every
EPC page has a shadow entry in the EPCM to track ownership, type, address

https://github.com/jovanbulck/sgx-pte
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Figure 3.1: Additional memory access checks performed by SGX for a virtual address
vadrs that maps to a physical address padrs.

translation, and permission metadata. EPCM memory is exclusively managed
by the processor, and is never directly accessible to software.

SGX enclaves are instantiated as part of the virtual address space of a
conventional OS process. Since PRM is a limited system resource, untrusted
system software is in charge of assigning protected memory pages to enclaves,
and is allowed to oversubscribe the EPC. At enclave creation time, the OS can
instruct the processor to initialize newly allocated EPC pages with unprotected
code or data. After finalizing the enclave, and before it can be entered, the
hardware calculates a secure hash of the enclave’s initial state. This allows
the integrity of the untrusted loading process to be attested to a remote
stakeholder [14]. SGX furthermore offers dedicated ring-zero instructions to
securely evict and reload enclave pages between EPC memory and untrusted
storage.

An important design decision of SGX is that it leaves page tables under
explicit control of the untrusted operating system. Instead, SGX implements an
additional, independent layer of access control on top of the legacy page-table-
based memory protection mechanism. Figure 3.1 summarizes the additional
checks performed when accessing enclave memory. First, in order to translate
the provided virtual address to a physical one, the processor traverses the
OS-managed page tables, as well as the extended page tables set up by the
hypervisor, if any. As usual, a page fault is signaled to the untrusted OS in case
of a permission mismatch or missing page-table entry during address translation.
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Any attempt to access the PRM region in non-enclave mode results in abort
page semantics, i.e., read 0xFF and ignore writes. Likewise, in enclave mode, the
processor is allowed to reference all memory that falls outside of the executing
enclave’s virtual address range, but abort page semantics apply when such an
address resolves into PRM memory. Furthermore, a page fault is signaled to
the untrusted OS for EPC accesses that either do not belong to the currently
executing enclave, are accessed through an unexpected virtual address, or do
not comply with the read/write/execute permissions imposed by the EPCM.

To speed up subsequent memory accesses, SGX employs the processor’s
Translation Lookaside Buffer (TLB) as a trusted cache of already checked page
permissions. That is, SGX’s memory access protection is entirely implemented
in the Memory Management Unit (MMU) hardware that consults the untrusted
page tables and the EPCM whenever a provided virtual address was not found
in the TLB [176, 47]. SGX’s security argument is based on the key observation
that untrusted system software needs to interrupt the logical processor core
before it can affect TLB entries. SGX therefore flushes the TLB and internal
paging-structure caches whenever entering or exiting an enclave, and requires
the OS to engage in a hardware-verified protocol that ensures proper TLB
invalidation before evicting an EPC page.

SGX’s dual permission lookup scheme prevents malicious system software from
mounting active memory mapping attacks [47]. The output of the address
translation process is considered untrusted, and the most restrictive of both
permissions is applied. However, this design also implies that an attacker
controlling page-table permissions can cause enclave code to cause page faults,
and be notified when certain pages are accessed. This property lies at the basis
of the page fault attacks described in Section 3.2.3.

Enclave entry and exit. SGX enclaves are embedded in the address space
of an untrusted user mode application, and can be internally multithreaded.
They have to be explicitly entered by means of a dedicated eenter instruction
that switches the logical processor to enclave mode, and transfers control to
a predetermined entry point in the enclave’s code section. The untrusted
application context can exchange data with the enclave via unprotected memory.
A processor running in enclave mode can be switched back programmatically
by invoking the eexit instruction, or in case of a fault or external interrupt,
through a process known as Asynchronous Enclave Exit (AEX). Upon AEX,
the processor securely stores the execution context and exit reason (exception
number) in a predetermined State Save Area (SSA) inside the enclave, and
replaces CPU registers with a synthetic state before transferring control to the
untrusted OS exception handler specified in the Interrupt Descriptor Table
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(IDT). In case of a page fault, SGX also takes care of zeroing out the twelve
least significant bits of the faulting address, revealing only the page number,
but not the 12-bit offset within that page.

Importantly, SGX enclave threads are unaware of interrupts by design, and have
to be resumed explicitly by invoking eresume from the unprotected application
context. The eresume instruction takes care of restoring the previously saved
processor state, and redirects control flow to the instruction pointer specified in
the SSA frame. SGX allows an enclave to register trusted in-enclave exception
handlers with a cooperative OS. For this to work, eenter has to be explicitly
called before eresume, so as to allow the previously interrupted enclave to
inspect and modify its internal SSA frame. Since eresume cannot be intercepted
however, an enclave has no way of enforcing its internal exception handler to
be actually called.

SGX’s exception model ensures that the untrusted operating system remains in
control of shared platform resources such as memory or CPU time, and prevents
direct information leakage of register contents. However, partial information on
the enclave’s internal state still leaks to the OS via exception vectors, and the
access type and page base address in case of a page fault.

3.2.2 Attacker model and assumptions

The adversary’s goal is to derive sensitive application data processed in an
enclave. We assume the standard SGX threat model where an attacker has
full control over privileged system software including the operating system and
hypervisor. The attacker has full control over OS scheduling decisions; she can
pin specific threads to specific CPU cores, and interrupt enclaves repeatedly.
She can furthermore modify all non-enclaved parts of the application. Like
previous SGX attacks [277, 230, 79, 225, 156], we finally assume knowledge of
the (compiled) source code of the target application.

At the system level, we assume a classical MMU-based architecture where the
system software maintains a multi-level page-table data structure in OS memory
to control virtual to physical page mappings. We assume the OS is in control
of enclave page mappings, whereas the TEE guarantees the confidentiality
and integrity of enclave pages, and properly verifies address translations to
protect against page remapping attacks. Importantly, in contrast to previously
published controlled-channel attacks discussed below, we assume a PF-oblivious
attacker model where any page faults in enclave mode are hidden from untrusted
system software. Our notion of stealthiness thus requires an attacker to infer
page access patterns from an enclaved execution that never suffers a page fault.
In addition, to stay under the radar of remote attestation schemes [229] that
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require the user’s approval for each enclave invocation, our stealthy adversary
should extract information from a single run of the victim enclave.

3.2.3 Controlled-channel attacks

This section briefly revisits previous research on page fault-driven attacks and
defenses. We first explain how sensitive information can be derived from an
enclave’s page fault behavior, and thereafter elaborate on recently proposed
state-of-the-art defense techniques.

Tracking page faults. As explained above, a page fault during enclave
execution triggers an AEX that hands over control to the untrusted operating
system, revealing the base address of the faulting page. A malicious OS can
exploit this property to obtain a page-level trace of enclave execution by clearing
the “present” bit in the Page Table Entrys (PTEs) that form the enclave’s virtual
address space. For maximal information leakage, an adversary allocates at most
one code page and up to two operand data pages at all times. Furthermore,
the access type can be inferred by manipulating the “writable” and “execute
disable” PTE attributes.

Seminal work by Xu et al. [277] first showed how to exploit the page fault side
channel in a deterministic way. Their controlled-channel attacks exploit secret-
dependent control flow and data accesses in unmodified legacy applications
running on top of the SGX-based Haven [20] architecture. To overcome the
coarse-grained page-level granularity, they observe that the sequence of preceding
page faults can be used to uniquely identify a specific memory access. The
controlled-channel attack relies on an exhaustive offline analysis of the target
application binary to identify page fault sequences, and afterwards uses this
information to extract rich information (full text and images) without noise
from a single run of the victim enclave. Subsequent work by Shinde et al. [230]
demonstrated that the page fault channel is sufficiently strong to extract
cryptographic key bits from unmodified versions of OpenSSL and Libgcrypt.

Proposed defenses. Ferraiuolo et al. [63] propose the use of dedicated CPU
instructions to prevent certain pages from being swapped out of the protected
memory area. This defense technique overlooks however that page faults can
also be caused by directly modifying PTE attributes controlled by the OS.
Shinde et al. [230] introduce the notion of PF-obliviousness which requires that
any information leaked via page fault patterns can also be learned from running
the program without inducing any page faults. They propose a compiler-based
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solution called deterministic multiplexing to generate PF-oblivious programs that
unconditionally access all code and data pages at the same level of the execution
tree. Without developer-assisted optimizations however, their approach exhibits
unacceptable performance overheads [230] in practical application scenarios,
which is why they also propose a hardware-assisted solution. In the contractual
execution model, an enclave agrees with the untrusted OS that a number of
sensitive pages remain mapped in its address space. The hardware is modified
to report page faults directly to the enclave, without OS intervention, so as to
enable protected enclave programs to detect contract violations. The enclave’s
fault handler can decide to either forward the page fault to the OS, abort the
enclave program, or perform a fake execution to hide the page fault completely.

It seems that Intel made a first step towards supporting contractual execution
on SGX platforms. As per revision 2 of the SGX specification [114], AEX can
optionally store information about page faults in the interrupted enclave’s SSA
frame. This allows an SGX enclave to register a trusted exception handler for
page faults. As explained in Section 3.2.1, however, the unprotected application
can trivially eresume an enclave without first calling its designated exception
handler. That is, the SGX v2 design still leaves enclaves explicitly unaware
of interrupts or page faults. In response, Shih et al. [229] present a pragmatic
approach to contractual execution on SGX platforms. Their solution, called T-
SGX, leverages hardware support for Transactional Synchronization Extensions
(TSX) in recent Intel processors [114]. TSX was designed to synchronize the
critical sections of multiple threads without the overhead of software-based
locks. Code executing in a TSX transaction is aborted and automatically
rolled back whenever encountering a cache conflict or exception. The security
argument of T-SGX relies on the important property that a page fault during a
TSX transaction immediately transfers control to a user-level transaction abort
handler, without first notifying the OS. In case of an external interrupt on the
contrary, the normal AEX procedure vectors to the OS, but TSX ensures that the
in-enclave transaction abort handler is called on eresume. The T-SGX compiler
wraps each basic block in a TSX transaction, and uses a carefully designed
springboard page to hide page faults across transactions. Since TSX lacks
hardware support to distinguish between page faults and regular interrupts in
the abort handler, T-SGX restarts transactions by default, and only terminates
the enclave program after counting too many consecutive aborts of the same
transaction. Since the OS is made unaware of page faults, an adversary learns at
most one page access by observing early program termination. T-SGX prevents
reruns by requiring the remote enclave owner’s consent before starting the
enclaved application.

Note that T-SGX does not consider frequent enclave preemptions suspicious (up
to 10 consecutive transaction aborts are allowed for each individual basic block).



78 STEALTHY PAGE-TABLE-BASED ATTACKS ON ENCLAVED EXECUTION

After acceptance of our work, however, more recent research was published [42]
that leverages TSX to not only hide page faults, but also monitor suspicious
interrupt rates. We discuss this heuristic defense technique and its implications
for our attacks in more detail in Section 3.6.

Finally, Costan et al. [48] present a hardware-software co-design called Sanctum
that represents a more radical approach to eliminate controlled-channel attacks.
Not only does Sanctum dispatch page faults directly to enclaves, but it also allows
them to maintain their own virtual-to-physical mappings in a separate page-table
hierarchy in enclave-private memory. As further explored in Section 3.6, this
design decision effectively prevents directed page-table-based attacks from the
OS. While Sanctum explicitly identifies information leakage from “accessed” and
“dirty” page-table attributes as a motivation for enclave-private page tables, we
are the first to provide an exploitation strategy and to explore the implications
of this side channel.

3.3 Stealthy page-table-based attacks

In this section, we present the design of our novel page-table-based attacks. We
first introduce two distinct ways in which a PF-oblivious attacker can detect
page accesses after the enclave has programmatically been exited. Next, we
present our approach to dealing with cached TLB entries for subsequent accesses
to the same page. We finally explain how to infer conditional control or data
flow in large programs by correlating subsequent page accesses in page sets
as a more stealthy alternative to the page fault sequences introduced by Xu
et al. [277].

3.3.1 Monitoring page-table entries

As a running example, consider the leftmost code snippet in Listing 3.1, where
we assume that a and b reference different data pages. In the classical controlled-
channel attack [277, 230], an adversary would revoke access rights on both pages
before entering the enclave, and learn the secret input by observing a page fault
on either a or b.

Our attacks are based on the important observation that a processor in enclave
mode accesses unprotected page-table memory during the address translation
process. The key intuition is to exploit side effects of the page-table walk
to identify which page has been accessed. In the following, we show that an
adversary with access to unprotected page-table memory can learn the secret
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1 void inc_secret (int s) {
2 if (s)
3 *a += 1;
4 else
5 *b += 1;
6 }

1 int cmp_and_swap (int old, int new)
2 {
3 if (*a == old)
4 return (*a=new);
5 else return *a;
6 }

Listing 3.1: Example code with secret-dependent data flow.

input without resorting to page faults, either explicitly via page-table attributes,
or implicitly by observing cache misses.

A/D bits. Since memory is a limited system resource, swapping out pages is
benign OS behavior. To help memory-management software make an informed
decision, Intel x86 processors [114] explicitly provide insight into an application’s
memory usage via page-table attributes. The CPU’s address translation logic
sets a dedicated Accessed (A) bit whenever reading a page-table entry, and takes
care to set the Dirty (D) flag the first time a page has been written to. A/D
attributes are stored in kernel-space memory, alongside the physical address
of the page being referenced by the corresponding PTE entry, and need to be
explicitly cleared by software.

We experimentally confirmed that A/D bits are also updated in enclave mode.
An adversary inspecting these PTE attributes after enclave execution is thus
provided with a perfect, noise-free information channel regarding the accessed
memory pages. She can furthermore unambiguously distinguish between read
and write accesses to the same page. In our inc_secret example, the secret
input is directly revealed through the “accessed” bit of the PTEs referenced
by a respectively b. The right-hand side of Listing 3.1 provides a more subtle
example where the data page referenced by a is first accessed, and thereafter
either written to, or read again. An adversary can distinguish between these
cases using the “dirty” PTE attribute. Note that a page fault-based attack
could derive the same information using the “writable” attribute, if stealthiness
is not a concern.

Cache misses. Since modern CPUs can process data an order of magnitude
faster than it can be fetched from DRAM, they rely on on an intricate
cache hierarchy to speed up repeated code and data accesses. Contemporary
Intel CPUs [114] feature three levels of multi-way, set-associative caches
for instruction/data memory, and a separate TLB plus specialized paging-
structure caches to accelerate address translation. Cache memories introduce a
measurable timing difference for DRAM accesses and enable a powerful class of
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microarchitectural side-channel attacks, for they are shared among all software
running on the platform.

A reliable and powerful class of access-driven cache attacks based on the
Flush+Reload [280] technique exploits the availability of physical shared
memory between the attacker and the victim, as is often the case with shared
libraries. Flush+Reload relies on the clflush instruction that invalidates
from the entire cache hierarchy all entries corresponding to a specified virtual
address. To spy on a victim application, an adversary explicitly flushes a specified
address in the shared memory region. Afterwards, she carefully measures the
amount of time it takes to reload the data, so as to determine whether or not
the address has been accessed by the victim in the meantime.

One cannot directly apply Flush+Reload techniques to SGX enclaves, since
the clflush instruction requires read permissions on the provided memory
location [114]. So it seems that properly implemented SGX enclaves do not share
physical memory with their untrusted environment. We make the important
observation, however, that an SGX enclave still implicitly shares unprotected
page-table memory with the operating system. Since page-table entries are
stored in regular DRAM, they are subject to the same caching mechanisms as
any other memory location [114, 86] Additionally, modern Intel CPUs employ an
internal paging-structure cache for page-table entries that reference other paging
structures (but not those that map pages), and cache physical addresses in the
TLB. As explained in Section 3.2.1, the processor’s internal TLB and paging-
structure caches are cleared whenever entering or exiting an enclave. However,
since the data cache hierarchy remains explicitly untouched, an adversarial OS
can perform a Flush+Reload-based cache timing attack on the page table
itself.

In our inc_secret running example, a kernel-space attacker uses clflush to
evict the last-level PTEs referenced by a as well as b, before entering the enclave.
After the enclave has returned, she learns the secret input by carefully recording
the amount of time it takes to reload the relevant PTEs. The latter can easily
be achieved on x86 processors using the rdtsc instruction. We experimentally
ascertained a timing penalty of at least 150 cycles for PTE entries that miss
the cache, practically turning our Flush+Reload page-table attack into a
reliable way to decide enclave page accesses.

Discussion. Cache timing attacks on page-table memory reveal a fundamental
flaw in the SGX design. That is, walking the untrusted-page table during enclave
execution discloses memory accesses at page-level granularity, even when faults
would be suppressed and A/D bits are masked. However, as compared to the
A/D channel, a cache-based attack suffers from a few limitations. First, one
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1 point ec_mul (int d, point P) {
2 point Q = 0; int n = nbits(d);
3 for (int i = n-1; i >= 0; i--) {
4 Q = point_double(Q);
5 if (d & (0x1 << i))
6 Q = point_add(Q, P);
7 }
8 return Q;
9 }

Listing 3.2: Elliptic curve scalar point
multiplication.

point_double

ec_mul

point_add

Page P1

P2

P3

Figure 3.2: Code page layout for
scalar point multiplication.

cannot distinguish between read and write accesses to the same page. This is
not really a practical concern, however, since previous fault-based attacks [277,
230] do not rely specifically on write accesses. A second limitation considers the
processor’s prefetch unit [113, 88] that loads adjacent data speculatively into
the cache. Specifically, during the reload phase of Flush+Reload, subsequent
measurements might be destroyed. We develop a strategy to robustly infer page
access patterns in the presence of false positives in Section 3.3.3.

A more severe limitation affects the granularity at which we can see page
accesses. Since CPU caches exploit spatial locality, they fetch data from DRAM
more than one byte at a time. The atomic unit of cache organization is called a
cache line and measures 64 bytes on recent Intel processors [114]. A PTE entry
on the other hand occupies only 8 bytes, implying that eight adjacent PTEs
share the same cache line. PTE monitoring at a cache line granularity can thus
conveniently be modelled as spying on enlarged (8 ∗ 4KiB= 32KiB) pages.

3.3.2 Monitoring repeated accesses

So far, we only described how to detect memory page accesses after the enclave
program has returned to its untrusted execution context. This suffices to extract
secrets from the elementary code snippets in Listing 3.1. More realistic scenarios,
however, repeatedly operate over the same code or data in a single start-to-end
run.

As an example, consider the pseudocode for elliptic curve scalar point
multiplication in Listing 3.2, where a provided point P is multiplied with a secret
scalar d to obtain another point Q. The algorithm uses the double-and-add
method, a variation of square-and-multiply used for modular exponentiation
in RSA, and widely studied in side-channel analysis research [145, 44, 279,
280, 230]. We elaborate more on elliptic curve cryptography, and successfully
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attack Libgcrypt’s implementation of the algorithm in Section 3.5.2. For now,
we assume the ec_mul function is situated on code page P1, whereas the
subroutines point_double and point_add are located on distinct pages P2 and
P3 (cf. Fig. 3.2). Previous fault-driven attacks [230] recovers the private scalar
by observing different page fault sequences for iterations corresponding to a one
(P1, P2, P1, P3, P1, P2) or zero (P1, P2, P1, P2) bit.

The key difference in our stealthy attacker model, as compared to the page
fault channel, is that we are not notified in case of a memory access. Instead,
page-table entries should be explicitly monitored to establish whether they have
been accessed or not. If the adversary only probes PTEs after enclave execution,
she is left with aggregated information only (e.g., all pages P1, P2, and P3 have
been accessed). We therefore introduce a dedicated spy thread that monitors
PTE entries in real-time, while the victim executes. The main challenge now
becomes that SGX caches address translations in the TLB, implying that only
the first access to a specific page results in a page-table walk. Subsequent
accesses to the same page most likely hit the TLB, and will not be observed by
a spy thread monitoring page-table memory. In the following, we present our
approach to overcoming this challenge.

Flushing the TLB. We explicitly interrupt the enclaved victim application
in order to reliably evict cached address translations without provoking page
faults. Note that we don’t even have to invalidate TLB entries explicitly, since
an SGX-enabled processor automatically takes care of this during the AEX
process. An adversary is left with two choices. She can either periodically
interrupt the enclave with a timer-based preemption, or she can conditionally
interrupt the victim CPU from a snooping thread. The timer-based approach
would have to interrupt the victim enclave at a high frequency to minimize
the risk of missing page accesses. Since SGX leaves enclaves interrupt-unaware
by design, they have no way of detecting these frequent preemptions. Some of
the enhanced TEE designs [48, 229] targeted by our stealthy attacker, however,
redirect interrupts as well as page faults to a trusted enclave entry stub. Such
fortified enclaves could recognize suspicious interrupt rates as an artifact of
the attack, defeating our argument for stealthiness. We therefore opted for the
second option that conditionally interrupts the victim CPU minimally. In this
respect, note that concurrent research [263] has demonstrated that Simultaneous
Multithreading (SMT) technology can be abused to evict TLB entries from
a co-resident logical processor in real-time, without interrupting the victim
enclave.

Our spy thread monitors one or more page-table entries in a tight loop,
preempting the victim enclave CPU after a page access has been detected.
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(a) Victim PTE access maccess

(b) Flush+Reload hit

(c) Flush+Reload miss reload

(d) Flush+Flush hit flush

time

Figure 3.3: Flush+Flush as a high-resolution, low-latency channel to spy on victim
PTE memory accesses.

The latter can be easily achieved in multiprocessor systems through a directed
Inter Processor Interrupt (IPI), specifically designed to synchronize address
translations across cores. From the point of view of the enclave, IPIs are directly
handled by the CPU’s local Advanced Programmable Interrupt Controller
(APIC), and are thus indistinguishable from regular interrupts sent by a benign
operating system.

Monitoring A/D bits. We experimentally confirmed that the “accessed” PTE
attribute is only updated during the first page walk, since subsequent accesses
hit the TLB. Furthermore, we found that the “dirty” attribute is independently
set once for the first subsequent write access to that page. In the A/D
implementation of our spy thread, an IPI is sent as soon as the A bit of
the monitored PTE entry flips. Alternatively, an adversary can choose to only
interrupt the victim enclave when the D flag changes. This might allow for a
slightly stealthier attack, which interrupts the victim minimally, as pages are
typically more often read than written to.

Monitoring PTE memory accesses. In a classical Flush+Reload at-
tack [280], time is divided into slots. The spy program flushes the monitored
cache lines at the start of each time slot, and reloads them at the end to find out
whether they have been accessed by the concurrent victim program executing
independently. When the victim’s memory access overlaps with the flush or
reload phases of the spy thread however, the measurement might be lost, as
illustrated in Fig. 3.3c. Naturally, the probability of an overlapping victim
access increases as the length of the time slot decreases, whereas a longer time
slot increases detection latency and might miss subsequent memory accesses
by the victim. As such, a trade-off is presented between attack resolution and
accuracy.

When reloading PTEs after the enclave has been exited, as in the start-to-end
examples of Listing 3.1, our measurement cannot be destroyed by a concurrent
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victim access. This is not the case, however, when monitoring page-table
memory in real-time from a spy thread. Moreover, the victim only makes a
single memory access to the monitored PTE entry, for subsequent accesses to
the same page hit the TLB. In a classical Flush+Reload attack on the other
hand, a missed memory access can be compensated for by subsequent accesses
in the next time slot. We therefore chose to adopt a novel technique called
Flush+Flush [87] that abuses microarchitectural timing differences in the
execution time of the x86 clflush instruction, which depends on whether the
data is cached or not. A spy thread that repeatedly flushes a specific PTE entry
will observe a slightly higher execution time when the page has been accessed
by the victim, as illustrated in Fig. 3.3d. Spying on page-table memory the
Flush+Flush way thus ensures we can see all page accesses with a minimal
detection latency.

Flush+Flush also confronts us with a new challenge however, since the
microarchitectural timing differences of the clflush instruction are inherently
more subtle than the apparent timing penalty for a DRAM access in
Flush+Reload [87]. On the bright side, clflush does not trigger the
processor’s prefetcher, and therefore does not destroy subsequent measurements,
a known concern for Flush+Reload [88]. We furthermore remark that, if
needed, the spy thread can be made more robust by monitoring multiple code
or data PTEs that each should be accessed before sending the IPI.

3.3.3 Inferring page access patterns

An essential ingredient of the attack procedure outlined so far, is that we
interrupt the victim enclave via a targeted IPI from the spy thread. Some
time passes however before the victim is interrupted, since the spy CPU cannot
instantaneously detect PTE accesses and send the IPI. During this time interval,
the victim enclave continues to execute instructions that may access additional
code and data pages. Previous controlled-channel attacks on the contrary
instantaneously trap to the OS in case of a page fault. This enables a PF-aware
adversary to unambiguously distinguish two successive enclave instructions,
whereas the accuracy at which we can see subsequent page accesses is constrained
by IPI latency. In this respect, a fault-driven attack can be modelled as having
zero latency between detecting a page access and interrupting the victim.

Page fault sequences. Naturally, page-table-based attacks have to deal with
the limitation that they can only see memory accesses at a page-level granularity.
Since functions as well as data objects typically share the same memory page with
other functions or data objects, one cannot directly identify specific function
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or data accesses in a large enclave program. Xu et al. [277] overcome this
challenge by identifying unique page fault sequences that lead to a particular
code or data access. Since a PF-aware attacker does not have to cope with
latency in the measurement process, she may construct page access sequences
at instruction-level granularity.

In the running example of Listing 3.2, the ec_mul function on P1 serves as
a trampoline to redirect control flow to either point_double on page P2 or
point_add on page P3, based on the secret scalar bit under consideration. A
one bit can be identified by the sequence (P2, P1, P3, P1, P2). An observed page
fault sequence of (P2, P1, P2) on the other hand, corresponds to an iteration
with a zero bit. One approach would be to implement a state machine in the spy
thread to recognize such sequences. However, as the intermediate P1 accesses
are only a few instructions long, they could be easily missed by a stealthy
spy that has to take IPI latency into account. Moreover, page fault sequences
presuppose a completely noise-free way of establishing enclave page accesses.
Recall from the above discussion, however, that Flush+Reload may suffer
from occasional false positives by triggering the processor’s prefetcher.

Page sets. To correlate subsequent page accesses in large enclave programs, we
introduce the notion of page sets as a robust alternative to page fault sequences.
Our spy thread continuously monitors one or more PTEs, from here on referred
to as the trigger page(s), and interrupts the victim enclave as soon as an access
is detected. Upon IPI arrival, the spy establishes the set of pages (not) accessed
by the victim, using one of the techniques from Section 3.3.1. Since the TLB is
cleared whenever entering or exiting the enclave, these pages must have been
accessed at least once by the victim from the previous interrupt up to now. We
make the key observation that specific points in the execution trace of a large
enclave program can be uniquely identified by matching the pattern of all pages
accessed or not accessed in between two successive accesses to a trigger page.
Note that information recovery via page sets is inherently stealthier than the
previously proposed page fault sequences [277, 230] in that victim enclaves are
only interrupted when accessing the trigger page. Where a page fault only leaks
one bit of information (i.e., the trigger page was accessed), our notion of page
sets allows a spy to capture the maximum information for every trigger page
interrupt.

Applying our page set theory to the running example of Listing 3.2, the spy
thread monitors the trigger page P2 holding point_double, and matches the
page set {P1, P3} on every interrupt. If both P1 (ec_mul) and P3 (point_add)
have been accessed, the iteration corresponds to a one bit. Likewise, if P1 has
been accessed, but not P3, the iteration processed a zero bit. Finally, in case
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P1 as well as P3 were both not accessed, P2 must have been accessed from an
execution context other than the targeted point_double invocation, and we
classify the interrupt as a false positive.

After identifying secret-dependent control flow or data accesses in the victim
application, a successful attack comes down to designating specific pages to
be tracked in the spy thread, and recognizing the associated page set patterns.
Analogous to previous fault-based attacks [277, 230], we first perform a detailed
offline analysis of the enclaved application binary to extract an ideal trace of
instruction-granular page accesses for a known input. From this ideal trace, we
select a suitable candidate trigger page, and we construct the sets of all pages
accessed or not accessed in between two hits on the trigger page. By comparing
the resulting page sets, we are left with a page set pattern that (uniquely and
robustly) identifies a specific point in the victim’s execution trace.

3.4 Implementation

Similar to previous controlled-channel attacks [277, 230], our exploits target
unmodified legacy applications running under the protection of a TEE. The
enclaved application binary is protected from the untrusted host operating
system by means of a shielding system that provides trusted library services,
and interposes on system calls. Previous controlled-channel attacks on Intel
SGX were implemented for the Haven [20] shielding system. Since Haven is not
publicly available, we implemented our attacks on the open-source1 Graphene-
SGX library OS [246]. We first briefly overview the internals of Graphene-SGX,
and thereafter explain how we extended the untrusted runtime with a reusable
attacker framework.

Graphene-SGX. Library OSs such as Graphene [246] repackage conventional
OS kernel services into a user-mode application library. System calls made by
the legacy application are transparently transformed into libOS function calls,
which are then either processed locally, or translated into a minimal host kernel
ABI that provides core OS primitives. The libOS relies on a small Platform
Adaptation Layer (PAL) to translate platform-independent host ABI calls into
a narrow set of system calls to the underlying host operating system, which
remains, however, explicitly trusted from a security perspective.

Graphene-SGX [246]—like other recently proposed SGX-based shielding systems
including Haven [20], Panoply [231], and SCONE [17]—improves over this

1https://github.com/oscarlab/graphene

https://github.com/oscarlab/graphene
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Figure 3.4: Graphene-SGX attack framework interaction.

situation by not only protecting libOS instances from each other, but also from
a malicious host operating system. To this end, Graphene-SGX encapsulates
the entire libOS, including the unmodified application binary and supporting
libraries, inside an SGX enclave. Graphene also inserts a trusted runtime with
a customized C library and ELF loader in the enclave. Since SGX prohibits
enclaves from making system calls directly, the PAL is split into a trusted part
that calls out to an untrusted runtime in the containing application to perform
the system call to the untrusted host OS. Graphene-SGX furthermore relies on
an untrusted Linux driver for enclave creation/tear down and protected memory
management via the dedicated ring-zero SGX instruction set.

Attack framework. We implemented our attacks as an extension to Graphene’s
untrusted runtime, leaving the trusted in-enclave components unchanged. Our
implementation is conceived as a reusable framework to facilitate eavesdropping
on different application binaries.

Figure 3.4 summarizes the steps undertaken by our attack framework. 1 The
untrusted user space runtime creates a separate spy thread just before entering
the enclave’s main function. We affinitize the spy and victim threads to their
own physical CPU cores to avoid any noise from page-table shootdowns by the
OS scheduler. 2 The newly created spy thread continues its execution in kernel
space by calling to our modified Graphene-SGX driver. We run our core attacker
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code in kernel mode to be able to easily send IPIs, inspect PTE attributes,
and monitor page-table memory. 3 The spy first goes through a pluggable,
attack-specific initialization phase that creates the page sets to be monitored.
4 After synchronizing with the victim thread, which is still waiting to enter
the enclave, the spy enters a tight probing loop that measures either clflush
execution time, or A/D attributes of one or more page-table entries. 5 Victim
thread enters the enclave. 6 Upon detecting an access on the trigger page, the
spy interrupts the victim thread as soon as possible. 7 The IPI handler on
the victim CPU now establishes the access pattern for the monitored page set
using either the noise-free Flush+Reload or A/D mechanism. Page set access
patterns are logged for later parsing by an attack-specific post-processing script.
8 Spy and victim threads synchronize once more before resuming the enclave.

So far, we assumed the attacker obtained the page addresses to be monitored
from an objdump of the application binary. Graphene, like other SGX-based
shielding systems [20, 231, 17], does not randomize the base address of loaded
executables. Instead, applications and supporting libraries (including libc)
are loaded at deterministic memory locations. To easily discover executable
base addresses, we propose to first deploy the target application binary in
an attacker-controlled libOS instance that we minimally modified to leak load
addresses. SGX’s remote attestation scheme properly prevents us from deploying
the modified libOS instance when running the application for the remote
stakeholder, but the observed load addresses will be identical. Note that it
has been shown [277] that hypothetical support for conventional address space
layout randomization, which only randomizes the application’s base address,
could be easily defeated by observing page access patterns.

Inter-processor interrupts. In a page fault-driven attack, the victim enclave
is exited immediately when accessing a monitored page. For our PF-oblivious
attacks on the contrary, we define IPI latency as the number of instructions
executed by the victim enclave after accessing a trigger page, and before
being interrupted by the spy thread. Reducing IPI latency is an important
implementation consideration in that it defines the accuracy at which we can see
subsequent page accesses. Before quantifying latency in the evaluation section,
we present some general implementation techniques to minimize IPI latency.

Our driver hooks into an unused IPI vector of Linux’s KVM subsystem by
registering the address of our interrupt handler in the system-wide IDT. This
allows us to send the IPI promptly from assembly code in the spy thread
by writing to the relevant memory-mapped APIC address, instead of having
to rely on Linux’s IPI subsystem that performs bookkeeping on shared data
structures before sending the interrupt. To further reduce IPI latency, we
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considered a previously proposed [156] technique that sets the “cache disable”
bit in the CR0 control register to disable the L1, L2, and L3 cache on the CPU
running the victim enclave. We experimentally confirmed that this technique
dramatically slows down the victim thread, and substantially reduces the number
of instructions executed after accessing a trigger page. However, setting CR0.CD
on the victim CPU invalidates our cache-based PTE timing attack vector.
Moreover, the aforementioned T-SGX defense [229] would be able to detect this
technique, for TSX relies on the CPU cache to start transactions [114].

Analyzing page sets. With our attack framework in place, the main challenge
left is to select the pages that need to be tracked in the spy thread. To study
the behavior of target applications, previous controlled-channel attacks [277]
record a complete, byte-granular trace of page fault addresses by running the
application outside of the enclave with at most one code and data page allocated
at all times. We simplify this process via a GNU debugger script that extracts an
instruction-granular code page trace by single-stepping through the unprotected
application binary, recording the symbolic name and virtual page address of
the instruction pointer. Furthermore, by placing strategic breakpoints, the
debugger script can easily be instrumented to mark individual loop iterations.

To construct the most stealthy attack, we select a trigger page that is minimally
accessed in the extracted trace, and we compose a set of remaining pages that
unambiguously identifies the code page access of interest. When running the
attack on an enclaved application binary, our driver dumps page set patterns
for all accesses on the trigger page. Afterwards, we use a small, attack-specific
post-processing script to match the desired patterns in the driver output. If
needed, the pattern to be matched, can also include the page sets of previous
or succeeding trigger page accesses, and can be made more robust by means of
a regular expression.

3.5 Evaluation

In this section, we evaluate our attack framework. We first provide
microbenchmarks to quantify IPI latency, and thereafter demonstrate the
effectiveness of our attacks by extracting EdDSA session keys from an unmodified
binary of the widely used Libgcrypt cryptographic library.

All experiments were conducted on publicly available off-the-shelf SGX hardware.
We used a commodity Dell Inspiron 13 7359 laptop with a Skylake dual-core Intel
i7-6500U processor and 8GiB of RAM. The machine runs Ubuntu 15.10, with
a generic 64-bit Linux 4.2.0 kernel. To prevent any noise from OS scheduling
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Table 3.1: IPI latency in terms of the number of instructions executed by the victim
after accessing the trigger page.

Accessed Flush+Flush

Experiment Mean σ Mean σ Zero %

nop 431.70 34.11 0.65 17.65 99.84
add register 176.30 14.60 0.15 6.18 99.94
add memory 32.45 2.79 0.06 1.92 99.88
nop nocache 0.02 0.39 – – –

decisions, we disabled SMT and reserved a dedicated CPU for the spy thread
using Linux’s isolcpus boot option. We based our attack framework on a
recent master checkout of the Graphene project, compiled with gcc v5.2.1.

3.5.1 IPI latency microbenchmarks

Recall from Section 3.4 that we want to minimize the number of instructions
executed by the victim enclave after accessing a trigger page, and before being
interrupted by a targeted IPI from the spy thread. In order to reliably quantify
IPI latency, we wrote a small microbenchmark application that first accesses an
isolated memory page, and immediately thereafter starts executing an instruction
slide of 5,000 identical x86 instructions. For the microbenchmark experiments,
we instrumented our driver to retrieve the instruction pointer stored in the SSA
frame of the interrupted debug enclave through the edbgrd SGX instruction.
The exact number of instructions executed in the microbenchmark application
can be inferred by comparing the retrieved instruction pointer with the known
start address of the instruction slide.

Interrupt granularity. Table 3.1 records IPI latencies for different x86
instructions. We repeat all experiments 10,000 times for a spy thread that
monitors the trigger page through the “accessed” PTE attribute, as well as for a
spy that repeatedly flushes page-table memory locations. We present the mean
and the standard deviation (σ) to characterize IPI latency distributions. In the
first experiment, we prepare an instruction slide with ordinary no-operations.
The upper row of Table 3.1 reveals a first important result. That is, our
benchmark enclave can only be interrupted by an A/D spy at a relatively
coarse-grained granularity of about 430 nops, whereas the novel Flush+Flush
technique immediately interrupts the victim thread. Note that interrupts with
zero IPI latency arrive within the instruction that accessed the trigger page, even
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before the next enclave instruction started executing. The last column, which
lists the percentage of interrupts with zero IPI latency, distinctly shows that
a victim thread monitored by a Flush+Flush spy is interrupted within the
trigger instruction with very high probability (99.84%). As such, Flush+Flush
represents a precise, instruction-granular, technique to interrupt victim enclaves,
improving significantly over related state-of-the-art enclave execution control
proposals [266, 156, 181]. We furthermore found the technique to be reliable,
for Flush+Flush recorded all 10,000 page accesses, without false positives,
and with significantly less noise (smaller standard deviation) than an A/D spy.

The increased advantage of a Flush+Flush spy, as opposed to a spy monitoring
A/D bits, can be understood from the effects on the caching behavior of the
page-table walk. A PTE memory location that is continuously probed by an
A/D spy will be cached when the victim CPU performs the page-table walk,
whereas a Flush+Flush spy actively ensures the victim CPU misses the cache.
As such, instructions that access the trigger page will take longer to complete,
providing a wider time frame for IPI arrival. This effect is further aggravated
when the processor needs to update the “accessed” page-table attribute. For
the victim CPU needs to perform another memory access to reload the PTE
entry from DRAM when the A bit was not set, and the corresponding cache
line has been flushed by a concurrent spy thread. Interestingly, we found that
the victim’s second PTE memory access, where the A bit is updated, is more
noticeable from a Flush+Flush spy thread. Intel’s software optimization
manual [113] indeed confirms that “flushing cache lines in modified state are
more costly than flushing cache lines in non-modified states”.

Instruction latency. The second and third experiments investigate the
influence of the microbenchmark instruction type on IPI latency. We start from
the intuition that an individual nop instruction is trivial to execute and can
easily be pipelined, allowing many instructions to be executed in the limited
time period after accessing the trigger page and before IPI arrival. The second
row of Table 3.1 confirms that a victim program can make significantly less
progress on an instruction slide with add instructions that sequentially increment
a processor register. Likewise, the third row shows that IPI latency drops even
further when the victim executes a sequence of add instructions that increment
a memory location. The latter can be explained from the additional page-table
walk that retrieves the physical memory address of the data operand for the
first add instruction.

Finally, we performed an experiment that entirely disables instruction and data
caching on the victim CPU by setting the CR0.CD bit, as explained in Section 3.4.
The last row of Table 3.1 clearly shows that this approach can almost completely
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eliminate IPI latency (mean and standard deviation near zero) for an A/D spy.
This confirms our hypothesis that the observed IPI latency differences stem
from the caching behavior of the page-table walk. Of course, a Flush+Flush
spy cannot see page accesses when the cache is disabled on the victim CPU.

3.5.2 Attacking Libgcrypt EdDSA

To illustrate the applicability of our attacks on real-world applications, we
extract private EdDSA session keys from a general purpose cryptographic
library Libgcrypt, which used in the popular GnuPG cryptographic software
suite. More specifically, we reproduce a previously published [230] page fault-
driven attack on Libgcrypt, showing that our stealthy attack vectors can extract
the same information without triggering any page faults. Since Libgcrypt is
officially distributed from source code, we built unmodified binaries for Libgcrypt
v1.6.3 and v1.7.5 as well as the accompanying error-reporting library Libgpg-
error v1.26 through the default ./configure && make invocation, using gcc
v5.2.1.

EdDSA implementation. The Edwards-curve Digital Signature Algorithm
(EdDSA) [22] is an efficient, high-security signature scheme over a twisted
Edwards elliptic curve with public reference point G. The security of
elliptic curve public key crypto systems critically relies on the computational
intractability of the elliptic curve discrete logarithm problem: given an elliptic
curve with two points A and B, find a scalar k such that A = kB. Recall
that our running example in Listing 3.2 provides an efficient algorithm for the
inverse operation, i.e., multiply a point with a known scalar. EdDSA uses
scalar point multiplication for public key generation, as well as in the signing
operation. The private key d is derived from a randomly chosen large scalar
value, and the corresponding public key is calculated as Q = dG. To sign a
message M , EdDSA first generates a secret session key r, also referred to as
nonce, by hashing the long-term private key d together with M . Next, the
signature is calculated as the tuple (R = rG, S = r + hash(R,Q,M)d). It can
be seen that an adversary who learns the secret session key r from side-channel
observations during the signing process, can easily recover the long-term private
key as d = (S − r)/hash(R,Q,M), with (R,S) a valid signature for a known
message M [22, 279].

Listing 3.3 provides the relevant section of the scalar point multiplication routine
in Libgcrypt v1.6.3. Lines 14 to 18 are a straightforward implementation of
Listing 3.2, and have previously been successfully targeted in a page fault-
aware attacker model [230]. We remark however that Libgcrypt provides some
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1 if (mpi_is_secure (scalar)) {
2 /* If SCALAR is in secure memory we assume that it is the
3 secret key we use constant time operation. */
4 point_init (&tmppnt);
5

6 for (j=nbits-1; j >= 0; j--) {
7 _gcry_mpi_ec_dup_point (result, result, ctx);
8 _gcry_mpi_ec_add_points (&tmppnt, result, point, ctx);
9 if (mpi_test_bit (scalar, j)) /* ← eliminated in v1.7.5 */

10 point_set (result, &tmppnt);
11 }
12 point_free (&tmppnt);
13 } else {
14 for (j=nbits-1; j >= 0; j--) {
15 _gcry_mpi_ec_dup_point (result, result, ctx);
16 if (mpi_test_bit (scalar, j))
17 _gcry_mpi_ec_add_points (result, result, point, ctx);
18 }
19 }

Listing 3.3: Scalar point multiplication in Libgcrypt v1.6.3.

protection against side-channel attacks by tagging sensitive data, including the
EdDSA long-term private key, as “secure memory” [143]. Lines 1 to 12 show
how a hardened, add-always scalar point multiplication algorithm is applied
when the provided scalar is tagged as secure memory. However, while the
hardened algorithm of Libgcrypt v1.6.3 greatly reduces the attack surface by
cutting down the amount of secret-dependent code, we show that even the short
if branch on line 9 remains vulnerable to page-table side-channel attacks during
the public key generation phase. We verified that this defect has been addressed
in the latest version v1.7.5 by replacing the if branch with a truly constant time
swap operation. We also found, however, that Libgcrypt v1.6.3 as well as v1.7.5
do not tag the secret EdDSA session key as secure memory, resulting in the
non-hardened path being taken during the signing phase.2

Monitoring A/D bits. We first explain how we attacked the hardened
multiplication (lines 6 to 11) in Libgcrypt v1.6.3. We found that every loop
iteration accesses 21 distinct code pages, regardless of whether a one or a zero
bit was processed. Our stealthy spy thread monitors the A attribute of the
trigger page-table entry holding the physical page address of point_set, which
is accessed 126 or 127 times each iteration, depending on the scalar bit under
consideration. We rely on a robust PTE set of nine additional code pages whose

2 To address this shortcoming, we contributed a patch that has been merged in Libgcrypt
v1.7.7.
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combined A bits unambiguously identify an unconditional execution point in
add_points as well as the conditional point_set invocation on line 10. Our
post-processing script reliably recovers the full 512-bit EdDSA session key by
counting the number of IPIs (i.e., trigger page accesses) in between two page
set pattern hits. PTE set hits are classified as belonging to a different iteration
when the number of IPIs in between them exceeds a certain threshold value.
As such, iterations that processed a one bit are easily recognized by two page
set hits, whereas zero iterations hit only once. Our A/D attack on Libgcrypt
v1.6.3 interrupts the victim enclave about 60,000 times.

To attack the standard multiplication (lines 14 to 18) in the latest Libgcrypt
v1.7.5, we spy on the A attribute of the PTE that references the test_bit
code page. Our offline analysis shows that the trigger page is accessed 93 or
237 times for iterations that respectively process a zero or a one bit. The spy
thread records a PTE set of four additional code pages whose combined access
patterns uniquely identify the if branch on line 16. We reliably recover all 512
secret scalar bits at post-processing time by observing that the PTE set pattern
repeats exactly once every loop iteration, and the page set value for the first
subsequent trigger page access depends on whether the if branch was taken
or not. We counted only about 40,000 IPIs for our A/D attack on Libgcrypt
v1.7.5.

Monitoring cache misses. Recall from Section 3.3 that spying on page-table
memory at a cache line granularity is challenging in that we can only see accesses
for conceptually enlarged 32KiB pages. Our offline analysis on Libgcrypt v1.7.5
shows that every loop iteration accesses 22 code pages, belonging to three
different application libraries: Libgcrypt, Libgpg-error, and the trusted libc
included by Graphene. Only 11 of these 22 code pages fall in distinct cache
lines. Interestingly, we found that the free wrapper function used by Libgcrypt
stores/restores the errno memory location of the trusted in-enclave libc 46 or
102 times for zero respectively one iterations. The address of the error number
for the current thread can be retrieved via the __errno_location function,
residing at a remote location within the libc memory layout.

Our stealthy Flush+Flush spy uses the code page for the __errno_location
libc function as a reliable trigger page that does not share a cache line with any
of the other pages accessed in the loop. Our cache-based attack on Libgcrypt
interrupts the victim enclave about 130,000 times for a single, start-to-end run.
We furthermore construct a page set covering 7 distinct PTE cache lines that
are recorded by the spy on every trigger page access, using the Flush+Reload
technique after interrupting the enclave. While the extracted page set value
sequences themselves appear quite noisy at first sight, we found that certain
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values unmistakably repeat more often in iterations that processed a one bit.
Furthermore, the number of IPIs (i.e., errno accesses) in between these values
exhibit clear repetitions. Our post-processing script uses a regular expression to
identify a robust pattern that repeats once every iteration. Again, key bits can
be inferred straightforwardly from the number of IPIs in between pattern hits.
Using this technique, we were able to correctly recover 485 bits of a 512-bit
secret EdDSA session key in a single run of the victim enclave. Moreover, using
the number of IPIs in between two recovered scalar bits as a heuristic measure,
our post-processing script is able to give an indication of which bit positions
are missing.

3.6 Discussion and mitigations

Frequent enclave preemption. Our work shows that enclave memory accesses
can be learned by spying on unprotected page tables, without triggering any
page faults. This observation is paramount for the development of defenses
against page-table-based threats. Specifically, state-of-the-art PF-oblivious
defenses [230, 229] do not achieve the required guarantees. We only interrupt
the enclave when successive accesses to the same page need to be monitored.
Importantly, our attacks remain undetected by T-SGX [229], since it allows up
to 10 consecutive transaction aborts (interrupts) for each individual basic block.
We do acknowledge, however, that the number of interrupts reported for our
Libgcrypt attacks in Section 3.5.2 is substantially higher than what is to be
expected under benign circumstances. We can therefore see improved, heuristic
defenses using suspicious interrupt rates as an artifact of an ongoing attack.

Indeed, Déjà Vu [42], which was first published after we submitted this work,
explores the use of TSX to construct an in-enclave reference clock thread that
cannot be silently stopped by the OS. The enclave program is instrumented
to time its own activity, so as to detect the execution slowdown associated
with an unusual high number of AEXs. While Déjà Vu would likely recognize
frequent enclave preemptions as a side effect of our current attack framework,
we argue that heuristic defenses do not address the root causes of page-table-
based information leakage. That is, our novel attack vectors are still applicable,
and depending on the victim program, interrupts may not even be required.
The knowledge that a specific page is accessed, can reveal security-sensitive
information directly, or enable an attacker to launch a second phase of her
attack [266]. Furthermore, as part of the continuous attacker-defender race, we
expect the contributed attack vectors to trigger improved, stealthier attacks
that remain under the radar of Déjà Vu-like defenses.
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In this regard, Wang et al. [263] concurrently developed similar page-table-based
attacks. In contrast to our work, they explore a perpendicular approach which
does not aim to maximize the temporal resolution, but instead only focuses on
the A/D channel, rather than PTE caching, and minimizes enclave interrupts by
exploiting SMT-based contention from a concurrent, attacker-controlled sibling
core to evict TLB entries without interrupting the victim enclave. As such, this
observation effectively demonstrates that Déjà Vu-like defenses are inherently
insufficient to eliminate page-table-based threats.

Hiding enclave page accesses. At the system level, some lightweight embed-
ded TEEs [189, 147] avoid page-table-based threats altogether by implementing
hardware-enforced isolation in a single-address-space. Alternatively, some
higher-end TEE research prototypes [48, 58, 173, 236] place enclave page tables
out of reach of an attacker. Unfortunately, we believe such an approach is
unacceptable for Intel SGX, especially when protecting sensitive application
data from potentially malicious cloud providers [20, 217]. In such use cases, the
cloud provider must be able to quickly regulate different cloud users competing
for scarce platform resources including EPC memory. Fortified TEE designs
such as Sanctum [48] on the other hand move page tables within the enclave,
and require the OS to engage in a lengthy protocol whenever reclaiming a
physical page. Furthermore, when applying Sanctum’s enclave-private page
table design to modern x86 processors [114], an adversary could still leverage
the Extended Page Tables (EPTs) set up by the hypervisor. That is, any
access to guest-physical pages, including the enclave and its private page tables,
results in an EPT walk that sets accessed and dirty bits accordingly. Masking
A/D attributes in enclave mode is neither sufficient nor desirable, as it cannot
prevent our cache-based attacks, and disrupts benign OS memory management
decisions.

At the application level, we believe the academic community should investigate
different defense strategies based on the type of enclave. For small enclaves
that must be offered the highest security guarantees, automated compiler-based
solutions [44] are to be considered. Good practices applied to cryptographic
software (e.g., not branching on a secret) may be extended to more general
approaches, such as the deterministic multiplexing defense proposed by Shinde
et al. [230]. For uses cases where unmodified application binaries are loaded
in an enclave, however, such approaches would likely lead to unacceptable
performance overhead. In such situations, the use of more probabilistic security
measures may be acceptable. Note that previous page fault-driven research [277]
successfully defeated conventional Address Space Layout Randomization (ASLR)
schemes that randomize an application’s base address. SGX-Shield [227], on the
other hand, implements fine-grained ASLR by compiling enclaved application
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code into small 32- or 64-byte randomization units that can subsequently be
re-shuffled at load time.

3.7 Related work

A recent line of work has developed TEE security architectures that support
secure isolated execution of enclaves with a minimal trusted computing base,
either via a small hypervisor [174, 173, 236, 100], or with trusted hardware [166,
176, 58, 48, 189, 147]. Intel SGX represents the first widespread TEE solution,
included in off-the-shelf consumer hardware, and has recently been put forward
to protect sensitive application data from untrusted cloud providers [20, 217]. As
such, SGX has received considerable attention from the research community, and
one line of work, including Graphene-SGX [246], Haven [20], Panoply [231], and
SCONE [17] has developed small libOSs that facilitate running unmodified legacy
applications in SGX enclaves. However, Xu et al. [277] recently pointed out
that enclaved execution environments are vulnerable to a new class of powerful
controlled-channel attacks conducted by an untrusted host operating system.
We have discussed previous research results on page-table-based attacks and
defenses extensively in Section 3.2.3. Iago attacks [38] furthermore exploit legacy
applications via the system call interface, and AsyncShock [266] demonstrates
that an adversarial OS can more easily exploit thread synchronization bugs
within SGX enclaves. Finally, the SGX research community has witnessed a
steady stream of microarchitectural side-channel attacks; either by abusing the
branch prediction unit [156], or in the form of fine-grained Prime+Probe [79,
225, 29, 181] cache attacks.

In a more general, non-TEE context, there exists a vast amount of research on
microarchitectural cache timing vulnerabilities [202, 280, 88]. Especially relevant
to our work is the Flush+Flush [87] channel which was only proposed very
recently, and attack research [279] that applies Flush+Reload to partially
recover OpenSSL ECDSA nonces. Furthermore, timing differences from TLB
misses have been exploited to break kernel space ASLR [104]. More recently, it
has been shown that kernel ASLR can also be bypassed by exploiting timing
differences in the prefetch instruction [86], or by leveraging TSX [132]. Finally,
recent concurrent work [81] on JavaScript environments has independently
demonstrated a page-table-based cache side-channel attack that completely
compromises application-level ASLR.
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3.8 Conclusion

Our work shows that page-table walks in unprotected memory leak enclave
page accesses to untrusted system software. We demonstrated that our stealthy
attack vectors can circumvent current state-of-the-art defenses that hide page
faults from the OS. As such, page-table-based threats continue to be worrisome
for enclaved execution.
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SGX-Step: A practical attack
framework for precise enclave
execution control
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Framework for Precise Enclave Execution Control”. In: 2nd Workshop on
System Software for Trusted Execution (SysTEX). ACM, Oct. 2017, 4:1–4:6

Preamble

This chapter presents SGX-Step, an open-source framework to facilitate side-
channel attack research on Intel x86 processors in general and Intel SGX
platforms in particular. SGX-Step consists of two components, the first one
being an adversarial Linux kernel driver that exports traditionally privileged
operating system powers to user space. The second component is a small
user-space attack library that allows to configure page-table entries and x86
APIC timer interrupts directly from the untrusted enclave host process. We
contribute and evaluate an improved approach to single-step enclaved execution
at instruction-level granularity, and we show how SGX-Step enables several
new or improved attacks. Finally, we discuss its implications for the design of
effective defense mechanisms.

99
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This research won the best paper award at SysTEX 2017. Since the original
release of our open-source framework, SGX-Step gained widespread recognition
in the TEE community and has been leveraged in our own research [91, 249, 256,
223, 35, 254, 188, 182, 251], as well as by several independent researchers [270, 6,
105, 130, 269, 8, 208, 211, 5, 94], to enable a long line of new and improved high-
resolution enclave attacks. From a defensive perspective, SGX-Step permanently
refined the TEE threat model by showing that enclaves can be precisely
interrupted exactly one instruction at a time. This observation defeats any
side-channel mitigations [156, 69, 119] that are based on partial atomic behavior
of the instruction stream and has furthermore informed several recent defensive
works [103, 9, 34, 110]. which now properly take single-stepping adversary
capabilities into account. For instance, our single-stepping attack against the
Zigzagger [156] branch-shadowing mitigation has directly inspired an improved
compile-time hardening technique based on randomization [103]. Likewise, Intel
explicitly mentions SGX-Step in the security analysis deep dive of their recently
released LVI mitigations [110].

SGX-Step originates from initial experimental efforts to avoid compilation
overheads when creating a custom Linux kernel for measuring interrupt latency
in early prototypes of Nemesis (Chapter 5) and to avoid kernel panics when
running varying page-table spy code in kernel mode (Chapter 3). In this respect,
SGX-Step significantly eases enclave attack prototyping by offering a mini user-
space operating system library on top of an unmodified stock Linux kernel. This
is in notable contrast to alternative attacks that require developing a custom
kernel driver module [277, 258, 181, 92, 39] or even patching and re-compiling
the entire Linux kernel [156, 95, 233].

Over the past three years, we have maintained SGX-Step as an active open-
source project on GitHub, expanding the framework with new features and
keeping it up-to-date with recent Linux kernel and SGX SDK versions. Table 4.1
lists the principal x86 features supported by modern SGX-Step distributions,
together with an overview of demonstrated interrupt-driven SGX attacks. Note
that we defer a more systematic overview of the SGX attack landscape to
Chapter 8. Table 4.1 only focuses on the relevant subset of attacks, namely
the ones that leverage interrupts or page faults to frequently preempt a victim
enclave. The highlighted works leverage SGX-Step, and the table clearly shows
increasing adoption of the framework over time in a line of high-resolution
attacks. Indeed, to date SGX-Step remains the first and only framework of its
kind to offer true, noiseless single-stepping capabilities. The table furthermore
reveals that, apart from single-stepping, a considerable number of attacks have
benefited from SGX-Step’s convenient page-table manipulation interface to
preempt victim enclaves at a coarser-grained, page-level granularity. As a last
interesting tendency, some recent works [188, 223, 35, 281] have adopted SGX-
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Table 4.1: Overview of demonstrated interrupt-driven SGX attacks in terms of the
achieved temporal resolution (number of instructions) and x86 features used: APIC
device (timer interrupts, inter-processor interrupts), page-table manipulations (page
faults, accessed/dirty bits, physical page number), global- and interrupt-descriptor-
table manipulations. The last column indicates whether the attack was mounted
after dynamically loading a driver vs. patching and re-compiling a custom OS kernel.
Attacks using the user-space SGX-Step framework are in the highlighted rows.

Temporal
resolution

APIC PTE Desc

Yr Attack IRQ IPI #P
F

A/
D

PP
N

GD
T

IDT Drv

’15 Ctrl channel [277] ∼ Page # #  # # #  3

’16 AsyncShock [266] ∼ Page # #  # # # # –
’17 CacheZoom [181] 7 >1  # # # # # # 3

’17 Hahnel et al. [92] 7 0 - >1  # # # # #  3

’17 BranchShadow [156] 7 5 - 50  # # # # # # 7

’17 Stealthy PTE [258] ∼ Page #  #  # #  3

’17 DarkROP [154] ∼ Page # #  # # # # 3

’17 SGX-Step [257] 3 0 - 1  #   # # # 3

’18 Off-limits [91] 3 0 - 1  #  # #  # 3

’18 Single-trace RSA [270] ∼ Page # #  # # # # 3

’18 Foreshadow [249] 3 0 - 1  #  #  # # 3

’18 SgxPectre [39] ∼ Page # #  # # # # 3

’18 CacheQuote [50] 7 >1  # # # # # # 3

’18 SGXlinger [95] 7 >1  # # # # # # 7

’18 Nemesis [256] 3 1  #   # #  3

’19 Spoiler [130] 3 1  # #  # #  3

’19 ZombieLoad [223] 3 0 - 1  #   # #  3

’19 Tale of 2 worlds [254] 3 1  #   # #  3

’19 MicroScope [233] ∼ 0 - Page # #  # # # # 7

’20 Bluethunder [105] 3 1  # # # # #  3

’20 Big troubles [269] ∼ Page # #  # # # # 3

’20 Viral primitive [6] 3 1  #   # #  3

’20 CopyCat [182] 3 1  #   # #  3

’20 LVI [251] 3 1  #    #  3

’20 A to Z [8] ∼ Page # #  # # # # 3

’20 Frontal [208] 3 1  #   # #  3

’20 CrossTalk [211] 3 1  #  # # #  3

’20 Online template [5] ∼ Page # #  # # # # 3

’20 Déjà Vu NSS [94] ∼ Page # #  # # # # 3
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Step for rapid x86 attack prototyping without necessarily relying on frequent
enclave preemptions and ultimately even without targeting SGX enclaves at all.

Importantly, while the single-stepping technique provided by SGX-Step
considerably amplifies existing leakage sources, it does in itself not directly
break enclave security. By confronting the ultimate consequences of a privileged
adversary threat model, however, we consider the primary role of SGX-Step to
be accordingly raising the bar for adequate defenses in an enclave setting. In this
respect, SGX-Step reveals the inevitable tension between processor-level enclave
isolation and the operating system’s traditional role as a resource manager.
Hence, silver-bullet defenses should not be expected, but we outline a number of
potential hardening techniques, which may hinder exploitation with SGX-Step,
and their trade-offs in Chapter 8.

4.1 Introduction

Today’s computing platforms rely on privileged system software to separate
applications, and to govern the interactions between them. Commodity
monolithic Operating System (OS) kernels, however, consist of millions of
lines of code written in unsafe languages, exposed to both logical bugs and
low-level software vulnerabilities. In response to these concerns, the past years
have seen a significant research effort [166, 114, 48] on Trusted Execution
Environments (TEEs) that support isolated execution of security-sensitive
application components or enclaves with a minimal Trusted Computing Base
(TCB). These proposals have in common that they enforce security primitives
directly in hardware, or in a small hypervisor, so as to prevent the untrusted
OS from accessing enclaved code or data directly, while still leaving it in
charge of shared platform resources such as system memory or CPU time.
With the arrival of Intel’s Software Guard Extensions (SGX) [114, 119], such
strong hardware-enforced trusted computing guarantees are now available on
mainstream consumer devices.

Recent research demonstrated, however, that the increased capabilities of
a privileged TEE attacker allow her to construct high-resolution, low-noise
channels to spy on enclaved execution. Specifically, the past months have seen a
steady stream of kernel-level SGX attacks exploiting information leakage from
page tables [277, 258], CPU caches [181, 92], or branch prediction units [156].
These attacks commonly exploit the OS’s control over timer devices to gain
fine-grained side-channel observations from frequent enclave preemptions. As
such, the precision at which one can interrupt a victim enclave, determines the
temporal resolution of the attack.
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This chapter shows that enclaved execution can be reliably monitored at a
maximal temporal resolution (i.e., instruction per instruction). Specifically,
we present and evaluate SGX-Step, which is the first framework of its kind to
achieve true single-stepping for arbitrary enclave programs. We furthermore
lower the bar for enclave preemption attacks considerably by exporting user
space memory mappings for the local APIC timer device and enclave page tables.
As part of our evaluation, we defeat a recently proposed branch prediction
defense [156], demonstrating SGX-Step’s enhanced precision over previous
proposals. Summarized, we make the following contributions:

• We show that enclaved execution can be precisely single-stepped using a
novel APIC timer manipulation.

• We implement SGX-Step as an open-source1 Linux kernel driver and
runtime library, and explain how it improves the temporal resolution of
existing attacks.

• We evaluate our approach on two different SGX processors, and provide
evidence that SGX-Step enables new attacks that were previously deemed
infeasible.

4.2 Background and related work

4.2.1 Attacker model and Intel SGX

Ongoing concerns on protecting sensitive data from software running at higher
privilege levels have led to the Software Guard Extensions (SGX) [114, 119]
included in recent Intel x86 processors. SGX enables hardware-enforced isolation
and attestation of security-critical code in enclaves, embedded in the virtual
address space of a conventional OS process. Legacy page tables are left under
explicit control of the untrusted OS, but the processor’s Memory Management
Unit (MMU) enforces that enclave-private memory can never be directly accessed
from outside. Hardware-level cryptography furthermore allows the untrusted
OS to initialize enclaves, and swap in/out protected pages to untrusted storage.

Enclave code is restricted to user mode, and has access to all its protected
pages, as well as to the unprotected part of the application’s address space.
Dedicated CPU instructions switch the processor in or out of enclave mode. The
eenter instruction transfers control from the unprotected application context
to a predetermined location inside the enclave, and eexit can be used to exit an

1https://github.com/jovanbulck/sgx-step

https://github.com/jovanbulck/sgx-step
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enclave programmatically. Alternatively, in case of a fault or external interrupt,
the processor executes an Asynchronous Enclave Exit (AEX) procedure that
saves the execution context securely in a preallocated State Save Area (SSA)
inside the enclave, and replaces the CPU registers with a synthetic state to avoid
direct information leakage to the untrusted Interrupt Service Routine (ISR).
The AEX procedure also takes care of pushing a predetermined Asynchronous
Exit Pointer (AEP) on the unprotected call stack, so as to allow the OS interrupt
handler to return transparently to unprotected trampoline code outside the
enclave. From this point, an interrupted enclave can be continued by means of
the eresume instruction.

To aid enclave development, SGX differentiates between debug and production
enclaves, where private memory of the former is accessible from outside via
special ring-0 edbgrd and edbgwr instructions. Debug operations are ignored
for production enclaves, however, such that they are provided with strong
isolation of code and data memory. SGX furthermore includes measures against
obvious interference with production enclaves. Specifically, in enclave mode,
the processor ignores performance counters, hardware breakpoints, and the
single-step trap flag (rflags.tf).

4.2.2 Enclave preemption attacks

Given SGX’s strong adversary model, several recent studies have looked into its
side-channel attack surface. Given the scope of this chapter, we focus exclusively
on attacks that preempt the enclaved execution, but it is worth noting that
some recent L1 cache attacks [225, 29] can be mounted from a co-resident logical
processor, without interrupting the victim enclave. Enclave preemption attacks
on the other hand either leverage page faults or interrupts to inspect enclave
behavior.

Fault-driven attacks. Seminal work by Xu et al. [277] first showed how
carefully revoking access rights on enclave pages and observing the associated
page faults, allows an adversarial OS to extract large amounts of sensitive
data (full text, and images) from SGX enclaves. Subsequent work [266] has
leveraged page faults as an enclave execution control technique to more easily
exploit thread synchronization bugs in enclaves. Since page faults are triggered
deterministically by the hardware, fault-driven attacks generally suffer from very
little to no noise. A fundamental limitation of this channel, however, concerns
the relatively coarse-grained (4KiB) granularity at which page faults reveal
memory accesses. Moreover, in order for the enclaved execution to continue,
access rights on the faulting pages should be restored.
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Interrupt-driven attacks. More recent SGX attacks improve over the spatial
resolution of the page fault channel by exploiting information leakage at a
cache line granularity. Not all, but a significant fraction of these attacks
suspend the victim enclave to obtain precise side-channel observations. Earlier
proposals such as CacheZoom [181] rely on a rather coarse-grained kernel patch
to interrupt the victim enclave more frequently. More recent work by Hähnel
et al. [92] significantly improves the temporal resolution of enclave cache attacks
by directly configuring the local APIC timer in kernel space. While their
approach approximately interrupts enclaved execution every three instructions,
true single-stepping is not achieved, since (i) they focus on instructions with
memory operands only, and (ii) the approach was implemented and evaluated
in a software simulator, leaving intricate microarchitectural interactions with
real SGX hardware fundamentally unclear.

Recent research [156] on branch shadowing attacks demonstrated that enclave-
private control flow can be inferred by abusing cache collisions in the CPU-
internal Branch Target Buffer (BTB). Such attacks critically rely on the periodic
interleaved execution of the victim enclave with carefully aligned spy shadow
code. Lee et al. [156] employ a kernel patch to achieve a relatively coarse-
grained enclave interrupt granularity of about 50 instructions, which can be
further improved to about 5 instructions by disabling the CPU cache hierarchy
entirely (CR0.CD). Note however that disabling caching of course also invalidates
aforementioned CPU cache attacks.

Finally, our own previous work [258] on stealthy page-table-based attacks relies
on frequent enclave preemptions to measure page-table access patterns. This
work also introduced a highly accurate PTE Flush+Flush technique, where a
concurrent spy thread running on another logical core continuously monitors a
specific page-table entry, and sends an inter-processor interrupt upon detecting
an access. Note that this approach is distinct from single-stepping in that the
enclaved execution is only preempted when a specific trigger page was accessed,
whereas SGX-Step interrupts each instruction sequentially.

4.3 Design and implementation

Our single-stepping objective is to execute an enclave one instruction at a
time. Note that advanced x86 hardware debug assistance features such as
the single-step trap flag (rflags.tf) or hardware breakpoints are explicitly
suppressed in enclave mode [114]. Our implementation therefore leverages the
OS’s control over hardware timer devices to emulate this behavior with frequent
enclave interrupts.
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Figure 4.1: Framework for single-stepping SGX enclaves.

APIC timer configuration. Every Intel processor comes with a local Advanced
Programmable Interrupt Controller (APIC) [114] to configure and deliver
interrupts destined for that core. The APIC also contains a timer that can
be operated in one of three modes. In one-shot or periodic mode, the timer is
configured through memory-mapped I/O registers. Specifically, by writing into
an initial-count register, an internal current-count register can be initialized.
The local APIC decrements the current-count at the CPU’s bus frequency,
divided by the value specified in the divide-configuration register, and generates
an interrupt whenever the current-count reaches zero. In one-shot mode a single
interrupt is generated, whereas in periodic mode the initial-count is automatically
copied back into the current-count register. Alternatively, in TSC-deadline
mode, an interrupt is generated when the CPU’s internal timestamp counter
reaches the absolute value specified in a dedicated model-specific register. This
mode is substantially more precise, since the timestamp counter operates at
the processor’s nominal frequency, instead of the much slower external bus
frequency. The Skylake CPUs used in the evaluation, for instance, run at a base
frequency of 2.5GHz and 3.4GHz, whereas the fixed external bus frequency is
only 100MHz (25/34 times slower).

To facilitate APIC configuration, SGX-Step comes with a runtime library that
creates user space virtual memory mappings for the physical APIC memory
I/O configuration registers. By writing into the exported memory locations, the
untrusted host process can easily configure the APIC timer one-shot/periodic
interrupt source or trigger inter-processor interrupts directly from user space.
Figure 4.1 summarizes the sequence of hardware and software steps when
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interrupting and resuming an SGX enclave through our framework. 1 The
local APIC timer interrupt arrives within an enclaved instruction. 2 The
processor executes the AEX procedure that securely stores execution context in
the enclave’s SSA frame, initializes CPU registers, and vectors to the kernel-level
interrupt handler. 3 Our /dev/sgx-step loadable kernel module registered
itself in the APIC event call back list to make sure it is called on every timer
interrupt. At this point, any attack-specific, kernel-level spy code can easily
be plugged in. Furthermore, to enable precise evaluation of our approach on
attacker-controlled debug enclaves, SGX-Step can optionally be instrumented
to retrieve the stored instruction pointer from the interrupted enclave’s SSA
frame using the edbgrd instruction. 4 The kernel returns to the user space
AEP trampoline. We modified the untrusted runtime of the official SGX
SDK to allow easy registration of a custom AEP stub. 5 At this point,
any attack-specific user mode spy code can again easily be run, before the
single-stepping adversary configures the APIC timer for the next interrupt, just
before executing 6 eresume.

Timer interval prediction. With our framework in place, the only remaining
challenge is to establish a suitable, platform specific timer interval so as to
interrupt the first instruction executed by the enclave after eresume. The timer
interrupt should not systematically arrive too soon, within the monolithic
eresume instruction, as then no progress would be made (i.e., zero-step).
Alternatively, should the interrupt arrive too late after completion of eresume,
more than one instruction would be executed (i.e., multi-step). The single-
stepping adversary is therefore required to accurately predict the duration
between the moment the timer is configured and completion of eresume.
Naturally, due to modern processor optimizations, execution time prediction
becomes increasingly difficult the more code is actually executed in the timer
interval. In this respect, previous enclave preemption attempts [156, 181, 92] all
configure the APIC timer in kernel space, whereas enclaves have to be resumed
in user mode. Consequently, these approaches suffer from significant timer jitter
stemming from the considerable amount of code and a privilege level switch in
the interrupt return path.

An important contribution of our framework therefore is that we drastically
cut the amount of code in the timer interval path by directly configuring
the APIC timer from user space. As a result, SGX-Step reduces the timer
configuration challenge to prediction of eresume execution time, which we found
to be relatively deterministic on our evaluation platforms. Our user-space APIC
timer trick only works for the aforementioned single-shot or periodic timer
modes, however, since TSC deadline configuration requires the privileged wrmsr
instruction. We thus improve timer interval predictability at the cost of a lower
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timer frequency. Note that this inconvenience can be overcome, however, for
instance by executing a deterministic amount of nop instructions between timer
configuration and eresume.

In our experimental setup, we operate the APIC timer in one-shot mode with
division 2. As explained above, timer configuration depends on CPU frequency,
and hence remains inherently platform-specific. We established suitable timer
intervals for both our evaluation platforms through an empirical approach that
leverages SGX-Step to retrieve the interrupted instruction pointer from an
attacker-controlled debug calibration enclave. We leave exploration of fully
automated timer configuration approaches as future work.

Monitoring page-table entries. Single-stepping enclaved execution incurs a
substantial slowdown, and is often only desired for some specific functions of
interest. SGX-Step therefore allows an adversary to initiate single-stepping mode
after a specific code or data page has been accessed, using enclave preemption
from either page faults [277] or a dedicated spy thread [258]. Specifically,
analogous to the APIC configuration trick above, SGX-Step establishes user
space virtual memory mappings for the unprotected physical memory containing
the victim enclave’s Page Table Entrys (PTEs). By manipulating PTEs directly
from user space, an adversary can provoke page faults (“present” bit), or gain
insight in enclave memory usage (“accessed” and “dirty” attributes).

4.4 Evaluation

We evaluate the effectiveness of SGX-Step on both a mid-end laptop and a
higher-end desktop CPU. We first provide microbenchmarks, and afterwards
demonstrate the enhanced attack potential of SGX-Step in two scenarios that
are not exploitable with current, state-of-the-art techniques.

All experiments were conducted on real, off-the-shelf SGX hardware. Our first
evaluation platform is a commodity Dell Inspiron 13 7359 laptop running a
generic Linux 4.2.0 kernel on a Skylake dual-core Intel i7-6500U CPU with a
base frequency of 2.5GHz. Our Dell Optiplex 7040 desktop, on the other hand,
features a generic Linux 4.4.0 kernel and a Skylake quad-core i7-6700 processor
running at 3.4GHz. Like previous SGX preemption attacks [92, 181, 156, 258]
and conformant to our attacker model, we disabled TurboBoost plus dynamic
frequency scaling (C-States, SpeedStep), and affinitized the victim enclave
thread to a specific logical core to increase predictability on both machines.
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Table 4.2: Interrupts categorized according to the number of instructions executed
in the victim enclave (i.e., zero-step, single-step, or multi-step). When laptop/desktop
experimental results differ, we present the laptop measurements first.

Experiment 0-Step 1-Step > 1 1-Step Ratio
nop 2,083 / 1,617 100,000 0 97.96 / 98.41%
strlen 8,829 / 4,982 460,000 0 98.12 / 98.93%
Zigzagger 5,739 / 2,872 210,000 0 97.34 / 98.65%

4.4.1 Single-stepping microbenchmark

Our objective is to reliably single-step arbitrary enclave programs, including
inexpensive instructions without memory operands. To evaluate how accurately
SGX-Step realizes such true single-stepping, we constructed a challenging
microbenchmark experiment featuring a test enclave with a long slide of
successive nop instructions. At the microarchitectural level, a 1-byte nop
is the lowest cost instruction, consuming only a single micro-op without memory
or register dependencies [113]. As such, many nops can be executed in a limited
time window, and even a relatively small amount of jitter on timer interrupt
arrivals can lead to the execution of multiple nops in the benchmark enclave.
Hence, we argue that an approach that reliably single-steps a nop instruction
slide, can easily single-step arbitrary instructions as well.

Our benchmark enclave executes a slide of 100,000 successive nop instructions.
As part of the experiment, we instructed the SGX-Step driver to retrieve the
instruction pointer from the state save area of the interrupted debug enclave
using the edbgrd instruction, so as to infer the exact number of instructions
executed in between two successive enclave interrupts.2 In the evaluation on
our laptop/desktop platforms, we measured a total of respectively 102,083
and 101,617 interrupts for the instruction slide. We confirmed that exactly
2,083/1,617 out of these did not change the enclave instruction pointer (i.e.,
zero-step), whereas the remaining 100,000 interrupts caused a single increment
of the enclave instruction pointer. We thus conclude that SGX-Step was able to
reliably single-step all 100,000 nops, without ever executing more than one nop
at a time. A small fraction of interrupts (2.04% on the laptop and 1.59% for
the desktop) actually arrived too early, within the eresume instruction. These
interrupts are superfluous, but rather harmless as they do not result in enclaved
code being executed.

2 Note that edbgrd only serves evaluation purposes, to establish the number of instructions
executed in the benchmark enclave, and would not be used in real attacks against production
enclaves.
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1 size_t strlen (char *str)
2 {
3 char *s;
4

5 for (s = str; *s; ++s);
6 return (s - str);
7 }

1 mov %rdi,%rax
2 1: cmpb $0x0,(%rax)
3 je 2f
4 inc %rax
5 jmp 1b
6 2: sub %rdi,%rax
7 retq

Listing 4.1: Example of secret-dependent data accesses in a tight loop (source code
and compiled assembly form).

4.4.2 Precise enclave execution control attacks

Determining string length. Previous work [92] explored the temporal
resolution limits of the page fault channel, discussed in Section 4.2.2. That is,
since an attacker needs to restore access rights on faulting pages in order to
guarantee progress, fault-driven attacks cannot infer information from enclaved
functions that access a single code and data page. As an example of such
a function, consider the elementary strlen implementation in Listing 4.1.
Assuming the compiler uses a CPU register for the loop counter, the entire
loop easily fits within a single code page, and every iteration accesses only
one data page (containing the string). As such, progress can only be made if
both the strlen code page and secret string data page are accessible. That
is, the length of the secret string cannot be inferred from page fault sequences.
Previous research [258] has shown, however, that page accesses can be observed
without page faults, for instance by querying the PTE “accessed” bit after
interrupting the enclave. We thus leverage SGX-Step to single-step the tight
strlen execution loop, each time recording/clearing the “accessed” bit of the
PTE referencing the string being processed. Note that accurate single-stepping
results themselves also allow the string length to be inferred from the number
of interrupts (i.e., instructions executed by the victim enclave).

The right hand side of Listing 4.1 provides the assembly version of the strlen C
source code on the left. We explicitly compiled the code with optimizations set
for size (-Os) to ensure a very compact loop with only 4 assembly instructions
and a single memory operand. Note that precisely single-stepping this loop is
considerably more challenging than the case without optimizations (totalling
5 instructions and 3 memory operands). In our experimental setup, we single-
stepped a benchmark enclave that processed the string "SysTEX 2017" (11
characters) 10,000 successive times. On every interrupt, just before resuming
the enclave, we queried the PTE “accessed” bit from the user space AEP
trampoline handler. We correctly recognized the string length for all 10,000
strlen invocations. Additionally, we analyzed the full enclave instruction
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b0:   lea b1, %r15
      lea b2, %r14
      cmp $0, a
      cmove %r14, %r15
b0.j: jmp zz1
b1:   nop #<code1>
      lea b5, %r15
b1.j: jmp zz2
b2:   lea b3, %r15
      lea b4, %r14
      cmp $0, b
      cmove %r14, %r15
b2.j: jmp zz3
b3:   nop #<code2>
      lea b5, %r15
b3.j: jmp zz4
b4:   nop #<code3>
b5:   nop #<code4>

zz1: jmp b1.j
 
 
zz2: jmp b2.j
 
 
zz3: jmp b3.j
 
 
zz4: jmpq *%r15

Zigzagger
trampoline

if (a!=0){
  <code1>
}
else if (b!=0){
  <code2>
}
else{
  <code3>
}
  <code4>

Original code

Figure 4.2: Example code snippet protected by Zigzagger. The final target address
in r15 is obfuscated with cmov and a tight trampoline sequence of jmp instructions
(from [156]).

pointer trace, retrieved with edbgrd, to categorize interrupts according to
the amount of instructions executed in the victim enclave. The results are
in Table 4.2. A first important finding, in line with our microbenchmark
observations, is that SGX-Step reliably single-stepped all 460,000 instructions
on both the laptop and desktop processors, and without ever executing more
than one instruction per interrupt. Only a relatively small fraction of the total
number of interrupts (≤ 1.88%) arrived within eresume and did not result in an
enclaved instruction being executed. These zero-step observations can be easily
filtered out, as we confirmed that they never falsely triggered the “accessed” bit
of the string PTE.

Defeating Zigzagger. Section 4.2.2 introduced branch shadowing attacks that
rely on frequent enclave preemptions to execute shadow probing code for
inferring enclave-private control flow via targeted BTB cache collisions. This
recent work [156] also includes a compile-time defense scheme called Zigzagger.
The key idea, illustrated in Fig. 4.2, is to obfuscate the target address of
a conditional jump via a cmov instruction, followed by a tight trampoline
sequence of unconditional jumps that ends with a single indirect branch
instruction. By rapidly jumping back and forth between the instrumented code
and the trampoline, Zigzagger makes recognizing the current branch instruction
considerably more challenging. Its security argument states that “since all of
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the unconditional branches are executed almost simultaneously in sequence,
recognizing the current instruction pointer is difficult” [156]. Moreover, the
branch shadowing attack in itself cannot directly infer the secret target address of
the indirect branch at zz4. We show, however, that even Zigzagger-instrumented
code can be reliably single-stepped. Specifically, an attacker leveraging SGX-
Step can reliably probe each intermediate unconditional trampoline jump (i.e.,
zz1 to zz3). Observe that after branching to the secret target address, execution
continues at one of only two possible target addresses, and eventually lands
on the Zigzagger trampoline at either zz2 or zz3. As such, a single-stepping
adversary can infer the secret if condition, after detecting execution of the
indirect branch at zz4, by probing the unconditional zz2 jump—which is only
executed for the first code block.

We evaluate a proof-of-concept Zigzagger attack by repeatedly single-stepping
the hardened assembly code3 from Fig. 4.2. Specifically, we single-stepped
a benchmark enclave that executes the 21-instruction code snippet 10,000
successive times, and afterwards analyzed the edbgrd instruction pointer trace
to establish the number of instructions executed on every interrupt. In line with
our previous findings, Table 4.2 shows that SGX-Step never executes more than
one instruction in the victim enclave per interrupt, allowing precise execution
of the shadow code on both evaluation platforms. Hence, these benchmarks can
be considered clear evidence that SGX-Step enables new attacks, previously
deemed infeasible. The superfluous zero-step interrupt fractions (2.66% for
the laptop and only 1.35% on the desktop) also keep on par with previous
observations, and do not impede a real attack since the BTB cache remains
unaffected by the victim.

4.5 Discussion

Attack resolution and implications. We showed that enclaves can be reliably
interrupted one instruction at a time. In this, SGX-Step improves significantly
over related state-of-the-art enclave preemption schemes that only approximate
such instruction-level granularity after either disabling the CPU cache [156], or
focusing exclusively on instructions with memory operands in a simulator [92].
From a practical perspective, SGX-Step furthermore lowers the bar for precise
enclave preemption attacks from user space.

3Since Zigzagger and the attack code were not made public, we repeat the example assembly
code snippet from that paper [156]. For the same reason, we could not launch the actual
branch shadowing attack, only showing its feasibility with our single-stepping results.
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These findings have profound consequences for the design of effective defenses.
Specifically, compiler-based techniques are fundamentally insufficient when
they rely on (partial) atomic behavior of the instruction stream, as effectively
demonstrated for the Zigzagger [156] branch obfuscation technique above. Our
precise strlen attack furthermore highlights the inadequacy of defenses that
focus on “aligning specific code and data blocks to exist entirely within a single
page”, as still officially recommended by Intel [119].

Detecting suspicious interrupts. Heuristic compiler defenses, on the other
hand, could focus on detecting high interrupt rates as an artifact of an ongoing
attack. Importantly, in contrast to enhanced TEE designs such as Sanctum [48],
SGX enclaves are explicitly left interrupt-unaware, since they ought to be
resumed through a dedicated eresume instruction. However, a contemporary
line of research [229, 42] leverages x86 Transactional Synchronization Extensions
(TSX) to detect page faults or interrupts in enclave mode.

T-SGX [229] protects against page fault-based attacks by wrapping each basic
block in a TSX transaction, and aborting the enclave after counting too many
consecutive transaction aborts. Déjà Vu [42] instruments an enclave program
to detect frequent preemptions through a reliable in-enclave reference clock
thread that uses TSX to ensure it cannot be silently stopped by an untrusted
OS. Both solutions would recognize the frequent interrupt rates generated by
SGX-Step, but also suffer from several important limitations, however. First,
an SGX-enabled processor (e.g., the laptop we used in our experiments) is
not always shipped with TSX extensions, ruling out this defense for critical
infrastructural software such as Intel’s Launch and Quoting Enclaves. Second,
TSX defenses incur a significant run-time performance overhead [229, 42]. Third,
these defenses cannot offer full protection as they rely on heuristics to recognize
suspicious interrupt rates, which could also be caused by repeated cache conflicts
or benign interrupts under heavy system load.

4.6 Conclusion

Our work shows that enclaved execution can be accurately single-stepped
one instruction at a time. We demonstrated SGX-Step’s improved temporal
resolution over state-of-the-art preemption schemes in two challenging attack
scenarios, highlighting the need for adequate defense mechanisms.
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Nemesis: Studying
microarchitectural timing
leaks in rudimentary CPU
interrupt logic
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25th ACM Conference on Computer and Communications Security (CCS).
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Preamble

This chapter presents Nemesis, a previously overlooked side-channel attack
vector that abuses the CPU’s interrupt mechanism to leak microarchitectural
instruction timings from enclaved execution environments. We show that by
measuring the latency of a carefully timed interrupt, an attacker controlling
the system software is able to infer instruction-granular execution state from
hardware-enforced enclaves. Our novel attack vector is applicable to the whole
computing spectrum, from small embedded sensor nodes to high-end commodity
x86 hardware. We present practical interrupt timing attacks against the open-
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source Sancus embedded research processor, and we show that interrupt latency
reveals microarchitectural instruction timings from off-the-shelf Intel SGX
enclaves. Finally, we discuss challenges for mitigating Nemesis-type attacks at
the hardware and software levels.

This research originated from our early attempts to create a deterministic, real-
time compatible enclave processor with a strict upper bound on the worst-case
interrupt latency [253]. When implementing this design on top of the 16-bit
Sancus processor, we noticed that interrupt response time is not constant, but
varies depending on the instruction executing in the enclave at the time of
interrupt arrival. After confirming that these subtle timing differences can
be successfully abused to extract sensitive information from Sancus enclaves,
we set out to explore the same side-channel attack vector on off-the-shelf
Intel SGX platforms. As part of this research, we created several Linux
kernel prototypes, contributing to the discovery of the stealthy page-table
cache attacks, introduced in Chapter 3, and ultimately leading to the creation
of the SGX-Step framework, discussed in Chapter 4. The earliest Nemesis
prototypes demonstrating side-channel leakage from Intel SGX enclaves date
back to June 2016, which, at that time, would have placed Nemesis among
the first demonstrated microarchitectural attacks on SGX platforms. In this
respect, Nemesis also pioneered the security analysis of CPU pipeline behavior
and exception handling logic, which became defining for today’s transient-
execution era. We indeed argue that, at its core, Nemesis abuses the same
subtle microarchitectural behavior that enables Meltdown and Foreshadow, i.e.,
handling of exceptions and interrupts is delayed until instruction retirement.

We publicly released all of the code and experimental data for the attacks
described in this chapter, and we have been in contact with several independent
research groups that successfully reproduced our findings. We are currently
aware of at least two public results that use our open-source Nemesis interrupt
latency framework to investigate related microarchitectural behaviors on Intel
SGX processors [130, 208]. The Sancus interrupt latency code base has
furthermore been extended in several master theses [49] and has sparked
an ongoing line of follow-up defensive projects. To assist defenses at the
software level, one recent work [206] has extended and improved a prior
static analysis tool [52] to automatically verify MSP430 binaries to be free
of instruction-granular information leakage from Nemesis-style interrupt latency
measurements. As an alternative, fully transparent defense at the hardware
level, we recently designed and implemented a provably secure Sancus processor
with a Nemesis-resistant enclave interrupt mechanism, relying on an intricate
two-level execution time padding scheme [34]. We further discuss this defense
and its (non-)applicability to SGX platforms in Chapter 8.
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5.1 Introduction

Information security is essential in a world with a growing number of ever-
connected embedded sensor nodes, mixed-criticality systems, and remote cloud
computing services. Today’s computing platforms isolate software components
belonging to different stakeholders with the help of a sizeable privileged
software layer, which in turn may be vulnerable to both logical bugs and
low-level vulnerabilities. In response to these concerns, recent research and
industry efforts developed Trusted Execution Environments (TEEs) [235, 166]
to safeguard security-sensitive application components or enclaves from an
untrusted operating system. TEEs enforce isolation and attestation primitives
directly in hardware, or in a small hypervisor, so as to ensure protected
execution with a minimal Trusted Computing Base (TCB). The untrusted
operating system is prevented from accessing enclaved code or data directly,
but continues to manage shared platform resources such as system memory or
CPU time. Enclaved execution is a particularly promising security paradigm in
that it has been explicitly applied to establish trust in both low-end embedded
microcontrollers [238, 56, 191, 147, 51, 28] as well as in higher-end desktop
and server processors [174, 173, 100, 58, 232, 48]. With the arrival of the
Software Guard Extensions (SGX) [176, 14] in recent Intel x86 processors,
strong hardware-enforced TEE guarantees are now available on mainstream
consumer hardware.

TEEs pursue a black box view on enclaves. That is, a kernel-level attacker should
only be able to observe input-output behavior, and is prevented from accessing
an enclave’s private memory directly. While such interactions are generally
well-understood at the architectural level, including successful TCB verification
efforts [142, 62], enclave-internal behavior may still leak through the CPU’s
underlying microarchitectural state. Over the past decade, microarchitectural
side channels have received considerable attention from academics [202, 2,
280, 71], but their disruptive real-world impact only recently became clear
with the Meltdown [162], Spectre [146], and Foreshadow [249] attacks that
rely on side channels to steal secrets from the microarchitectural transient-
execution domain. We therefore argue that it is essential for the research
community to deepen its understanding in microarchitectural CPU behavior
and to identify potential side-channel attack vectors. In this respect, recent
research on controlled channels [277] has shown that conventional side-channel
analysis changes drastically when TEEs are targeted, for the operating system
itself has become an untrusted agent. The increased attacker capabilities bring
about two major consequences.

First, with an untrusted operating system, an adversary gains full control
over the unprotected part of the application, and over system events such as
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interrupts, page faults, cache flushes, scheduling decisions, etc. These types
of events introduce considerable noise in traditional cross-application, or even
cross-virtual machine side channels. Noise is traditionally compensated for with
statistical analysis over data acquired from multiple runs of the victim program.
In a controlled-channel setting on the other hand, one prevailing research line is
exploring the possibility of amplifying conventional side channels so as to extract
sensitive information in a single run, with limited noise. Recent work on Intel
SGX platforms has practically demonstrated such side-channel amplification
for the usual suspects: CPU caches [79, 225, 29, 181, 92] and branch prediction
machinery [156, 59]. These results have prompted Intel to release an official
statement, arguing that “in general, these research papers do not demonstrate
anything new or unexpected” [133].

A second, more profound consequence of the TEE attacker model, however, is
the emergence of an entirely new class of side channels that were never considered
relevant before. To date only page-table-based attacks [277, 230, 258, 263] have
been identified as one such innovative controlled channel for high-end MMU-
based architectures. By carefully revoking access rights on protected memory
pages and observing the associated page accesses, an adversarial operating
system is able to extract large amounts of sensitive data (cryptographic keys,
full text, and images) from SGX enclaves. Several authors [63, 245, 47, 257, 237,
158] have since expressed their concerns on controlled-channel vulnerabilities
in a TEE setting. An important research question therefore is to determine
which novel controlled channels exist, and to what extent they endanger the
TEE protection model.

This chapter contributes to answering this question. We present an innovative
class of Nemesis1 controlled-channel attacks that exploit subtle timing differences
in the rudimentary fetch-decode-execute operation of programmable instruction
set processors. We abuse the key microarchitectural property that hardware
interrupts/faults are only served upon instruction retirement, after the currently
executing instruction has completed, which can take a variable amount of CPU
cycles depending on the instruction type and the microarchitectural state of the
processor. Where Meltdown-type “fault latency” attacks [162, 249] exploit this
time window in modern out-of-order processors to transiently leak unauthorized
memory through a microarchitectural covert channel, Nemesis-type interrupt
latency attacks abuse a more fundamental observation that equally affects non-
pipelined processors. Namely, that delaying interrupt handling until instruction
retirement introduces a subtle timing difference that by itself reveals side-channel
information about the interrupted instruction and the microarchitectural state
when the interrupt request arrived. Intuitively, an untrusted operating system

1 From the ancient Greek goddess of retribution who inevitably intervenes to balance out
good and evil; an inescapable agent much like a pending interrupt request.
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can exploit this timing measurement when interrupting enclaved instructions
to differentiate between secret-dependent program branches, or to extract
information for different side-channel analyses (e.g., trace-driven cache [1],
address translation [258], or false dependency [180] timing attacks).

We are the first to recognize the threat caused by instruction set architectures
with variable interrupt latency. Previous TEE research has overlooked this
subtle attack vector, claiming for instance that “timing of external interrupts
does not depend on secrets within compartments, and does not leak confidential
information” [63]. We show that Nemesis attacks affect a wide range of security
architectures, covering the whole computing spectrum. In this, we are the first
to identify a remotely exploitable microarchitectural side-channel vulnerability
that is both applicable to embedded, as well as higher-end enclaved execution
environments.

Summarized, the main contributions of this chapter are:

• We leverage interrupt latency as a novel, non-conventional side channel
to extract information from enclaved applications, thereby advancing
microarchitectural understanding.

• We present the first controlled-channel attack vector for embedded
enclaved execution processors, and extract full application secrets in
practical Sancus attack scenarios.

• We provide clear evidence that interrupt latency reveals microarchitectural
instruction timings on modern Intel SGX processors, and illustrate
Nemesis’s increased instruction-granular potential in macrobenchmark
evaluation scenarios.

• We explain how naive hardware-level defense strategies cannot defend
against advanced Nemesis-style interrupt attack variants, demonstrating
the consequential impact of our findings for provably side-channel resistant
processors.

Our attack framework and evaluation scenarios are available as free software at
https://github.com/jovanbulck/nemesis.

5.2 Background and basic attack

We first refine the threat model and the class of security architectures affected
by our side channel. Next, we explain how interrupt latency can be leveraged
in ideal conditions to extract sensitive data from secure enclaves.

https://github.com/jovanbulck/nemesis
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5.2.1 Attacker model and assumptions

The adversary’s goal is to derive information regarding the internal state of an
enclaved application. In this respect, trusted computing solutions including
Intel SGX have been explicitly put forward to protect sensitive computations
on an untrusted attacker-owned platform, both in an untrustworthy cloud
environment [20, 217], as well as to enforce enterprise right management
on consumer hardware [99, 193]. Analogous to previous enclaved execution
attacks [277, 258, 156, 91], we therefore consider an adversary with (i) access to
the (compiled) source code of the victim application, and (ii) full control over
the Operating System (OS) and unprotected application parts. This means she
can modify BIOS options, load kernel drivers, configure hardware devices such
as timers, and control scheduling decisions. Note that although TEEs can be
leveraged [78, 217] to protect the confidentiality of sensitive code, this is not the
default case in the security architectures analyzed in this work and for many of
the TEE use cases [235, 99, 20].

At the architectural level, we assume the untrusted OS can securely interrupt and
resume enclaves. Such interruptible isolated execution is supported by a wide
range of mature embedded [147, 51, 28] as well as higher-end [176, 100, 58, 232,
48] TEEs that employ a trusted security monitor to preserve the confidentiality
and integrity of an enclave’s internal state in the presence of asynchronous
interrupt events. In this chapter we focus exclusively on hardware-level security
monitors, but our timing channel may also be relevant for architectures where
enclave interruption proceeds through a small trusted software layer [100, 28,
48, 62]. We assume that enclaves can be interrupted repeatedly within the same
run, and for the Intel SGX application scenarios, can be made to process the
same secret-dependent input repeatedly over multiple invocations.

Importantly, in contrast to previous controlled-channel attacks referenced above,
our attack vector does not necessarily require advanced microarchitectural CPU
features, such as paging, caching, branch prediction, or out-of-order execution.
Instead, Nemesis-type interrupt timing attacks only assume a generic stored
program computer with a multi-cycle instruction set, where each individual
instruction is uninterruptible (i.e., executes to completion). This is the most
widespread case for major embedded (e.g., TI MSP430, Atmel AVR) as well as
higher-end (e.g., x86, openRISC, RISC-V) instruction set architectures.

5.2.2 Fetch-decode-execute operation

Figure 5.1 summarizes the basic operational process of a CPU, traditionally
referred to as the fetch-decode-execute operation. A dedicated Program Counter



BACKGROUND AND BASIC ATTACK 121

Fetch Decode Execute
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Figure 5.1: A processor fetches, decodes, and executes the instruction referred by
the Program Counter (PC) register.

(PC) register holds the address of the next instruction to fetch from memory. PC
is automatically incremented after every instruction in the program, and can be
explicitly changed by means of jump instructions. Hardware devices furthermore
have the ability to halt execution of the current program by means of Interrupt
Requests (IRQs) that notify the processor of some asynchronous external event
that requires immediate attention. Whenever the current instruction has
completed, before fetching the next one, the processor checks if there are IRQs
pending. If so, the PC is loaded from a predetermined location in the Interrupt
Descriptor Table (IDT) that holds the address of the corresponding Interrupt
Service Routine (ISR). Typical processor architectures only take care of storing
the minimal execution context (e.g., PC and status register) before vectoring
to the ISR. The trusted OS interrupt handling code then stores any remaining
CPU registers as needed. However, when interrupting an enclave, the TEE
hardware is responsible to securely store and clear all CPU registers, which is
abstracted in the “secure IRQ logic” block of Fig. 5.1.

While the simplified fetch-decode-execute description above is representative
for a class of low-end CPUs such as the TI MSP430 [243], optimizations
found in modern higher-end processors considerably increase the complexity. A
pipelined architecture improves throughput by parallelizing the fetch-decode-
execute stages of subsequent instructions. In case of a complex instruction
set such as Intel x86 [114, 47], individual instructions are first split into
smaller micro-ops during the decode stage. Thereafter, an out-of-order engine
schedules the micro-ops to available execution units, which may be duplicated
to further increase parallelism. To minimize pipeline stalls from program
branches, the processor will try to predict the outcome of conditional jumps.
Simultaneous multithreading technology can interleave the execution of multiple
independent instruction streams on the same physical CPU core to maximize
the use of available execution units. Repeated memory accesses are furthermore
sped up by means of an intricate cache hierarchy for among others micro-
ops, instructions, data, and address translation. However, despite all these
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optimizations, Intel [114] confirms that the basic property remains that “all
interrupts are guaranteed to be taken on an instruction boundary [. . . ] located
during the retirement phase of instruction execution”.

5.2.3 Basic Nemesis attack

We consider processors that serve interrupts after the execute stage has com-
pleted,2 which can take multiple clock cycles depending on the microarchitectural
behavior of the instruction. Our attacks are based on the key observation that
an IRQ during a multi-cycle instruction increases the interrupt latency with
the number of cycles left to execute—where interrupt latency is defined as the
number of clock cycles between arrival of the hardware IRQ and execution of
the first instruction in the software ISR. When interrupt arrival time is known
(e.g., generated by a timer), untrusted system software can infer the duration
of the interrupted instruction from a timestamp obtained on ISR entry.

Figure 5.2 illustrates our basic attack for an enclaved execution that branches
on a secret. After the conditional jump jz in the victim enclave, either the
two-cycle instruction inst1 or the three-cycle instruction inst2 is executed. In
an ideal environment, a kernel-level attacker proceeds as follows to determine
private control flow. First, before executing the enclave, a cycle-accurate timer
is configured to schedule an IRQ at the beginning of the first clock cycle x + 1
after the conditional jump instruction. Next, the enclave is entered and the
timer fires, interrupting either inst1 or inst2. After instruction completion, the
secure hardware stores and clears protected execution state, and hands over
control to the untrusted interrupt handler code. Here, the adversary compares
the value of a timestamp counter with the known IRQ arrival time to yield a
timing difference of one clock cycle, depending on whether the conditional jump
in the enclaved execution was taken or not.

The above scenario is a clear example of how an untrusted OS can leverage
interrupt latency to break the black box view on enclaves. In line with previous
enclaved execution attacks [277, 29, 258, 156], Nemesis-type interrupt timing
attacks exploit secret-dependent control flow. Specifically, we require a different
execution time for at least one instruction in the if/else branch. The adversary
furthermore relies on (i) a timer device capable of generating cycle-accurate
IRQs, and (ii) a Time Stamp Counter (TSC) peripheral that is incremented
every CPU cycle. The main difficulty for a successful attack lies in determining
a suitable timer value so as to interrupt the instruction of interest. This is non-
trivial in that it requires one to predict the duration between the moment the

2 While not the focus of this chapter, there are also issues with cancelling the currently
executing instruction upon IRQ arrival, as outlined in Section 5.6.
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if ( secret ) { inst1; } else { inst2; }

CLK

2 execute cycles hardware latency ∆TSC

INS JZ INST1 IRQ logic ISR

IRQ
TSC x x+1 x+2 x+2+1 ... x+y+2 x+y+3

3 execute cycles hardware latency

INS JZ INST2 IRQ logic ISR

IRQ
TSC x x+1 x+2 x+3 x+3+1 ... x+y+3 x+y+4

Figure 5.2: Interrupt latency leaks information about the instruction that was
executing at the time of IRQ arrival.

timer is configured and the desired interruption point. For reasons pointed out
above, it is challenging to precisely predict the execution time of an instruction
stream on modern processors. We present our approach to configuring the timer
and dealing with noise in Section 5.4.

Note that IRQ latency measurements capture an instruction-granular mea-
surement of the CPU’s microarchitectural state, such that the instruction
opcode (inst1 vs. inst2) is only one of many properties that influence latency
on modern processors. We will show in Section 5.5 that Nemesis adversaries
can also distinguish instructions based on, for instance, CPU caching behavior,
address translation, or data operand dependencies.

5.3 Case study platforms and attacks

We implemented and evaluated Nemesis-type interrupt timing attacks for both
a representative embedded, as well as for an off-the-shelf higher-end enclaved
execution processor. To illustrate the wide applicability of conditional control
flow side-channel attacks, beyond common cryptographic key extraction [230,
258, 79, 225, 181], we follow a line of enclaved execution attacks [277, 29, 156, 92,
257] that target non-cryptographic case study applications. Such applications
cannot be hardened straightforwardly using vetted crypto libraries, as secrets are
generally non-trivial to identify and conditional control flow is more prevalent
plus harder to eliminate.
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5.3.1 Sancus and embedded TEEs

Given the rise of tiny embedded devices in recent years, a new line of
research [238, 56, 191, 147, 28] employs a lightweight program counter based
memory isolation technique to secure small microcontrollers that lack hardware
support for established security measures, such as virtual memory and processor
privilege levels. The Sancus [191, 189] research prototype extends the memory
access logic and instruction set of a low-end TI MSP430 microcontroller to allow
the creation, authentication, and destruction of enclaved software modules with
a hardware-only TCB. Furthermore, enclaves residing on the same device can
securely link to each other using caller and callee authentication primitives.
A dedicated LLVM-based C compiler hides low-level concerns such as secure
linking, inter-enclave calling conventions, and private call stack switching by
inserting short assembly code stubs to be executed whenever an enclave is
entered or exited. Finally, recent research [192, 252] has shown that, in contrast
to Intel SGX platforms, Sancus’ memory isolation primitive can also be used to
provide software enclaves with exclusive access to Memory Mapped I/O (MMIO)
hardware peripheral devices. However, since Sancus enclaves only feature a
single contiguous private data section, secure I/O on Sancus requires the use of
a small driver enclave entirely written in assembly code, using only registers for
data storage.

The original Sancus architecture presumes uninterruptible isolated execution.
Secure interruption of hardware-enforced embedded enclaves was pioneered by
the TrustLite [147] TEE. More specifically, TrustLite modifies the processor
to push all CPU registers onto the private call stack of the interrupted
enclave, before clearing them and vectoring to the untrusted ISR. Subsequent
research [51] has since implemented a comparable hardware-level interrupt
mechanism for a prototypic Sancus-like TEE with a single secure domain, and
recent work-in-progress [253] reports on hardware and compiler support for
fully interruptible and reentrant Sancus enclaves. For the work presented in
this chapter, we have implemented TrustLite’s secure interrupt mechanism as
an extension to the original Sancus architecture. Furthermore, we extended the
compiler-generated entry stubs to restore private execution context on the next
invocation of a previously interrupted enclave.

We selected Sancus as the case study architecture representative for the lowest
end of the computing spectrum with strict security requirements for mutually
distrusting stakeholders. A recent exhaustive TEE overview [166] indicates
that Sancus is the only embedded architecture with a fully open-source3

hardware design and tool chain, which allowed us to develop the secure interrupt
3https://distrinet.cs.kuleuven.be/software/sancus and https://github.com/

sancus-tee

https://distrinet.cs.kuleuven.be/software/sancus
https://github.com/sancus-tee
https://github.com/sancus-tee
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extensions. In contrast to modern SGX processors, Sancus’ openMSP430-
based implementation embodies an elementary programmable microcontroller
without advanced architectural features such as paging, caches, or out-of-order
instruction pipelining. Given the simplistic design of the security extensions,
as well as the underlying processor, the existence of remotely exploitable side
channels was considered rather unlikely by the original designers [190, §7.5.3].
To the best of our knowledge, we present the first controlled-channel attack
vector for embedded enclaved execution processors.

Bootstrap loader. We illustrate the applicability of our basic attack with a
code snippet from an actual password comparison routine in Texas Instruments’
MSP430 serial Bootstrap Loader (BSL) implementation. The BSL software is
executed on platform reset, and enables remote, in-field firmware updates. To
enforce that only legitimate device owners can reprogram the microcontroller,
sensitive BSL commands are protected with a 32-byte password. Our first Sancus
application scenario employs hardware-enforced isolation to shield critical BSL
password-protected functionality from untrusted embedded firmware.

1 cmp.b @r6+, r12
2 jz 1f
3 bis #0x40, r11
4 1: ...
5 ...

1 cmp.b @r6+, r12
2 jz 1f
3 bis #0x40, r11
4 jmp 2f
5 1: nop nop nop nop 2: ...

Listing 5.1: (Un)balanced BSL password comparison.

However, the password comparison routine in some BSL versions is known to be
vulnerable to an execution timing attack [76]. The left hand side of Listing 5.1
provides the original, actually used assembly code.4 For clarity we only show
the body of the password comparison loop, where the byte pointed to by r6 is
compared with the value in r12, and a bit in r11 is set to invalidate access when
the comparison fails. Observe that the code is unbalanced in that the two-cycle
bis (bit-set) instruction is only executed for incorrect password bytes. Hence,
an adversary can determine the correctness of individual bytes by observing the
program’s overall execution time. We close this vulnerability in the hardened
version on the right by balancing the else branch with no-op compensation code,
as previously suggested in literature [209, 43].

We show that, even when executing the balanced password comparison routine
in a Sancus enclave, untrusted system software can still learn the correctness of
individual password bytes by carefully timing interrupts. More specifically, an
IRQ arriving in the first clock cycle after the conditional jump instruction, will

4Assembly code snippet from BSL v2.12, as published by [76].
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MMIOSM_driver

SM_secure

(asm)

Timer_A

MSP430 core

while (poll_keypad())

function poll_keypad :
  key_state = read_key_state()
  for i=0 to 15 do
    if key_state & (0x1<<i) then
      secret_pin.add(keymap[i])
    end if
  end for

IRQ

Figure 5.3: Secure keypad Sancus application scenario.

either interrupt the two-cycle bis instruction or the single-cycle nop instruction.
Hence, depending on the secret password byte, an IRQ latency difference of
one clock cycle will be observed. The hardened routine thus properly closes the
timing side channel at the architectural assembly code level, but unknowingly
introduces a new one at the microarchitectural level. As such, our elementary
BSL case study serves as a clear demonstration of the additional attack surface
induced by secure interrupts, where adversaries are no longer restricted to
start-to-end timing measurements of the enclaved computation.

Secure keypad. Various authors [56, 191, 147, 192, 252] have suggested the
use of small TEEs to securely interface embedded platforms with peripheral
I/O devices. Our second Sancus application scenario leverages secure I/O to
guarantee the secrecy of a 4-digit PIN code towards an untrusted embedded
operating system.

Figure 5.3 summarizes the core idea, where the security-sensitive application
logic is implemented in a protected SMsec enclave that securely links to a
dedicated SMdrv assembly enclave to gain exclusive access to the MMIO region
of the keypad peripheral, as explained above. The untrusted OS can only
interact with the keypad indirectly, through the public interface offered by
SMsec. A single entry point poll_keypad fetches the current key state from the
driver enclave, and processes each bit sequentially. The 16-bit key state indicates
which keys are down, and a static lookup table is used to translate key numbers
to the corresponding characters. This is similar to a reference implementation
for an unprotected MSP430 keypad application by Texas Instruments [178]. To
increase readability, the pseudo code in Fig. 5.3 omits practical concerns such
as detecting key releases and limiting the length of the PIN code. We refer the
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interested reader to Appendix C.2 for the full implementation, derived from a
recently published open-source Sancus automotive application case study [252].

The keypad has to be polled regularly to detect key presses. For this, our
application scenario relies on the untrusted operating system for availability
of the CPU time resource. Since the OS is in control of scheduling decisions,
it is allowed to interrupt SMsec at all times.5 Our attack exploits key state
dependent control flow in the poll_keypad function. Appendix C.2 provides the
full compiler-generated assembly code, but it suffices to say that the conditional
code path consists of two single-cycle instructions followed by either a single-
cycle tst or a two-cycle cmp instruction. If we succeed in timing an IRQ two
cycles after the conditional jump, we will thus observe a difference in interrupt
latency of one clock cycle, depending on whether the private key state bit was
set or not. Reconfiguring the timer to repeat the attack in each loop iteration
allows an untrusted ISR to unambiguously determine which keys were pressed
in a single run of SMsec.

5.3.2 Intel Software Guard Extensions

Recent Intel x86 processors include Software Guard Extensions (SGX) [176, 14]
that enable isolated execution of security-critical code in hardware-enforced
enclaves, embedded in the virtual address space of a conventional OS process.
SGX reduces the TCB to the point where a remote software provider solely has
to trust the implementation of her own enclave, plus the underlying processor.
Enclave code is restricted to user space (ring 3), and has access to all its protected
pages, as well as to the unprotected part of the host application’s address space.
Dedicated CPU instructions switch the processor in and out of enclave mode,
where hardware-level access control logic verifies the output of the untrusted
address translation process to safeguard enclaved pages from outside accesses.
The eenter instruction transfers control from the unprotected application
context to a predetermined location inside the enclave, and eexit leaves an
enclave programmatically. Alternatively, in case of a fault or external interrupt,
the processor executes an Asynchronous Enclave Exit (AEX) procedure that
saves the execution context securely in a preallocated state save area inside the
enclave, and replaces the CPU registers with a synthetic state to avoid direct
information leakage to the untrusted ISR. The AEX procedure also takes care of
pushing a predetermined Asynchronous Exit Pointer (AEP) on the unprotected
call stack, so as to allow the OS interrupt handler to return transparently to

5Note that Sancus’ secure IRQ logic stores execution state in the protected data section
of the interrupted enclave. For MMIO driver enclaves without general purpose private data
region, our hardware mechanism clears registers without saving them.
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unprotected trampoline code outside the enclave. From this point, a previously
interrupted enclave can be continued by means of the eresume instruction.

Intel SGX serves as our case study architecture for higher-end enclaved execution
platforms. A modern SGX-enabled CPU implements the complex x86 instruction
set architecture, and includes all advanced microarchitectural features found in
modern processors.

Zigzagger branch obfuscation. Recent research on branch shadowing at-
tacks [156] showed that enclaved control flow can be inferred by probing the
CPU-internal Branch Target Buffer (BTB) after interrupting a victim enclave.
Given the prevalence of conditional control flow in existing non-cryptographic
applications, this work also includes a practical compile-time hardening scheme
called Zigzagger. Figure 4.2 on page 111 shows how secret-dependent program
branches are translated into an oblivious cmov instruction, followed by a tight
trampoline sequence of unconditional jumps that ends with a single indirect
branch instruction. The key idea behind Zigzagger is to prohibit probing
the BTB for the current branch instruction by rapidly jumping back and
forth between the instrumented code and the trampoline such that recognizing
the current instruction pointer becomes difficult. It has since been shown,
however, that Zigzagger-instrumented code can be reliably interrupted one
instruction at a time [257], and concurrent research defeated Zigzagger in
restricted circumstances through a segmentation-based side channel [91].

We will show that even the contained conditional control flow in Zigzagger-
hardened code exhibits definite instruction timing differences that can be
recognized to extract application secrets from IRQ latency traces. Particularly,
to emphasize Nemesis’s increased precision over state-of-the-art SGX attacks,
we aligned the assembly code of Fig. 4.2 to fit entirely within one cache line, such
that execution paths cannot be distinguished by their corresponding code cache
or page access profiles [230]. Our Zigzagger attack scenario thus illustrates
that Nemesis-type interrupt latency attacks leak microarchitectural timing
information at the granularity of individual instructions, whereas previous
controlled channels only expose enclaved memory accesses at a relatively coarse-
grained 4KiB page [277, 258] or 64-byte cache line [225, 92] granularity.

Binary search. Intel SGX technology has been explicitly put forward for
securely offloading privacy-sensitive data analytics to an untrusted cloud
environment [217]. Our second SGX application scenario considers enclaves
that look up secret values in a known dataset, as it occurs for instance in
privacy-friendly contact discovery [169] or DNA sequence processing [260, 29].
In case of the former, the enclave is provided with a known large list of users,



CASE STUDY PLATFORMS AND ATTACKS 129

plus an encrypted smaller list of secret contacts, and is requested to return
only those contacts that occur in the known user list. In case of the latter,
the enclave may lookup values in a public reference human genome dataset,
based on an encrypted secret input tied to an individual. In both scenarios,
adversaries may track control flow decisions made, for instance, by the widely
used binary search algorithm to learn (parts of) the secret input. In this respect,
binary search serves as a particularly relevant example for the difficulty of
eliminating conditional control flow in general-purpose enclave programs. The
obvious alternative at the application level, an exhaustive scan of the public
data, would increase the time complexity from a logarithmic to a linear effort.

1 for (lim = nmemb; lim != 0; lim >>= 1) {
2 p = base + (lim >> 1) * size;
3 cmp = (*compare)(key, p);
4 if (cmp == 0) return p;
5 if (cmp > 0) { /* key > p: move right */
6 base = p + size; lim--;
7 } /* else move left */
8 }

Listing 5.2: Binary search routine in Intel SGX Linux SDK.

Listing 5.2 shows the relevant part of the actual binary search routine provided
by the official Intel SGX Linux SDK. We refer to Appendix C.3 for the complete
unmodified source code, plus a disassembly of the compiled version. The
implementation looks up a provided key in the sorted array between base
and lim by repeatedly comparing it to the middle value. If the provided key
was found, the function returns. Otherwise, the values of base and limit are
adjusted according to whether the provided key was greater or smaller than
the middle value. We will show that the assembly code paths corresponding to
whether the algorithm took the left, right, or equal branch, manifest subtle yet
distinct instruction latency patterns which are revealed in the extracted IRQ
latency traces. As with the Zigzagger example above, the secret lookup key is
learned even when the array fits entirely within a single cache line. For larger
arrays, motivated adversaries can develop highly practical hybrid approaches
that start with tracking array indices at a 4-KiB page-level granularity, over
to a finer-grained 64-byte cache line granularity within a page, before finally
leveraging Nemesis’s instruction-granular interrupt timing differences to infer
comparisons within a cache line.
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5.4 Implementation aspects

We first describe the Sancus case, and then explain how distinctive IRQ latency
traces can be extracted from SGX enclaves.

5.4.1 Implementation on Sancus platforms

Our Sancus case study attacks exploit timing differences as subtle as a single
CPU cycle. In order to do so, the timer interrupt has to arrive at exactly the
right time, within the first clock cycle of the enclaved instruction of interest.
There is no room for deviation here, as a shift of a single cycle may miss the
instruction we are aiming for and corrupt the latency timing difference.

Conveniently, the standard TI MSP430 architecture [243] comes with a Timer_A
peripheral capable of generating cycle-accurate interrupts. The timer features
an internal Timer_A Register (TAR) that is incremented every clock cycle,
and can be configured to generate an IRQ upon reaching a certain value. After
generation of the interrupt request, Timer_A immediately restarts counting from
zero. Hence, interrupt latency on MSP430 microcontrollers can be measured
trivially by reading TAR as the first instruction in the ISR. The key to a
successful exploit thus comes down to determining the amount of clock cycles
between configuring the timer, and execution of the instruction of interest in the
enclave. Again, this is relatively straightforward on an MSP430 microcontroller
where, in the absence of pipelining and caching, execution timing is completely
deterministic. More specifically, instruction execution takes between one and six
clock cycles, depending on the addressing modes of the source and destination
operands. An MSP430 CPU [243] features seven different addressing modes,
yielding a large variation in possible execution cycles. We refer to Appendix C.1
for a full instruction timing table.

Careful analysis of the compiled source code thus suffices to establish appropriate
timer configurations for the Sancus application scenarios. To make our exploits
more robust against changes in the application’s source code, however, we opted
for a different approach where the attacker first deploys a near-exact copy of the
victim enclave, adjusted to copy the value of TAR in a global variable directly
after execution of the conditional jump of interest. Our practical attack combines
the execution timings retrieved from this “spy” enclave with predetermined
constant parameters to dynamically configure the timer at runtime.



IMPLEMENTATION ASPECTS 131

Instruction (interrupt number)

IR
Q

 l
a
te

n
cy

 (
cy

cl
e
s)

Figure 5.4: Sample interrupt latency trace revealing execution timings for individual
SGX enclave instructions.

5.4.2 IRQ latency traces on SGX platforms

SGX enclave programs are explicitly left interrupt-unaware by design. While an
x86 processor [114] in enclave mode ignores obvious hardware debug assistance
features such as the single-step trap flag (rflags.tf) or hardware breakpoints,
recent research on interrupt-driven SGX attacks [257, 92, 181, 156] has shown
that untrusted OSs can accurately emulate this behavior by leveraging first-rate
control over timer devices. So far, these attacks have focused on collecting side-
channel information from frequent enclave preemptions via the page tables, CPU
caches, or the branch prediction unit. We are the first to recognize, however,
that the act of interrupting a victim enclave in itself leaks microarchitectural
instruction timings.

We explain below how we extended and improved a state-of-the-art enclave
single-stepping framework to collect precise interrupt latency measurements
from SGX enclaves. The resulting IRQ latency traces, exemplified in Fig. 5.4,
describe the execution time for each subsequent instruction in the enclaved
computation, and can thus be thought of as an “x-ray” of the microarchitectural
processor state and the code executing in the enclave.

Single-stepping enclaved execution. We based our implementation on the
recently published open-source SGX-Step [257] framework that allows a
privileged adversary to precisely “single-step” enclaves at most one instruction
at a time. SGX-Step comes with a Linux kernel driver to establish convenient
user space virtual memory mappings for enclave Page Table Entrys (PTEs)
and the local Advanced Programmable Interrupt Controller (APIC) device. A
very precise single-stepping technique is achieved by writing to the APIC timer
register directly from user space, eliminating any jitter from kernel context
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Figure 5.5: Enhanced SGX-Step framework for precise interrupt latency
measurements (blue path) on Intel x86 platforms.

switches in the timer configuration path [92, 181, 156]. Carefully selecting
a platform-specific timer interval ensures that interrupts reliably arrive with
a very high probability (> 97%) within the first enclaved instruction after
eresume [257].

While SGX-Step allows APIC interrupts to be sent from a ring 3 user space
process, the original framework still vectors to a conventional ring 0 kernel
space interrupt handler. Execution will eventually return to the user space
AEP stub where the single-stepping adversary collects side-channel information,
and configures the local APIC timer for the next interrupt before resuming
the enclave. This approach suffices to amplify conventional side channels, but
subtle microarchitectural timing differences can be affected by noise from kernel
space interrupt handling code, privilege level switches, and cache pollution [92,
181]. As such, precisely measuring interrupt latency on Intel x86 platforms
presents a substantial challenge over state-of-the-art enclave execution control
approaches. As an important contribution, we therefore extended SGX-Step to
handle interrupts completely within user space, without ever having to vector
to the kernel.

Figure 5.5 summarizes our improved approach to interrupt and resume
enclaves. In an initial preparatory phase, the privileged adversary queries
the /dev/sgx-step Linux kernel driver to establish user space virtual memory
mappings for the local APIC MMIO range plus the IA-64 Interrupt Descriptor
Table (IDT) [257, 114]. Custom user space ISRs can now be registered directly
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by writing to the relevant IDT entry, taking care to specify the handler address
relative to the user code segment and with descriptor privilege level 3 [114].6
When the local APIC timer interrupt 1 arrives within an enclaved instruction,
SGX’s secure AEX microcode procedure stores and clears CPU registers inside
the enclave. Next, the conventional interrupt logic takes over and 2 vectors to
the user space interrupt handler. At this point, 3 we immediately grab
a timestamp as the very first ISR instruction before 4 returning to the
aforementioned AEP stub. 5 Here, we log the extracted latency timing
measurements, optionally annotating them for benchmark debug enclaves with
the stored in-enclave program counter that can be retrieved via the privileged
edbgrd instruction in the /dev/sgx-step driver. Thereafter, we configure the
local APIC timer for the next interrupt by writing into the initial-count MMIO
register, and grab another timestamp to mark the start of the interrupt latency
measurement. We take care to 6 execute the eresume instruction immediately
after storing the timestamp to memory. This ensures that the interrupt latency
measurement path between the two timestamps (visualized in blue in Fig. 5.5)
only includes (i) three unprotected instructions to store the first timestamp and
resume the enclave, plus (ii) the enclaved instruction of interest, plus (iii) the
AEX microcode procedure to vector to the untrusted interrupt handler.

Handling noise. In contrast to an embedded Sancus-enabled MSP430 CPU,
microarchitectural optimizations found in modern x86 processors are known
to cause non-constant instruction execution times [44, 43]. Conformant to our
attacker model, and closely following previous SGX attacks [156, 258, 79, 29,
181, 92] our experimental setup attempts to reduce measurement noise to a
minimum by leveraging some of the unique untrusted operating system adversary
capabilities to increase execution time predictability: disable SMT and dynamic
frequency scaling (C-states, SpeedStep, TurboBoost), and affinitize the enclave
process to a dedicated CPU with Linux’s isolcpus kernel parameter.

To compensate for the remaining measurement noise, we correlate IRQ latency
observations from repeated enclaved executions over the same input, as is not
uncommon practice in (SGX) side-channel research [181, 79, 29, 225, 156].
Specifically, we will show in Section 5.5 that the IRQ latency measurements
extracted by our framework exhibit a normally distributed variance. As
such, adversaries can rely on basic statistical analysis techniques (e.g., mean,
median, standard deviation) to combine multiple IRQ latency observations
into a representative overall trace of enclaved instruction timings. Our
practical implementation uses a Python post-processing script to parse the
raw measurements extracted by our framework for repeated enclaved executions.

6 We register our user space handlers as an x86 trap gate, since otherwise the interrupt-
enable flag (rflags.if) does not get restored upon interrupt return.
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The resulting traces plot the median execution time (plus optionally a box plot
describing the distribution) for each subsequent instruction in the enclaved
execution.

Accurately aggregating IRQ latency measurements from repeated enclaved
executions also presents another substantial challenge, however. That is, while
SGX-Step guarantees that a victim enclave executes at most one instruction at
a time, a relatively low fraction of the timer IRQs (< 3%) still arrives within
eresume—before an enclaved instruction is ever executed [257]. Such “zero-
step” events are harmless in themselves, but should be filtered out in order to
correctly associate repeated measurements for the same step (i.e., instruction)
in different enclave invocations. We therefore contribute a novel technique to
deterministically recognize false zero-step interrupts by probing the “accessed”
bit [114] in the unprotected page-table entry mapping the enclaved code page.
Specifically, we experimentally verified that the CPU only sets the code PTE
accessed bit when the enclave did indeed execute an instruction (i.e., timer
interrupt arrived after eresume). Merely clearing the PTE accessed bit for
the relevant enclaved code page before sending the interrupt, and querying it
afterwards thus suffices to filter out false zero-step observations and achieve
noiseless single-stepping.

5.5 Evaluation

Our embedded scenarios were evaluated on a development version of Sancus,
extended with the hardware-level secure interrupt mechanism described in
Section 5.3.1. We interfaced the Sancus core with a Diligent PmodKYPD
peripheral for the secure I/O application. All SGX experiments were conducted
on an off-the-shelf Dell Inspiron 13 7359 laptop with a generic Linux v4.13.0
kernel on a Skylake dual-core Intel i7-6500U CPU running at 2.5GHz. Custom
BIOS and kernel parameters were described in the previous section.

5.5.1 Effectiveness on Sancus

To evaluate our attack against the MSP430 bootstrap loader software, we
encapsulated the relevant password comparison routine BSL430_unlock_BSL in
a protected Sancus enclave. Texas Instruments eliminated secret-dependent
control flow entirely from BSL v3 onwards (with a bitwise or of the xor of each
pair of bytes). To the best of our knowledge, vulnerable BSL versions are no
longer distributed. We therefore based our implementation on the latest BSL
v9, where we replaced the invulnerable, xor-based password comparison with
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Figure 5.6: Interrupt latency trace revealing keystrokes in a Sancus enclave.

the hardened assembly code from Listing 5.1. The untrusted application context
succeeds in recovering the full BSL password by iterating over all possible
values for each input byte sequentially. A single interrupt per guess suffices to
determine the correctness of the password byte under consideration. As such,
our interrupt timing attack reduces an exhaustive search for the password from
an exponential to a linear effort.

We provide the full source code of the poll_keypad function in Appendix C.2.
The program was compiled with the Sancus C compiler based on LLVM/Clang
v3.7.0. Our exploit recognizes all key presses without noise, in a single run
of the victim enclave. This is an important property for I/O scenarios where,
unlike cryptographic algorithms, a victim cannot be forced to execute the same
code over the same secret data multiple times. Instead, key strokes should be
recognized in real-time, while they are being entered by the human actor. Our
online keypad attack only requires a single IRQ per loop iteration, totaling no
more than 16 interrupts to recover the full key mask from a single enclaved
execution.

Figure 5.6 visualizes the the interrupt latency signal and illustrates the maximal
information leakage an adversary may collect when interrupting after every
single instruction. This figure plots the execution timings of every individual
instruction in one run of the Sancus keypad enclave. The resulting trace
clearly reveals the full 16-bit key mask, where the adversary learns that key
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“1” is currently pressed from a distinctly different interrupt latency behavior
corresponding to the conditional control flow in Fig. 5.3.

5.5.2 SGX microbenchmarks

We first present microbenchmark experiments in order to quantify the effect
of microarchitectural execution state and instruction type on the latency of
individual x86 instructions. The microbenchmarks were obtained by single-
stepping a benchmark SGX enclave that executes a slide of 10,000 identical
assembly instructions. We refer to Chapter 4 for a thorough evaluation of SGX-
Step’s APIC timer-based single-stepping mechanism which guarantees that at
most one enclaved instruction is executed per interrupt [257]. Additionally,
we used the code PTE “accessed” bit technique described in Section 5.4.2
to deterministically filter out false zero-step observations, resulting in perfect
single-stepping capabilities.

Differentiating instruction types. Figure 5.7 provides the IRQ latency
distributions for selected processor instructions. The horizontal axis lists the
observed latency timings in CPU cycles, whereas the number of corresponding
interrupts in this latency class is depicted on the vertical axis. Note that the
horizontal axis does not start from zero, as our interrupt latency measurement
path (Fig. 5.5) includes the execution times of the eresume and AEX microcode.

As a first important result, we can decisively distinguish certain low-latency
enclaved operations such as nop or add from higher-latency ones such as
secure random number generation (rdrand) or certain floating point operations
(fscale), solely by observing the latency they induce on interrupt. This confirms
our hypothesis that IRQ latency on x86 platforms depends on the execution
time of the interrupted instruction. Hence, these benchmarks can be considered
clear evidence for the existence of a timing-based side channel in SGX’s secure
AEX procedure.

We can furthermore conclude that differentiating a nop instruction from an add
with immediate and register operands is much less obvious, however. These
instructions are indeed very similar at the microarchitectural level, both requiring
only a single micro-op [66]. As an interesting special case, we investigated the
IRQ latency behavior of the lfence instruction, which serializes all prior load-
from-memory operations. This instruction has recently become particularly
relevant, for Intel officially recommends [117] to insert lfence instructions
after sensitive conditional branches to protect SGX enclaves against Spectre v1
speculative bounds check bypasses [146]. While the microarchitectural timing
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Figure 5.7: Interrupt latency distributions for selected x86 instructions, from left to
right: nop, add, lfence, fscale, rdrand.

differences are more subtle, Fig. 5.7 still shows that one can on average plainly
separate lfence from ordinary nop or add instructions.

Measuring data timing channels. Variable latency arithmetic instructions are
known to be an exploitable side channel, even in code without secret-dependent
control flow [43, 44, 15]. Previous research on microarchitectural data timing
channels has established that the execution time of some commonly used
x86 arithmetic instructions such as (floating point) multiplication or division
depends on the operands they are being applied upon. Our second set of
microbenchmark experiments therefore explore leakage of enclaved operand
values through interrupt latency for the widely studied [43, 44, 15] unsigned
integer division x86 div instruction.

Figure 5.8 shows the IRQ latency distributions for 10,000 enclaved executions
of the div instruction applied on different 128-bit dividend operands and a
fixed 64-bit divisor (0xffffffffffffffff). The average interrupt latency
clearly increases as the dividend becomes larger, which confirms that “the
throughput of div/idiv varies with the number of significant digits in the
input rdx:rax” [113] As such, we conclude that IRQ latency leaks operand
values for variable latency instructions. Importantly, in contrast to classical
start-to-end timing measurements, Nemesis-style interrupt timing attacks leak
this information at an instruction-level granularity, which allows to precisely



138 NEMESIS: STUDYING MICROARCHITECTURAL TIMING LEAKS IN INTERRUPT LOGIC

Figure 5.8: Data-dependent interrupt latencies for the x86 div instruction with from
left to right an increasing amount of bits set in the dividend operand.

isolate (successive) data-dependent instruction timing measurements in a larger
enclaved computation.

Influence of data caching. Figure 5.9 investigates the IRQ latency distri-
butions for selected mov instructions to/from enclave memory. The store
distribution is characterized by two prominent normally distributed peaks. Our
hypothesis is that the right peak, representing measurements with a larger IRQ
latency, is caused by a write miss in the data cache.7 A write miss indeed forces
the CPU to wait for completion of the memory transaction before finishing
the instruction. It appears that in this particular experimental setup, the
processor’s cache replacement policy rather frequently evicts the data accessed
by the benchmark enclave. To support this hypothesis, we examined IRQ
latency behavior for the x86 movnti store operation with a non-temporal hint
that forces the CPU to write the data directly into memory, without updating
or fetching the corresponding cache line. movnti clearly manifests an increased
latency that overlaps with the right peak of the store distribution.

7Intel SGX always uses a write-back caching policy for enclave memory [114]. This means
that a write hit on enclave memory initially only updates the cache, unblocking the processor
immediately, while writing to main memory is postponed until eviction of the dirty cache line.
When the data was not yet in the cache (i.e., write miss), however, any dirty line about to be
replaced has to be written back, and the new line has to be fetched from main memory.
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Figure 5.9: Increased interrupt latencies from enclaved data cache misses, from left
to right: store, load hit, non-temporal store, load miss.

To investigate the impact of data cache misses on enclaved load operations,
we instrumented the instruction slide in our benchmark enclave to explicitly
invalidate the corresponding cache line by executing clflush before each mov
instruction. Our noiseless single-stepping techniques allows to afterwards filter
out latency measurements for the interleaved clflush instructions, such that
the resulting IRQ latency distributions are solely characterized by the execution
times of the mov instruction under consideration. Figure 5.9 shows a prominently
increased latency for intra-enclave memory load operations that miss the data
cache hierarchy. We suspect that the sparser distribution for load cache misses
is caused by noise from the DRAM controller.

These experiments thus provide clear evidence for the fact that IRQ latency
reveals cache misses. This finding may be particularly relevant for state-of-the-
art fortified TEE designs like Sanctum [48] that include all known architectural
countermeasures to prevent adversaries from gaining insight into enclave caching
behavior.

Influence of address translation. SGX was explicitly designed to traverse
untrusted page tables during enclaved execution, and verifies address translation
metadata via an independent additional protection mechanism. Recent research
on address translation side-channel attacks [258, 81], however, exploits the
microarchitectural property that x86 page-table entries are cached as with
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Figure 5.10: Increased interrupt latencies from cache misses in the page-miss handler,
from left to right: nop baseline, mov baseline, nop code PTE miss, mov data PTE miss,
mov code+data PTE miss.

normal data. By spying on unprotected cache lines, adversaries can gain insight
into enclaved memory page accesses.

Our last set of microbenchmark experiments explores the impact of untrusted
address translation data cache misses on the latency of the interrupted
instruction. We used clflush before resuming the benchmark enclave to
invalidate the cache line for the unprotected PTE entry that stores the physical
address of the code page containing the microbenchmark instruction slide.
Figure 5.10 demonstrates that we can distinctly increase the latency of even
ordinary nop instructions in this way. Furthermore, for instructions with a
memory operand, kernel-level adversaries can choose to flush the PTE entry for
the data operand, and/or the enclaved code page to be executed. Figure 5.10
indeed shows a clear increase in IRQ latency for mov instructions that need an
additional memory access to retrieve the physical address of the private data
operand. Likewise, latency even further increases when also flushing the PTE
entry of the enclaved code page containing the load instruction.

We conclude that IRQ latency reveals data cache misses in the page-table walk
at instruction-level granularity. While SGX page tables reside in unprotected
memory, this finding may once more impact fortified TEE designs [48, 58] that
move page tables inside enclave memory, out of reach of the attacker, to protect
against address translation side-channel attacks.
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Figure 5.11: Interrupt latency distributions for 100 runs of Zigzagger branch taken
(blue, left) vs. not-taken (red, right) execution paths.

5.5.3 SGX macrobenchmark attack scenarios

To demonstrate information leakage in larger enclave programs, we extracted
full IRQ latency traces from the SGX case study applications introduced in
Section 5.3.2. In contrast to the isolated microbenchmark experiments described
above, our macrobenchmark results illustrate interrupt latency behavior in
typical, compiler-generated mixed instruction streams.

Defeating Zigzagger. Since the Zigzagger compiler pass was not made publicly
available, we copied the exemplary assembly code (Fig. 4.2 on page 111) from
the corresponding paper [156] in an SGX enclave. As explained in Section 5.3.2,
we made sure to manually align secret-dependent code to fit entirely within one
64-byte cache line. Figure 5.11 shows the IRQ latency distributions extracted by
our framework for 100 repeated runs of a victim enclave that either takes the first
Zigzagger-obfuscated branch (a=1; blue) or not (a=0; red). The leftmost two
box plots visualize IRQ latency measurements for the indirect branch instruction
zz4 at the end of the Zigzagger trampoline, whereas the following two grouped
box plots represent instruction latencies in the the conditional control flow
path from either b1 (blue, nop) or b2 (red, lea) to the next secret-dependent
jump at zz4. Note that both execution paths in the assembly code snippet
of Fig. 4.2 already merge at b2.j, such that IRQ latency traces extracted
from Zigzagger-hardened code only feature an extremely short secret-dependent
sequence of 4 instructions, marked in Fig. 5.11.

A first important observation, in line with the microbenchmark results above,
is that IRQ latency measurements are normally distributed such that we need



142 NEMESIS: STUDYING MICROARCHITECTURAL TIMING LEAKS IN INTERRUPT LOGIC

cm
p
cm
p
cm
p jg jg ad

d
mo
v
su
b
mo
v
te
st le

a
po
p
jn
e
sh
r
po
p
mo
v
te
st po

p
mo
v je po

p
sh
r
mo
v
po
p
mo
v
mo
v
po
p
im
ul sh

r
re
tq

7700

7800

7900

8000

8100

8200

IR
Q

 l
a
te

n
cy

 d
is

tr
ib

u
ti

o
n
 (

cy
cl

e
s)

1 2 3 4 5 6 7 8 9 10Instruction

Figure 5.12: Interrupt latency distributions for 100 runs of bsearch left (blue) vs.
right (red) vs. equal (green) execution paths.

to perform multiple observations before making decisive conclusions on the
timing characteristics of the instruction under consideration. In this respect,
the first two instructions in the secret-dependent execution paths exhibit similar
and fairly indistinguishable IRQ latency distributions, which is indeed to
be expected given that nop and lea instructions behave identical (micro-op
count, latencies) at the microarchitectural level [66] The third secret-dependent
instruction, either jmp or cmp, however, manifests a sharply visible (median)
IRQ latency difference that can be exploited to unambiguously distinguish both
branches. Specifically, by relying on the noiseless single-stepping technique
from Section 5.4.2, adversaries can collect IRQ latencies from repeated enclaved
executions, and afterwards categorize the samples for the third secret-dependent
instruction as either a jmp or cmp. To compensate for outliers, we use the
median IRQ latency instead of the mean. Note that Fig. 5.11 was generated
from 100 repeated enclave invocations to yield a representative overall plot, but
we found that in practice secret-dependent Zigzagger branches can already be
reliably identified after as little as 10 enclave invocations. Finally, also note
that there exists a subtle yet potentially exploitable IRQ latency distribution
difference for the last secret-dependent instruction jmp vs. register cmov.

Inferring binary search indices. To evaluate our binary search attack, we
constructed an enclave that calls the Intel SGX SDK bsearch trusted library
function to look up a value in a fixed integer array. We carefully selected
the exemplary lookup value to ensure that bsearch first looks left, then right,
and finally returns the requested address. Our practical exploit faults on
the code page containing the bsearch function to enter single-stepping mode
and then starts collecting IRQ latency measurements. Figure 5.13 plots the
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Figure 5.13: Median interrupt latencies over 100 bsearch invocations.

median IRQ latencies obtained from 100 enclaved bsearch executions, where
each individual data point reveals the execution time of the corresponding
assembly instruction in Appendix C.3. We annotated the trace to mark the
three consecutive execution paths (left, right, equal) after comparing the value
for that loop iteration. As with the Zigzagger benchmark, Fig. 5.12 furthermore
compares relative IRQ latency distributions by means of box plots for each
assembly instruction in the secret-dependent execution paths.

As a first important result, one can easily identify the relatively high-latency
peaks from the 6 subsequent pop stack accessing instructions in the return path
of the equal case (green instructions 4-10 in Fig. 5.12). Furthermore, while
distinguishing the left (blue) and right (red) cases is more subtle, the source
code in Listing 5.2 indicates that the right case has to perform slightly more
work before continuing to the next loop iteration. This is indeed reflected at the
assembly code level by two more low-latency register instructions (sub and lea)
before the right branch continues along the common execution path. Again,
we found this extremely subtle difference to be sufficient to distinguish both
branches via the relative position of a higher-latency mov instruction at the
start of the for loop. It is apparent from Fig. 5.13 that the IRQ latency patterns
for the right branch are slightly shifted with respect to those of the left one.
Particularly, the first high-latency peak in the left branch occurs 4 interrupts
(instruction 6 in Fig. 5.12) after cmp, whereas for the right branch this peak
only occurs after 6 interrupts (instruction 8 in Fig. 5.12). As with the Zigzagger
benchmark, comparing median IRQ latency samples for specific instructions,
identified by their single-stepping interrupt number, thus suffices to reliably
infer control flow decisions in the binary search algorithm and establish the
secret lookup key.
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5.6 Discussion and mitigations

Interrupt timing leaks. While generally well-understood at the architectural
level, asynchronous CPU events like faults and interrupts have not been studied
extensively at the microarchitectural level. Recent developments on Meltdown-
type “fault latency” attacks [162, 249] exposed fundamental flaws in the way
modern out-of-order processors enforce software isolation, whereas Nemesis
reveals a more intrinsic and subtle timing side channel in the CPU’s interrupt
mechanism. We showed that the act of interrupting enclaved execution leaks
microarchitectural timing information at an instruction-level granularity, even
on the most rudimentary of microcontrollers. In this, we have presented the first
remotely exploitable controlled channel for embedded enclave processors, and
we contribute to the understanding of SGX side-channel information leakage
beyond the usual suspects.

Interrupt latency traces (e.g., Figs. 5.4, 5.6 and 5.13) can be regarded as
an instruction-granular “x-ray” for enclaved execution. Our microbenchmark
SGX experiments show that interrupt latency directly reveals certain high-
latency enclaved operations, and can furthermore reliably quantify other
microarchitectural properties that affect execution time on modern x86
processors [71], e.g., data-dependent instruction latencies, and data or page-table
cache misses. In this respect, we expect that Nemesis’s ability to extract fine-
grained microarchitectural instruction timings from SGX enclaves will enable
new and improved side channels such as MemJam-type [180] false dependency
attacks. As a particularly relevant finding for fortified TEEs like Sanctum [48]
that aim to eradicate known cache timing attacks, we identified what might
well be one of the last remaining side channels that provide insight into enclave
caching behavior. Specifically, since we have shown that interrupt latency
reveals cache misses, we can see IRQ latency traces being leveraged in a trace-
driven cache attack [1], for instance, to reduce the key space of cryptographic
algorithms.

We have demonstrated that interrupt latency timing attacks pose a direct
and serious threat to the protection model pursued by embedded TEEs such
as Sancus, though further research is needed to investigate the bandwidth
of practical Nemesis side-channel attacks on SGX platforms. A particularly
promising future work avenue in this respect would be to supersede reverse
engineering and statistical analysis efforts by applying automated machine
learning techniques on IRQ latency traces extracted from multiple invocations
of the victim enclave.
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Why constant-time IRQ defenses are insufficient. We have shown how
interrupt-capable adversaries can dissolve black box-style start-to-end protected
execution times into (a sequence of) execution timing measurements for
individual enclaved instructions. This chapter has focused on exploring
“interrupt latency timing” channels on multi-cycle instruction set processors,
but we want to stress that attack surface from secure interrupts is not limited to
timing side channels only. Another potentially dangerous “interrupt counting”
channel, for instance, would measure the total number of times the enclaved
execution can be interrupted before it finally completes. For example, in the
balanced BSL password comparison scenario of Listing 5.1, adversaries can
interrupt the if branch twice (2 instructions), whereas the else branch featuring
nop compensation code can be interrupted four times (4 instructions). As such,
while the total enclaved execution time remains constant, interrupt-capable
single-stepping adversaries will still notice a decrease in the total IRQ count for
each correct password byte.

The above interrupt counting channel seems particularly interesting, for it
only assumes a multi-cycle instruction set architecture, and thus continues
to persist on processors with constant-time IRQ latency. We, for instance,
considered a hardware patch for Sancus that always enforces the worst-case
interrupt response time by inserting dummy execution cycles depending on
the enclaved instruction being interrupted. Alternatively, ARM Cortex M0
processors [16] abandon multi-cycle instructions to handle any pending interrupt
immediately. While such processors are immune to the IRQ latency timing
attacks described in this chapter, they remain vulnerable to interrupt counting
attacks and may additionally be exposed to advanced Nemesis-type interrupt
timing attack variants.

We conclude that constant-time interrupt logic is a necessary but not sufficient
condition to eradicate Nemesis-style interrupt attacks at the hardware level. In
general processor-level solutions alone seem not to be able to completely prevent
information leakage from secure interrupts in enclaved execution. This finding
may have a consequential impact for fully abstract compilation schemes [203]
and provably side-channel resistant processor designs [63, 64] that have so far
not considered secure interrupt timing channels. We encourage further research
and formal analysis to adequately address interrupt-based side channels via
hardware-software co-design.

Application hardening. Considering that our attacks exploit secret-dependent
control flow, an application-level solution should strive to eliminate conditional
program branches and variable latency instructions completely. This can be
realized by rewriting the enclave code manually (e.g., xor-based password
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comparison of Section 5.5.1), or by automated if-conversion in a compiler
backend [44]. Such solutions remain compatible with existing TEE hardware,
but also assume that sensitive information can be easily identified. Previous
research [277, 29] in this area has shown that sensitive application data may be
more ill-defined than the typical cryptographic keys of side-channel analysis.
Moreover, if-conversion comes with a significant performance overhead [44] that
somewhat invalidates the TEE promise of native code execution in a protected
environment.

Alternatively, compilers could focus on detecting, rather than eliminating,
IRQ timing attacks. Our interrupt extensions for Sancus indeed follow TEE
designs [147, 28, 48] that explicitly call into an enclave to request resumption of
internal execution. As such, Sancus enclaves are interrupt-aware and they could
use excessive interrupt rates as an indicator to trigger some security policy that
terminates the module and/or destroys secrets. Interrupts also occur in benign
conditions, however, and a single interrupt already suffices to leak confidential
information, as evident from our Sancus attack scenarios. Adversaries could
thus adapt their attacks to the entry policy of a victim enclave.

Intel SGX on the other hand leaves enclave programs explicitly interrupt-
unaware through the use of a dedicated eresume hardware instruction. However,
a contemporary line of research [229, 42, 84] leverages hardware support for
Transactional Synchronization Extensions (TSX) in recent x86 processors to
detect interrupts or page faults in enclave mode. More specifically, these
proposals rely on the property that code executing in a TSX transaction is
aborted and automatically rolled back when an external interrupt request
arrives. TSX furthermore modifies the stored in-enclave instruction pointer
upon AEX, such that a preregistered transaction abort handler is called on the
next eresume invocation. Whereas TSX-based defenses would likely recognize
suspicious interrupt rates when single-stepping enclaved execution, advanced
Nemesis adversaries could construct stealthy Sancus-like IRQ timing attacks
that only interrupt the victim enclave minimally and stay under under the
radar of the transaction abort handler’s probabilistic security policy. Moreover,
TSX-based defenses also suffer from some important limitations [257, 237],
ranging from the absence of TSX features in some processors to severe runtime
performance impact and the false positive/negative rates inherent to heuristic
defenses. In conclusion, we do not regard current ad-hoc TSX approaches as
a solution, even apart from compatibility and performance issues, since they
cannot prevent the root information leakage cause. Our attacks against Sancus
show that a single interrupt can deterministically leak sensitive information,
and we expect further development of the attacks against SGX to increase
stealthiness, as has been shown, for instance, for page-table based attacks [258,
263].



RELATED WORK 147

5.7 Related work

We have discussed TEE security architectures throughout this chapter. In this
section we focus on relating our work to existing side-channel analysis research.
There exists a vast body of work on microarchitectural timing channels [71], but
side-channel attacks in a TEE context are only being explored very recently.
To the best of our knowledge, we have presented the first remotely exploitable
controlled channel for low-end embedded TEEs. Various authors [63, 158, 47]
have explicitly expressed their concerns on software side-channel vulnerabilities
in higher-end TEEs such as Intel SGX. This chapter argues, however, that
current attack research efforts focus too narrowly on the “usual suspects” that
are relatively well-known, and do not reveal anything really unexpected. Apart
from our work, only page-table-based attacks [277, 230, 258, 263, 91] have to
date been identified as a novel controlled channel. Compared to IRQ latency, the
page fault channel has a coarser-grained granularity (instruction vs. page-level),
but does not suffer from the noise inherent to microarchitectural channels.

Our attack vector is closely related to cache timing side channels in that IRQ
latency traces reveal cache misses. A powerful class of access-driven cache
attacks based on the Prime+Probe technique [202] first primes the cache
by loading congruent addresses, and thereafter measures the time to reload
these addresses so as to establish memory access patterns by the victim. Such
Prime+Probe cache timing attacks have been successfully applied against SGX
enclaves [79, 225, 29, 181, 92]. When memory is shared between the attacker
and the victim, Flush+Reload [280] and Flush+Flush [87] techniques
improve the efficiency of cache timing attacks. In the context of Intel SGX,
these techniques have recently been leveraged to spy on unprotected page-table
memory [258].

It has furthermore been shown that enclave-private control flow leaks via the
CPU’s branch prediction machinery [156, 59], which recently became particularly
relevant for Spectre-type speculative execution attacks [146, 39]. Recent Intel
microcode patches address Spectre attacks against SGX enclaves by clearing the
BTB upon enclave entry/exit [39]. At the microarchitectural level, Nemesis-style
interrupt latency timing attacks are more closely related to Meltdown [162] in
that both abuse the property that asynchronous CPU events like faults and
interrupts are only handled upon instruction retirement. While Intel SGX
was initially considered to be resistant to Meltdown-type transient-execution
vulnerabilities, recent work presented Foreshadow [249, 271], which allows for
arbitrary in-enclave reads and completely collapses isolation and attestation
guarantees in the SGX ecosystem. To allow for TCB recovery, Intel has revoked
the compromised attestation keys, and released microcode patches to address
Foreshadow at the hardware level.
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5.8 Conclusion

The security aspects of asynchronous CPU events like interrupts and faults have
not been amply studied from a microarchitectural perspective. We contributed
Nemesis, a subtle timing channel in the CPU’s rudimentary interrupt logic. Our
work represents the first controlled-channel attack against embedded enclaved
execution processors, and we demonstrated Nemesis’s applicability on modern
Intel SGX x86 platforms.
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Foreshadow: Extracting the
keys to the Intel SGX
kingdom with transient
out-of-order execution
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M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order
Execution”. In: 27th USENIX Security Symposium. Aug. 2018, pp. 991–1008

Preamble

This chapter presents Foreshadow, a novel transient-execution attack which
for the first time decisively dismantled the security objectives of the Intel
SGX ecosystem. At its core, Foreshadow exploits an incorrect transient
forwarding effect similar to Meltdown, on top of which we develop an innovative
exploitation methodology to reliably leak plaintext enclave secrets from the
CPU cache. We demonstrate Foreshadow’s disruptive impact by extracting full
cryptographic keys from Intel’s vetted architectural enclaves, allowing to launch
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rogue production enclaves and to forge arbitrary local and remote attestation
responses. The extracted remote attestation keys affect millions of devices.

With Foreshadow, we were among the first to discover the security implications
of transient execution in modern Intel processors. Specifically, this research
was performed concurrently to Spectre and Meltdown, and we responsibly
disclosed our findings to Intel on January 3, 2018, at which point we engaged
in an extended embargo period until August 14, 2018. During the embargo
period, and after our work had already been accepted at the USENIX Security
conference, we were informed that another academic team developed a similar
attack against SGX enclaves. This attack variant got later referred to by Intel as
“enclave-to-enclave” (E2E) [107]. In the best interest of the scientific community,
to avoid two concurrent papers on the same topic, we decided to invite the
other researchers as co-authors and present our independent discoveries as the
combined result of an international coalition. To raise awareness and disseminate
our findings to the wider public, the website https://foreshadowattack.eu/
was created.

Following our disclosure, Intel assigned CVE-2018-3615 to our findings and
identified the root cause for Foreshadow to be an L1 Terminal Fault (L1TF)
microarchitectural condition when accessing unmapped pages [107]. As it turned
out, L1TF has much broader and more dire consequences than leaking enclave
memory, for it essentially allows to dump the entire contents of the L1D cache,
regardless of the owner of the data. In particular, Intel identified two closely
related variants of our original Foreshadow attack, which we collectively refer
to as “Foreshadow-NG”—Foreshadow Next Generation [271]. At a high level,
Foreshadow-NG can be exploited by unprivileged applications for accessing
physical memory out of the current process’s address space (CVE-2018-3620),
or by malicious guest virtual machines to access memory belonging to the
hypervisor and other guest virtual machines (CVE-2018-3646). This chapter
has been extended with a postscript in Section 6.9, which further elaborates on
the microarchitectural root cause behind Foreshadow and reviews the mitigations
that have been rolled out to protect SGX enclaves, operating system kernels,
and hypervisors.

In the wider research landscape, Foreshadow led to important new insights
and marked a paradigm shift in the way we should think about Meltdown-type
threats. That is, in contrast to prior views, delayed exception handling is not a
one-off bug to read kernel memory in Intel processors, but instead comprises an
extensive and expanding class of Meltdown-type transient-execution attacks [162,
36, 223, 216, 35, 251]. Foreshadow directly contributed to the insight of
differentiating Meltdown-type attacks in terms of the page-table bits used to
trigger a page fault exception, which subsequently formed the basis for our more
systematic transient-execution attack classification tree [36], summarized in

https://foreshadowattack.eu/
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Appendix A. Furthermore, by transiently computing on unauthorized physical
memory locations that are currently not mapped in the attacker’s virtual address
space, Foreshadow for the first time fully escaped the virtual memory sandbox.
Merely unmapping secrets from an untrusted application’s address space, as
in the widely deployed kernel page-table isolation KAISER [85] mitigation to
protect against the original Meltdown-US [162] attack, now becomes a necessary
but not a sufficient condition.

6.1 Introduction

It becomes inherently difficult to place trust in modern, widely used operating
systems and applications whose sizes can easily reach millions of lines of code,
and where a single vulnerability can often lead to a complete collapse of all
security guarantees. In response to these challenges, recent research [166,
189, 48] and industry efforts [10, 136, 176, 14] developed Trusted Execution
Environments (TEEs) that feature an alternative, non-hierarchical protection
model for isolated application compartments called enclaves. TEEs enforce the
confidentiality and integrity of mutually distrusting enclaves with a minimal
Trusted Computing Base (TCB) that includes only the processor package and
microcode. Enclave-private CPU and memory state is exclusively accessible to
the code running inside it, and remains explicitly out of reach of all other enclaves
and software running at any privilege level, including a potentially malicious
operating system and/or hypervisor. Besides strong memory isolation, TEEs
typically offer an attestation primitive that allows local or remote stakeholders
to cryptographically verify at runtime that a specific enclave has been loaded
on a genuine (and hence presumed to be secure) TEE processor.

With the announcement of Intel’s Software Guard Extensions (SGX) [176, 14,
114] in 2013, hardware-enforced TEE isolation and attestation guarantees are
now available on off-the-shelf x86 processors. In light of the strong security
guarantees promised by Intel SGX, industry actors are increasingly adopting
this technology in a wide variety of applications featuring secure execution on
adversary-controlled machines. Open Whisper Systems [169] relies on SGX for
privacy-friendly contact discovery in its Signal network. Both Microsoft and
IBM recently announced support for SGX in their cloud infrastructure. Various
off-the-shelf Blu-ray players and initially also the 4K Netflix client furthermore
use SGX to enforce Digital Rights Management (DRM) for high-resolution
video streams. Emerging cryptocurrencies [179] and innovative blockchain
technologies [111] rely even more critically on the correctness of Intel SGX.
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Our contribution. This chapter shows that current SGX implementations
cannot meet their security objectives. We present the Foreshadow attack,
which leverages a speculative execution bug in recent Intel x86 processors
to reliably leak plaintext enclave secrets from the CPU cache. At its core,
Foreshadow abuses the same processor vulnerability as the recently announced
Meltdown [162] attack, i.e., a delicate race condition in the CPU’s access control
logic that allows an attacker to use the results of unauthorized memory accesses
in transient out-of-order instructions before they are rolled back. Importantly,
however, whereas Meltdown targets traditional hierarchical protection domains,
Foreshadow considers a very different attacker model where the adversary’s
goal is not to read kernel memory from user space, but to compromise state-
of-the-art intra-address space enclave protection domains that are not covered
by recently deployed kernel page-table isolation defenses [85]. We explain
how Foreshadow necessitates a novel exploitation methodology, and we show
that our basic attack can be entirely mounted by an unprivileged adversary
without root access to the victim machine. Given SGX’s unique privileged
attacker model, however, we additionally contribute a set of optional kernel-level
optimization techniques to further reduce noise for root adversaries. Our findings
have far-reaching consequences for the security model pursued by Intel SGX
in that, in the absence of a microcode patch, current SGX processors cannot
guarantee the confidentiality of enclaved data nor attest the integrity of enclaved
execution, including for Intel’s own architectural enclaves. Moreover, despite
SGX’s ambition to defend against strong kernel-level adversaries, present SGX
processors cannot even safeguard enclave secrets in the presence of unprivileged
user space attackers.

All previously known attacks against Intel SGX rely on application-specific
information leakage from either side channels [277, 225, 258, 156, 257, 180, 118]
or software vulnerabilities [266, 154]. It was generally believed that well-written
enclaves could prevent information leakage by adhering to good coding practices,
such as never branching on secrets, prompting Intel to state that “in general,
these research papers do not demonstrate anything new or unexpected about
the Intel SGX architecture. Preventing side channel attacks is a matter for
the enclave developer” [133]. Foreshadow defeats this argument, however, as it
relies solely on elementary Intel x86 CPU behavior and does not exploit any
software vulnerability, or even require knowledge of the victim enclave’s source
code. We demonstrate this point by being the first to actually extract long-term
platform launch and attestation keys from Intel’s critical and thoroughly vetted
architectural launch and quoting enclaves, decisively dismantling SGX’s security
objectives. In summary, our contributions are:

• We advance the understanding of Meltdown-type transient-execution CPU
vulnerabilities by showing that they also apply to intra-address space
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isolation and SGX’s non-terminating abort page semantics.

• We present novel exploitation methodologies that allow an unprivileged
software-only attacker to reliably extract enclave secrets residing in either
protected memory locations or CPU registers.

• We evaluate the effectiveness and bandwidth of the Foreshadow attack
through controlled experiments.

• We extract full cryptographic keys from Intel’s architectural enclaves, and
demonstrate how to (i) bypass enclave launch control; and (ii) forge local
and remote attestations to completely break confidentiality plus integrity
guarantees for remote computations.

Current status. Following responsible disclosure practices, we notified Intel
about our attacks in January 2018. Intel acknowledged the novelty and severity
of Foreshadow-type “L1 Terminal Fault” attacks, and assigned CVE-2018-
3615 to the results described in this chapter. We were further indicated that
our attacks affect all SGX-enabled Core processors, while some Atom family
processors with SGX support allegedly remain unaffected. At the time of this
writing, Intel assigned CVSS severity ratings of “high” and “low” for respectively
confidentiality and integrity. We note, however, that Foreshadow also affects
the integrity of enclaved computations, since our attacks can arbitrarily modify
sealed storage, and forge local and remote attestation responses.

Intel confirmed that microcode patches are underway and should be deployed
concurrently to the public release of our results. As of this writing, however,
we have not been provided with substantial technical information about these
mitigations. We discuss defense strategies in Section 6.6, and provide further
guidelines on the impact of our findings at https://foreshadowattack.eu/.

Disclosure. Foreshadow was independently and concurrently discovered by
two teams. The KU Leuven authors discovered the vulnerability, independently
developed the attack, and first notified Intel on January 3, 2018. Their work
was done independently from and concurrently to other recent x86 speculative
execution vulnerabilities, notably Meltdown and Spectre [162, 146]. The
authors from Technion, University of Michigan, and the University of Adelaide
independently discovered and reported the vulnerability to Intel during the
embargo period on January 23, 2018.

https://foreshadowattack.eu/
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6.2 Background

We first overview Intel SGX [176, 14, 114, 47] and refine the attacker model.
Thereafter, we introduce the relevant parts of the x86 microarchitecture, and
discuss previous research results on speculative execution vulnerabilities.

6.2.1 Intel SGX

Intel SGX extends the x86 instruction set architecture to allow for the secure
execution of isolated enclaves in an untrusted environment. SGX relies on two
important hardware-level building blocks: memory isolation and attestation.

Memory isolation. SGX enclaves live in the virtual address space of a
conventional user mode process, but their physical memory isolation is strictly
enforced in hardware. This separation of responsibilities ensures that enclave-
private memory can never be accessed from outside, while untrusted system
software remains in charge of enclave memory management (i.e., allocation,
eviction, and mapping of pages). An SGX-enabled CPU furthermore verifies
the untrusted address translation process, and may signal a page fault when
traversing the untrusted page tables, or when encountering rogue enclave
memory mappings. Subsequent address translations are cached in the processor’s
Translation Lookaside Buffer (TLB), which is flushed whenever the enclave is
entered/exited. Any attempt to directly access private pages from outside the
enclave, on the other hand, results in abort page semantics: reads return the
value -1 and writes are ignored.

SGX furthermore protects enclaves against motivated adversaries that exploit
Rowhammer DRAM bugs, or resort to physical cold boot attacks. A hardware-
level Memory Encryption Engine (MEE) [89] transparently safeguards the
integrity, confidentiality, and freshness of enclaved code and data while residing
outside of the processor package. That is, any access to main memory is first
authenticated and decrypted before being brought as plaintext into the CPU
cache.

Enclaves can only be entered through a few predefined entry points. The eenter
and eexit instructions transfer control between the untrusted host application
and an enclave. In case of a fault or external interrupt, the processor executes
the Asynchronous Enclave Exit (AEX) procedure, which securely stores CPU
register contents in a preallocated State Save Area (SSA) at an established
location inside the interrupted enclave. AEX furthermore takes care of clearing
CPU registers before transferring control to the untrusted operating system. A
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dedicated eresume instruction allows the unprotected application to re-enter a
previously interrupted enclave, and restore the previously saved processor state
from the SSA frame.

Enclave measurement. While an enclave is being built by untrusted system
software, the processor composes a secure hash of the enclave’s initial code
and data. Besides this content-based identity (mrenclave), each enclave also
features an alternative, author-based identity (mrsigner) which includes a hash
of the enclave developer’s public key and version information. Upon enclave
initialization, and before it can be entered, the processor verifies the enclave’s
signature and stores both mrenclave and mrsigner measurements at a secure
location, inaccessible to software—even from within the enclave. This ensures
that an enclave’s initial measurement is unforgeable, and can be attested to
other parties, or used to access sealed secrets.

Each SGX-enabled processor is shipped with a platform master secret stored
deep within the processor and exclusively accessible to key derivation hardware.
To allow for TCB upgrades, and to protect against key wear-out, each key
derivation request always takes into account the current CPU security version
number and a random keyid. Enclaves can make use of the key derivation
facility by means of two SGX instructions: ereport and egetkey. The former
creates a tagged local attestation report (including mrenclave/mrsigner
plus application-specific data) destined for another enclave. The target enclave,
residing on the same platform, can use the egetkey instruction to derive a
“report key” that can be used to verify the local attestation report. Successful
verification effectively binds the application data to the reporting enclave, with
a specified identity, which is executing untampered on the same platform. A
secure, mutually authenticated cryptographic channel can be established by
means of an application-level protocol that leverages the above local attestation
hardware primitives.

Likewise, enclaves can invoke egetkey to generate “sealing keys” based on
either the calling enclave’s content-based or developer-based identity. Such
sealing keys can be used to securely store persistent data outside the enclave, for
later use by either the exact same enclave (mrenclave) or the same developer
(mrsigner).

Architectural enclaves. As certain policies are too complex to realize in
hardware, some key SGX aspects are themselves implemented as Intel-signed
enclaves. Specifically, Intel provides (i) a launch enclave that gets to decide
which other enclaves can be run on the platform, (ii) a provisioning enclave to
initially supply the long-term platform attestation key, and (iii) a quoting enclave



156 FORESHADOW: EXTRACTING THE KEYS TO THE INTEL SGX KINGDOM

that uses the asymmetric platform attestation key to sign local attestation
reports for a remote stakeholder.

To regulate enclave development, Intel SGX distinguishes debug and production
enclaves at creation time. The internal state of the former can be arbitrarily
inspected and altered by means of dedicated debug instructions, such that only
production enclaves boast SGX’s full confidentiality and integrity commitment.

6.2.2 Attack model and objectives

Adversary capabilities. Whereas most existing SGX attacks require the full
potential of a kernel-level attacker, we show that the basic Foreshadow attack can
be entirely mounted from user space. Our attack essentially implies that current
SGX implementations cannot even protect enclave secrets from unprivileged
adversaries, for instance co-residing cloud tenants. Additionally, to further
improve the success rate of our attack for root adversaries, we contribute various
optional noise-reduction techniques that exploit full control over the untrusted
operating system, in line with SGX’s privileged attacker model.

Crucially, in contrast to all previously published SGX side-channel attacks [277,
225, 79, 180, 258, 156, 257] and existing Spectre-style speculative execution
attacks [39, 197] against SGX enclaves, Foreshadow does not require any side-
channel vulnerabilities, code gadgets, or even knowledge of the victim enclave’s
code. In particular, our attack is immune to all currently proposed side-channel
mitigations for SGX [229, 42, 84, 237, 227, 40], as well as countermeasures for
speculative execution attacks [128, 126]. In fact, as long as secrets reside in the
enclave’s address space, our attack does not even require the victim enclave’s
execution.

Breaking SGX confidentiality. The Intel SGX documentation unequivocally
states that “enclave memory cannot be read or written from outside the
enclave regardless of current privilege level and CPU mode (ring3/user-
mode, ring0/kernel- mode, SMM, VMM, or another enclave)” [120]. As
Foreshadow compromises confidentiality of production enclave memory, this
security objective of Intel SGX is clearly broken.

Our basic attack requires enclave secrets to be residing in the L1 data cache.
We show how unprivileged adversaries can preemptively or concurrently extract
secrets as they are brought into the L1 data cache when executing the victim
enclave. For root adversaries, we furthermore contribute an innovative technique
that leverages SGX’s paging instructions to prefetch arbitrary enclave memory
into the L1 data cache without even requiring the victim enclave’s cooperation.
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When combined with a state-of-the-art enclave execution control framework,
such as SGX-Step [257], our root attack can essentially dump the entire memory
and register contents of a victim enclave at any point in its execution.

Breaking SGX sealing and attestation. The SGX design allows enclaves to
“request a secure assertion from the platform of the enclave’s identity [and] bind
enclave ephemeral data to the assertion” [14]. While we cannot break integrity of
enclaved data directly, we do leverage Foreshadow to extract enclave sealing and
report keys. The former compromises the confidentiality and integrity of sealed
secrets directly, whereas the latter can be used to forge false local attestation
reports. Our attack on Intel’s trusted quoting enclave for remote attestation
furthermore completely collapses confidentiality plus integrity guarantees for
remote computations and secret provisioning.

6.2.3 Microarchitectural x86 organization

Instruction pipeline. For a complex instruction set, such as Intel x86 [114,
47], individual instructions are first split into smaller micro-ops during the
decode stage. Micro-operation decoding simplifies processor design: only actual
micro-ops need to be implemented in hardware, not the entire rich instruction
set. In addition it enables hardware vendors to patch processors when a flaw is
found. In case of Intel SGX, this may lead to an increased CPU security version
number.

Micro-operations furthermore enable superscalar processor optimization tech-
niques stemming from a reduced instruction set philosophy. An execution
pipeline improves throughput by parallelizing three main stages. First, a fetch-
decode unit loads an instruction from main memory and translates it into
the corresponding micro-op series. To minimize pipeline stalls from program
branches, the processor’s branch predictor will try to predict the outcome of
conditional jumps when fetching the next instruction in the program stream.
Secondly, individual micro-ops are scheduled to available execution units, which
may be duplicated to further increase parallelism. To maximize the use of
available execution units, simultaneous multithreading (Intel HyperThreading)
technology can furthermore interleave the execution of multiple independent
instruction streams from different logical processors executing on the same
physical CPU core. Finally, during the instruction retirement stage, micro-op
results are committed to the architecturally visible machine state (i.e., register
and memory contents).
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Out-of-order and speculative execution. As an important optimization
technique, the processor may choose to not execute sequential micro-operations
as provided by the in-order instruction stream. Instead, micro-ops are
executed out-of-order, as soon as the required execution unit plus any source
operands become available. Following Tomasulo’s algorithm [244], micro-ops are
dynamically scheduled, e.g., using reservation stations, and await the availability
of their input operands before they are executed. After completing micro-op
execution, intermediate results are buffered, e.g., in a Reorder Buffer (ROB),
and committed to architectural state only upon instruction retirement.

To yield correct architectural behavior, however, the processor should ensure
that micro-ops are retired according to the intended in-order instruction stream.
Out-of-order execution therefore necessitates a roll-back mechanism that flushes
the pipeline and ROB to discard uncommitted micro-op results. Generally, such
speculatively executed micro-ops are to be dropped by the CPU in two different
scenarios. First, after realizing an execution path has been mispredicted by the
branch predictor, the processor flushes micro-op results from the incorrect path
and starts executing the correct execution path. Second, hardware exceptions
and interrupts are guaranteed to be “always taken in the ‘in-order’ instruction
stream” [114], which implies that all transient micro-op results originating from
out-of-order instructions following the faulting instruction should be rolled-back
as well.

CPU cache organization. To speed up repeated code and data memory
accesses, modern Intel processors [114] feature a dedicated L1 and L2 cache
per physical CPU (shared among logical SMT cores), plus a single last-level
L3 cache shared among all physical cores. The unit of cache organization is
called a cache line and measures 64 bytes. In multi-way, set-associative caches,
a cache line is located by first using the lower bits of the (physical) memory
address to locate the corresponding cache set, and thereafter using a tag to
uniquely identify the desired cache line within that set.

Since CPU caches introduce a measurable timing difference for DRAM
memory accesses, they have been studied extensively in side-channel analysis
research [71].

6.2.4 Transient-execution attacks

The aforementioned in-order instruction retirement ensures functional correct-
ness: the CPU’s architectural state (memory and register file contents) shall
be consistent with the intended program behavior. Nevertheless, the CPU’s
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   movb (kernel), %al
   test %al, 0x1
   je 1f
   jmp 2f
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Figure 6.1: Rogue data cache loads can be leveraged to leak sensitive data from
more privileged security layers.

microarchitectural state (e.g., internal caches) can still be affected by micro-ops
that were speculatively executed and afterwards discarded. Recent concurrent
research [146, 162, 101, 168, 67] on transient-execution attacks shows how an
adversary can abuse such subtle microarchitectural side effects to breach memory
isolation barriers.

A first type of Spectre [146] attacks exploit the CPU’s branch prediction
machinery to trick a victim protection domain into speculatively executing
instructions out of its intended execution path. By “poisoning” the shared
branch predictor resource, an attacker is able to steer the victim program’s
execution into transient instruction sequences that dereference memory locations
the victim is authorized to access but the attacker not. A second type of attacks,
including Meltdown [162] and Foreshadow, exploit a more crucial flaw in modern
Intel processors. Namely, that there exists a small time window in which
the results of unauthorized memory accesses are available to the out-of-order
execution, before the processor issues a fault and rolls back any speculatively
executed micro-ops. As such, Meltdown represents a critical race condition
inside the CPU, which enables an attacker to transiently execute instructions
that access unauthorized memory locations.

Essentially, transient execution allows an attacker to perform secret-dependent
computations whose direct architectural effects are later discarded. In order to
actually extract secrets, a “covert channel” should therefore be established
to bring information into the architectural state. That is, the transient
instructions have to deliberately alter the shared microarchitectural state so
as to transfer/leak secret values. The CPU cache constitutes one such reliable
covert channel; Meltdown-type vulnerabilities have therefore also been dubbed
“rogue data cache loads” [101].

Figure 6.1 illustrates a toy example scenario where an attacker extracts one bit
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of information across privilege levels. In the first step, an attacker attempts to
read data from a more privileged protection layer, eventually causing a fault
to be issued and the execution of an exception handler. But, a small attack
window exists where attackers can execute instructions based on the actual
data read, and encode secrets in the CPU cache. The example uses a reliable
Flush+Reload [280] covert channel, where the transient instruction sequence
loads a predetermined “oracle” memory location into the cache, dependent
on the least significant bit of the kernel data just read. When the processor
catches up and eventually issues the fault, a previously registered user-level
exception handler is called. This marks the beginning of the second step, where
the adversary receives the secret bit by carefully measuring the amount of time
it takes to reload the oracle memory slot.

6.3 The Foreshadow attack

In contrast to Meltdown [162], Foreshadow targets enclaves operating within an
untrusted context. As such, adversaries have many more possibilities to execute
the attack. However, as explained below and further explored in Appendix D,
targeting enclaved execution also presents substantial challenges, for SGX’s
modified memory access and non-terminating fault semantics reflect extensive
microarchitectural changes that affect transient execution.

We first present our basic approach for reading cached enclave secrets from the
unprivileged host process, and thereafter elaborate on various optimization
techniques to increase the bandwidth and success rate of our attack for
unprivileged as well as root adversaries. Next, we explain how to reliably
bring secrets in the L1 cache by executing the victim enclave. Particularly, we
explain how to precisely interrupt enclaves and extract CPU register contents,
and we introduce a stealthy Foreshadow attack variant that gathers secrets
in real-time—without interrupting the victim enclave. We finally contribute
an innovative kernel-level attack technique that brings secrets in the L1 cache
without even executing the victim.

6.3.1 The basic Foreshadow attack

The basic Foreshadow attack extracts a single byte from an SGX enclave in
three distinct phases, visualized in Fig. 6.2. As part of the attack preparation,
the untrusted enclave host application should first allocate an “oracle buffer” 1
of 256 slots, each measuring 4 KiB in size (in order to avoid false positives from
unintentionally activating the processor’s cache line prefetcher [113, 162]). In
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Figure 6.2: Basic overview of the Foreshadow attack to extract a single byte from
an SGX enclave.

Phase I of the attack, plaintext enclave data is brought into the CPU cache. Next,
Phase II dereferences the enclave secret and speculatively executes the transient
instruction sequence, which loads a secret-dependent oracle buffer entry into
the cache. Finally, Phase III acts as the receiving end of the Flush+Reload
covert channel and reloads the oracle buffer slots to establish the secret byte.

Phase I: Caching enclave secrets. In contrast to previous research [162, 101,
67] on exploiting Meltdown-type vulnerabilities to read kernel memory, we
found consistently that enclave secrets never reach the transient out-of-order
execution stage in Phase II when they are not already residing in the L1 cache.
A prerequisite for any successful transient extraction therefore is to bring enclave
secrets into the L1 cache. As we noticed that the untrusted application cannot
simply prefetch [86] enclave memory directly, the first phase of the basic
Foreshadow attack executes the victim enclave 2 in order to cache plaintext
secrets. For now, we assume the secret we wish to extract resides in the L1 cache
after the enclaved execution. We elaborate on this assumption in Sections 6.3.3
and 6.3.4 for interrupt-driven and SMT-based attacks respectively. Section 6.3.5
thereafter explains how root adversaries can bring secrets in the L1 cache
without even executing the victim enclave.

Note that, while Meltdown has reportedly been successfully applied to read
uncached kernel data directly from DRAM, Intel’s official analysis report clarifies
that “on some implementations such a speculative operation will only pass data
on to subsequent operations if the data is resident in the lowest level data cache
(L1)” [115]. We suspect that SGX’s modified memory access semantics bring
about fundamental differences at the microarchitectural level, such that the
CPU’s access control logic does not pass the results of unauthorized enclave
memory loads unless they can be served from the L1 cache. Intel confirmed this
hypothesis, officially referring to Foreshadow as an “L1 Terminal Fault” attack.
We furthermore provide experimental evidence in Appendix D, showing that
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Foreshadow can indeed transiently compute on kernel data in the L2 cache, but
decisively not on enclave secrets residing in the L2 cache.

Regarding Intel SGX’s hardware-level memory encryption [89], it should be
noted that the MEE security perimeter encompasses the processor package,
including the entire CPU cache hierarchy. That is, enclave secrets always
reside as plaintext inside the caches and are only encrypted/decrypted as they
move to/from DRAM. Practically, this means that transient instructions can in
principle compute on plaintext enclave secrets as long as they are cached. As
such, the MEE hardware unit does not impose any fundamental limitations on
the Foreshadow attack, and is assuredly not the cause for the observation that
we cannot read enclave secrets residing in the L2 cache.

Phase II: Transient execution. In the second phase, we dereference secret_-
ptr and execute the transient instruction sequence. In contrast to previous
transient-execution attacks [162, 101, 67, 115] that result in a page fault after
accessing kernel space, however, dereferencing unauthorized enclave memory
does not produce a page fault. Instead, abort page semantics [120] apply and
the data read is silently replaced with the dummy value −1. As such, in the
absence of an exception, the race condition does not apply and any (transient)
instructions following the rogue data fetch will never see the actual enclave
secret, but rather the abort page value.

Foreshadow overcomes this challenge by taking advantage of previous research
results on page-table-based enclaved execution attacks [277, 258]. Intel SGX
implements an additional layer of hardware-enforced isolation on top of the
legacy page-table-based virtual memory protection mechanism. That is, abort
page semantics apply only after the legacy page-table permission check succeeded
without issuing a page fault.1 This property effectively enables the unprivileged
host process to impose strictly more restrictive permissions on enclave memory,
as illustrated in Fig. 6.3. In our running example, we proceed by revoking 3
all access permissions to the enclave page we wish to read:

mprotect( secret_ptr & ~0xfff, 0x1000, PROT_NONE );

We verified that the above mprotect system call simply clears the “present” bit
in the corresponding page-table entry, such that any access to this page now

1Alternatively, as a result of SGX’s additional EPCM checks [114], rogue virtual-to-physical
mappings also result in page fault behavior after passing the address translation process. We
experimentally verified that such faults can be successfully exploited by an attacker enclave
that transiently dereferences a victim enclave’s pages via a malicious memory mapping.
Future mitigations (Section 6.6) should therefore decisively also take this microarchitectural
exploitation path into account.
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SGX?

Figure 6.3: Naively applying Meltdown to transiently dereference SGX memory
results in abort page semantics (right), whereas Foreshadow provokes a non-present
fault in the untrusted page-table walk (left), before abort page semantics apply.

(eventually) leads to a fault. This observation yields an important side result, in
that previous Meltdown attacks [162, 101, 67, 115] focused exclusively on reading
kernel memory pages. Intel’s analysis of speculative execution vulnerabilities
hence explicitly mentions that rogue data cache loads only apply “to regions of
memory designated supervisor-only by the page tables; not memory designated
as not present” [115]. This is not in agreement with our findings.

As explained above, any enclave entry/exit event flushes the entire TLB on that
logical processor. In our running example, this means that accessing the oracle
slots in the transient execution will result in an expensive page-table walk. As
this takes considerable time, the size of the attack window will be exceeded
and no secrets can be communicated. Foreshadow overcomes this limitation by
explicitly (re-)establishing 4 TLB entries for each oracle slot. In addition we
need to ensure that none of the oracle slot entries are already present in the
processor’s cache. We achieve both requirements simultaneously by issuing a
clflush instruction for all 256 oracle slots.

Finally, we execute 5 the transient instruction sequence displayed in Listing 6.1.
When called with a pointer to the oracle buffer and secret_ptr, the secret
value is read at line 5. As we made sure to mark the enclave page as not present,
SGX’s abort page semantics no longer apply and a fault will eventually be
issued. However, the transient instructions at lines 6–7 will still be executed
and compute the secret-dependent location of a slot v in the oracle buffer before
fetching it from memory.

Phase III: Receiving the secret. Finally when the processor determines that it
should not have speculatively executed the transient instructions, uncommitted
register changes are discarded and a page fault is issued. After the fault is
caught by the operating system, the attacker’s user-level exception handler is
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1 foreshadow:
2 # %rdi: oracle
3 # %rsi: secret_ptr
4

5 movb (%rsi), %al
6 shl $12, %rax
7 movq (%rdi, %rax), %rdi
8 retq

1 void foreshadow(
2 uint8_t *oracle,
3 uint8_t *secret_ptr)
4 {
5 uint8_t v = *secret_ptr;
6 v = v * 0x1000;
7 uint64_t o = oracle[v];
8 }

Listing 6.1: Transient instruction sequence to encode enclave secrets with Foreshadow:
x86 assembly (left) and equivalent C code (right).

called. Here, she carefully measures 6 the timings to reload each oracle slot to
establish the secret enclave byte. If the transient instruction sequence reached
the execution at line 7, the oracle slot at the secret index now resides in the
CPU cache and will experience a significantly shorter access time.

6.3.2 Reading full cache lines

The basic Foreshadow attack of the previous section leaks sensitive information
while only leveraging the capabilities of a conventional user space attacker.
But as SGX also aims to defend against kernel-level attackers, this section
presents various optimization techniques, some of which assume root access
(when indicated). In Section 6.4 we will show that these optimizations increase
the bandwidth plus reliability of our attack, enabling us to extract complete
cache lines from a single enclaved execution.

All of our optimization techniques share a common goal. Namely, increasing the
likelihood that we do not destroy secrets as part of the measurement process.
That is, an adversary executing Phases II and III of the basic Foreshadow
attack should avoid inadvertently evicting enclave secrets that were originally
brought into the L1 CPU cache during the enclaved execution in Phase I. We
particularly found that repeated context switches and kernel code execution may
unintentionally evict enclave secrets from the L1 cache. When this happens, the
transient execution invariably loses the Meltdown race condition—effectively
closing the attack window before the oracle slot is cached. Evicting enclave
cache lines in this manner not only destroys the current measurement, but also
eradicates the possibility to extract additional bytes belonging to the same
cache line without executing the enclave again (Phase I). We therefore argue
that minimizing cache pollution is crucial to successfully extract larger secrets
from a single enclaved execution.
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Figure 6.4: The physical enclave secret is mapped to an inaccessible virtual address
for transient dereference.

Page aliasing (root). When untrusted code accesses enclave memory, abort
page semantics apply and secrets do not reach the transient execution. The basic
Foreshadow attack avoids this behavior by revoking all access rights from the
enclave page through the mprotect interface. However, as enclaved execution
also abides by page-table-based access restrictions [277, 258], these privileges
can only be revoked after the enclave call returned. Unfortunately, we found
that the mprotect system call exerts pressure on the processor’s cache and may
cause the enclave secret to be evicted from the L1 cache.

We propose an inventive “page aliasing” technique to avoid mprotect cache
pollution for root adversaries. Figure 6.4 shows how our malicious kernel
driver establishes an additional virtual-to-physical mapping for the physical
enclave location holding the secret. As caches on modern Intel CPUs are
physically tagged [114], memory accesses via the original or alias pages end up
in the exact same cache lines. That is, the aliased page behaves similarly to the
original enclaved page; only an additional page-table walk is required for address
translation. We evade abort page semantics for the alias page in the same way
as in the basic Foreshadow attack, by calling mprotect to clear the present
bit in the page table. Importantly, however, we can now issue mprotect once
in Phase I of the attack, before entering the enclave. For the aliased memory
mapping is never referenced by the enclave itself.

Fault suppression. A second substantial source of cache pollution comes from
the exception handling mechanism. Specifically, after executing the transient
instruction sequence in Phase II of the attack, the processor delivers a page
fault to the operating system kernel. Eventually the kernel transfers execution
to our user-level exception handler, which receives the secret (Phase III). At
this point, however, enclave secrets and/or oracle slots may have already been
unintentionally evicted.

We leverage the Transactional Synchronization Extensions (TSX) included
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in modern Intel processors [114] to silently handle exceptions within the
unprivileged attacker process. Previous research [229, 42, 237, 162] has exploited
an interesting feature of Intel TSX. Namely, a page fault during transactional
execution immediately calls the user-level transaction abort handler, without
first signalling the fault to the operating system. We abuse this property to
avoid unnecessary kernel context switches between Phases II and III of the
Foreshadow attack by wrapping the entire transient instruction sequence of
Listing 6.1 in a TSX transaction. While the transaction’s write set is discarded,
we did not notice any difference in the read set. That is, accessed oracle slots
remain in the L1 cache.

Note that, while readily available on many processors, TSX is by no means the
only fault suppression mechanism that attackers could leverage. Alternatively,
as previously suggested [162, 101], the instruction dereferencing the secret could
also be speculatively executed itself, behind a high-latency mispredicted branch.
As a true hybrid between Spectre [146] and Meltdown [162], such a technique
would deliberately mistrain the CPU’s branch predictor to ensure that none of
the instructions in Listing 6.1 are committed to the architecture, and hence no
faults are raised.

Keeping secrets warm (root). Context switches to kernel space are not the
only sources of cache pollution. In Phase III of the attack the access time to
each oracle slot is carefully measured. As each slot is loaded into the cache,
enclave secrets might get evicted from the L1 cache. To make matters worse,
oracle slots are placed 4 KiB apart to avoid false positives from the cache line
prefetcher [113]. All 256 oracle slots thus share the same L1 cache index and
map to the same cache set.

We present two novel techniques to decrease pressure on cache sets containing
enclave secrets. First, root adversaries can execute the privileged wbinvd
instruction to flush the entire CPU cache hierarchy before executing the enclave
(Phase I). This has the effect of making room in the cache, such that non-enclave
accesses to the cache set holding a secret can be more likely accommodated in
one of the vacant ways. Second, for unprivileged adversaries, instead of calling
the transient-execution Phase II once, we execute it in a tight loop as part
of the measurement process (Phase III). That is, by transiently accessing the
enclave secret each time before we reload an oracle slot, we ensure the cache
line holding the secret data remains “warm” and is less likely to be evicted by
the CPU’s least recently used cache replacement policy. Importantly, as both
techniques are entirely implemented in the untrusted application runtime, we
do not need to make additional calls to the enclave (Phase I).
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Isolating cores (root). We found overall system load to be another significant
source of cache pollution. Intel architectures typically feature an inclusive cache
hierarchy: data residing in the L1 cache shall also be present in the L2 and L3
caches [114]. Unfortunately, maintaining this invariant may lead to unexpected
cache evictions. When an enclaved cache line is evicted from the shared last-level
L3 cache by another resource-intensive process, for instance, the processor is
forced to also evict the enclave secret from the L1 cache. Likewise, since L1 and
L2 caches are shared among logical processors, cache activity on one core might
unintentionally evict enclave secrets on its sibling core.

In order to limit such effects, root adversaries can pin the victim enclave process
to a specific core, and offload interrupts as much as possible to another physical
core.

Dealing with zero bias. Consistent with concurrent work on Meltdown-type
vulnerabilities [162, 101, 67, 168], we found that the processor zeroes out the
result of unauthorized memory reads upon encountering an exception. When
this nulling happens before the transient out-of-order instructions in Phase II
can operate on the real secret, the attacker loses the internal race condition
from the CPU’s access control logic. This will show up as reading an all-zeroes
value in Phase III. To counteract this zero bias, Foreshadow retries the transient-
execution Phase II multiple times when receiving 0x00 in Phase III, before
decisively concluding the secret byte was indeed zero.

Since Foreshadow’s transient-execution phase critically relies on the enclave data
being in the L1 cache, we consistently receive 0x00 bytes from the moment a
secret cache line was evicted from the L1 cache. As such, the processor’s nulling
mechanism also enables us to reliably detect whether the targeted enclave data
still lives in the L1 cache. That is, whether it still makes sense to proceed with
Foreshadow cache line extraction or not.

6.3.3 Preemptively extracting secrets

As explained above, Foreshadow’s transient-extraction Phase II critically
relies on secrets brought into the L1 cache during the enclaved execution
(Phase I). In the basic attack description, we assumed secrets are available after
programmatically exiting the enclave, but this is often not the case in more
realistic scenarios. Secrets might be explicitly overwritten, or evicted from the
L1 cache by bringing in other data from other cache levels.

To improve Foreshadow’s temporal resolution, we therefore asynchronously
exit the enclave after a secret in memory was brought into the L1 cache, and



168 FORESHADOW: EXTRACTING THE KEYS TO THE INTEL SGX KINGDOM

before it is later overwritten/evicted. We first explain how root adversaries
can combine Foreshadow with the state-of-the-art SGX-Step [257] enclave
execution control framework to achieve a maximal temporal resolution: memory
operands leak after every single instruction. Next, we re-iterate that even
unprivileged adversaries can pause enclaves at a coarser-grained 4KiB page fault
granularity [277, 266] through the mprotect system call interface. Using this
capability, we contribute a novel technique that allows unprivileged Foreshadow
attackers to reliably inspect private CPU register contents of a preempted victim
enclave.

Single-stepping enclaved execution (root). SGX prohibits obvious interfer-
ence with production enclaves. Specifically, the processor ignores advanced
x86 debug features, such as hardware breakpoints or the single-step trap flag
(rflags.tf) [114]. We therefore rely on the recently published open-source
SGX-Step [257] framework to interrupt the victim enclave instruction per
instruction.

SGX-Step comes with a Linux kernel driver to establish convenient user space
virtual memory mappings for the local Advanced Programmable Interrupt
Controller (APIC) device. A very precise single-stepping technique is achieved
by configuring the APIC timer directly from user space, eliminating any noise
from kernel context switches. Carefully selecting a platform-specific APIC timer
interval ensures that the interrupt reliably arrives within the first instruction
after eresume.

Dumping enclaved CPU registers. Section 6.2.1 explained how SGX securely
stores the interrupted enclave’s register contents in a preallocated SSA frame
as part of the AEX microcode procedure. By targeting SSA enclave memory,
a Foreshadow attacker can thus extract private CPU register contents. For
this to work, however, the SSA frame data of interest should reside in the
processor’s L1 cache. The entire SSA frame measures multiple cache lines, with
the general purpose register area alone already occupying 144 bytes (2.25 cache
lines). These SSA cache lines could be unintentionally evicted as part of the
kernel context switches needed to handle interrupts, or during Foreshadow’s
transient extraction Phases II and III.

We contribute an inventive way to reliably extract complete SSA frames. By
revoking execute permissions on the victim enclave’s code pages, the unprivileged
application context can provoke a page fault on the first instruction after
completing eresume. No enclaved instruction is actually executed, and register
contents thus remain unmodified, but the entire SSA frame is re-filled and
brought into the L1 cache as a side effect of the AEX procedure triggered by the
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page fault. We abuse such zero-stepping as an unlimited prefetch mechanism for
bringing SSA data into the L1 cache. Before restoring execute permissions, a
Foreshadow attacker reads the full SSA frame byte-per-byte, forcing the enclave
to zero-step whenever an SSA cache line was evicted (i.e., read all zero).

Together with a precise interrupt-driven or page fault-driven enclave execution
control framework, our SSA prefetching technique allows for an accurate dump
of the complete CPU register file as it changes over the course of the enclaved
execution.

6.3.4 Concurrently extracting secrets

In modern Intel processors with SMT technology, the L1 cache is shared among
multiple logical processors [114]. This property has recently been abused to
mount stealthy SGX Prime+Probe L1 cache side-channel attacks entirely
from a co-resident logical processor, without interrupting the victim enclave [79,
225, 29].

We explored such a stealthy Foreshadow attack mode by pinning a dedicated
spy thread on the sibling logical core before entering the victim enclave. The
spy thread repeatedly executes Foreshadow in a tight loop to try and read the
secret of interest. As long as the secret is not brought into the L1 cache by the
concurrently running enclave, the spy loses the CPU-internal race condition.
This shows up as consistently reading a zero value. We use this observation
to synchronize the spy thread. As long as a zero value is being read, the spy
continues to transiently access the first byte of the secret. When the enclave
finally touches the secret, it is at once extracted by the concurrent spy thread.

This approach has considerable disadvantages as compared to the above
interrupt-driven attack variants. Specifically, we found that the bandwidth for
concurrently extracting secrets is severely restricted, since each Foreshadow
round needs 256 time-consuming Flush+Reload measurements in order
to transfer one byte from the microarchitectural state (Phase II) to the
architectural state (Phase III). As the enclave now continues to execute during
the measurement process, secrets are more likely to be overwritten or evicted
before being read by the attacker. Nonetheless, this stealthy Foreshadow attack
variant should decidedly be taken into account when considering possible defense
strategies in Section 6.6.
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6.3.5 Reading uncached secrets

All attack techniques described thus far explicitly assume that the secret we wish
to extract resides in the L1 cache after executing the victim enclave in Phase I of
the attack. We now describe an innovative method to remove this assumption,
allowing root adversaries to read any data located inside the victim’s virtual
memory range, including data that is never accessed by the victim enclave.

Managing the enclave page cache. The SGX design [176, 114] explicitly relies
on untrusted system software for oversubscribing the limited protected physical
memory Enclave Page Cache (EPC) resource. For this, untrusted operating
systems can make use of the privileged ewb and eldu SGX instructions that
respectively copy encrypted and integrity-protected 4KiB enclave pages out of,
and back into EPC.

We observed that, when decrypting and verifying an encrypted enclave page,
the eldu instruction loads the entire page as plaintext into the CPU’s L1 cache.
Crucially, we experimentally verified that the eldu microcode implementation
never evicts the page from the L1 cache, leaving the page’s contents explicitly
cached after the instruction terminates.

Dumping the entire enclave contents (root). We proceed as follows to
extract the entire victim memory space. Going over all enclave pages (e.g.,
by inspecting /proc/pid/maps), our malicious kernel driver first uses ewb to
evict the page from the EPC, only to immediately load it back using the eldu
instruction. As eldu loads the page into the L1 cache and does not evict it
afterwards, the basic Foreshadow attack described in Section 6.3.1 can reliably
extract its content. Finally, the attack process is repeated for the next page of
the victim enclave.

The above eldu technique dumps the entire address space of a victim enclave
without requiring its cooperation. Since the initial memory contents is known to
the adversary at enclave creation time, however, secrets are typically generated
or brought in at runtime (e.g., through sealing or remote secret provisioning).
As such, in practice, the victim should still be executed at least once, and the
attacker could rely on a single-stepping primitive, such as SGX-Step [257], to
precisely pause the enclave when it contains secrets, and before they are erased
again.

Crucially, however, our eldu technique allows to extract secrets that are never
brought into the L1 cache by the enclave code itself. As further discussed in
Section 6.6, this attacker capability effectively rules out software-only mitigation
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strategies that force data to be directly stored in memory while deliberately
evading the CPU cache hierarchy. For instance, by relying on explicit non-
temporal write movnti instructions [114, 27].

6.4 Microbenchmark evaluation

We first present controlled microbenchmark experiments that assess the
effectiveness of the basic Foreshadow attack and the various optimizations
discussed earlier.

All experiments were conducted on publicly available, off-the-shelf Intel x86
hardware. We used a commodity Dell Optiplex 7040 desktop featuring a Skylake
quad-core Intel i7-6700 CPU with a 32 KiB, 8-way L1 data cache.

Experimental setup. For benchmarks, we consider the capabilities of both
root and unprivileged attackers, conformant to our threat model in Section 6.2.2.
The root adversary has full access to the targeted system. She for example aims
to attack DRM technology enforced by an enclave running on her own device.
This enables her to use all the attack optimization techniques described in
Section 6.3.2. In addition, she may reduce cache pollution by pinning the victim
thread to as specific logical core and offloading peripheral device interrupts to
another core.

The unprivileged adversary, on the other hand, is much more constrained and
represents an attacker targeting a remote server. She gained code execution on
the device, and targets an enclave running in the same address space, but did
not manage to gain kernel-level privileges. Some attack optimizations, such as
page aliasing or isolating workloads, can therefore not be applied.

We assess the effectiveness of Foreshadow by attacking a specially crafted
benchmark enclave containing a 4 KiB memory page filled with randomized
data. A dedicated entry point first loads 64 bytes of the secret page (i.e., one
full cache line) into the L1 cache. Upon eexit, we then extract all 64 bytes with
Foreshadow, and finally verify their correctness. This process is repeated for all
64 cache lines within the 4 KiB page. To ensure representative measurements,
we randomize both the targeted data locations and the enclave’s load address.
For this, we (i) randomly select 5 pages from a preallocated pool of 1024
enclaved pages per benchmark run, and (ii) combine the outputs of 200 runs of
the benchmark process. In total 4,000 KiB of enclaved data was extracted for
each attack scenario.
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(a) Root attacker extraction.
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(b) Unprivileged extraction.

Figure 6.5: Success rates of the Foreshadow attack per cache line.

Success rates. Figure 6.5a displays the success rate for each cache line in the
root attacker model. Overall, we reached an outstanding median success rate
of 99.92% (with TSX). As not every SGX-capable machine supports TSX, we
executed the same benchmark without relying on TSX features. This resulted
in a moderate median success rate drop of 2.59 percentage points (97.32%).

Interestingly, the cache lines storing data at the beginning/end of the targeted
page (i.e., cache lines #0 and #63) manifest a distinctly lower average success
rate: respectively 23.25/2.03% and 63.78/0.63% with and without TSX. We
attribute this effect to unintended L1 cache line evictions from (i) the remaining
enclaved execution after loading the secret into the cache (e.g., eexit); and
(ii) our own attack measurement code (e.g., probing of the oracle buffer in
Phase III). Specifically, upon closer inspection, we found that recent interrupt-
driven SGX cache attacks [181, 92] explicitly report similar lowered success
rates for the first and last cache lines, attributed to asynchronous enclave exit
and kernel context switches. Note that we consider the increased cache pressure
on the first and last cache lines only a nonessential limitation of our current
attack framework, however, and decisively not an avenue to defend against
improved Foreshadow attacks.

Figure 6.5b displays the result of the same benchmark for an unprivileged
attacker. As expected, the median success rate drops reasonably to 96.82% and
81.14% with and without TSX respectively. While these rates are somewhat
lower, they distinctly show that even much more restrained user-level adversaries
can successfully attack SGX enclaves with an impressive success rate.
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Figure 6.6: Success rate of the Foreshadow attack per byte within a cache line.

It is crucial for the Foreshadow attack to succeed that the cache line holding the
secret remains in the L1 cache. We found that the likelihood of inadvertently
evicting secrets from the L1 cache increases with each byte extracted within
a cache line. Figure 6.6 quantifies this intra-cache line degradation behavior.
For the root adversary, the probability of successfully extracting the first byte
within a cache line is 98.61%. By the time the last last byte of the cache line is
extracted, however, the success rate has degraded to 94.75%. Especially the
use of TSX shows to play a large role here. An unprivileged TSX attacker can
limit intra-cache line degradation from 94.05% to 86.68%. This outperforms
even all other optimization mechanisms for the root adversary without TSX
(93.53% - 84.99%).

6.5 Attacking Intel architectural enclaves

While SGX is largely realized in hardware and microcode, Intel implemented
certain critical functionality in software through dedicated “architectural
enclaves”. These enclaves are part of the TCB, and were written by experts with
detailed knowledge of the security architecture. No obvious security flaws [266,
154] have ever been found, and Intel’s architectural enclaves additionally
implement various defense in-depth mechanisms. For example, even though
private memory should never leak from enclaves, sensitive data gets overwritten
as soon as possible.



174 FORESHADOW: EXTRACTING THE KEYS TO THE INTEL SGX KINGDOM

To the best of our knowledge, we are the first to present full key extraction
attacks against Intel’s vetted architectural enclaves. To date only one subtle
side-channel vulnerability [50] has been identified in Intel’s quoting enclave,
which only affects secondary privacy concerns and assuredly does not invalidate
remote attestation guarantees. This shows that Foreshadow is substantially
more powerful than previous enclaved execution attacks that rely on either side
channels or memory-safety bugs.

Note that, for maximum reliability, both our attacks against Intel’s architectural
launch and quoting enclaves assume the root adversary model, and apply all of
the optimization techniques described in Section 6.3.2. Since our final exploits
do not need to resort to the single-stepping or eldu prefetching root-only
techniques of Sections 6.3.3 and 6.3.5, however, we expect they could be further
improved to run entirely with user space privileges.

6.5.1 Attacking the Intel launch enclave

Background. SGX enclaves are created in a multi-stage process performed
by untrusted system software. Before the enclave can be initialized through
the einit instruction, a valid einittoken needs to be retrieved from the Intel
Launch Enclave (LE). Essentially, such a token contains the target enclave’s
content-based (mrenclave) and author-based (mrsigner) identities, requested
features and attributes, plus a random keyid. A Message Authentication
Code (MAC) over the token data furthermore safeguards integrity, such that
einittokens can be freely passed around by untrusted software.

As with local attestation (Section 6.2.1), the security of this scheme ultimately
relies on a processor-level secret accessible to both LE and einit. We refer
to this secret as the platform launch key. The einit instruction derives the
128-bit launch key to verify the correctness of the provided einittoken, and
takes care to only initialize enclaves whose identities and attributes match the
ones in the token. In order to bootstrap initialization for the LE itself, Intel’s
mrsigner value is hard-coded in the processor and used by einit to skip the
einittoken check and grant access to the launch key. This ensures that only an
Intel-signed LE can invoke egetkey to derive the launch key needed to compute
valid MACs.

Intel uses the above enclave launch control scheme to impose a strict,
software-defined enclave attribute control policy. More specifically, current
LE implementations enforce that (i) either the enclave debug attribute is set or
mrsigner is white-listed by Intel; and (ii) the enclave does not feature privileged,
Intel-only attributes, such as access to the long-term platform provisioning key.
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Figure 6.7: Key derivation in the SGX Launch Enclave.

Attack and exploitation. Our goal is to extract a full 128-bit launch key
from a single LE execution. This is necessary, for each egetkey derivation
(Section 6.2.1) includes a random 256-bit keyid, which is securely generated
inside the enclave, such that each LE invocation uses a different launch key.
We can therefore not correlate partial key recoveries from repeated launch
enclave executions to extract a full key, as is common practice in side-channel
research [181, 79, 29, 225, 156].

Intel’s official LE image2 features an entry point to create a tagged einittoken
based on the provided target enclave measurements and attributes. This process
is illustrated in Fig. 6.7. LE first generates a random keyid and calls 1 the
sgx_get_key function to obtain the launch key. For this, the trusted in-enclave
runtime allocates a temporary buffer, before calling 2 a small do_egetkey
assembly stub that executes the egetkey instruction to derive 3 the actual
launch key. Next, the temporary buffer is copied 4 into a caller-provided buffer;
and 5 overwritten plus deallocated before returning. LE now uses the launch
key to compute 6 the required MAC, and immediately afterwards zeroes out
7 the key buffer.

An attacker can get hold of the launch key by targeting either the short-
lived tmp buffer, or the longer-lived key buffer. Our exploit targets the more
challenging tmp buffer to demonstrate Foreshadow’s strength in combination
with state-of-the-art enclave execution control frameworks [257, 277]. In the
exploratory (offline) phase of the attack, we single-step LE and dump register

2 libsgx_le.signed.so from Intel SGX Linux SDK v2.0 with product ID 0x20 and security
version number 0x01.
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content (see Section 6.3.3) so as to easily establish the deterministic tmp address,
plus any code locations of interest.3 Next, in the online phase of the attack,
we interrupt the victim enclave between steps 3 and 4 above, and instruct
Foreshadow to extract the cache line containing the 128-bit key. We rely on
page fault sequences [277] here to avoid any noise from timing-based interrupts,
and to minimize the number of AEXs induced by our exploit. Specifically, we
constructed a small finite state machine that alternately revokes access to either
the sgx_get_key or do_egetkey code page. Merely counting page faults now
suffices to deterministically locate the return instruction 4 in do_egetkey. At
this point, the launch key resides in the L1 cache and can thus be reliably
extracted by Foreshadow. We observed a 100% success rate in practice; that
is, our final (online) exploit extracts the full 128-bit key without noise, from
a single LE run with only 13 page faults in total—without resorting to the
single-stepping or eldu prefetching techniques of Sections 6.3.3 and 6.3.5.

To validate the correctness of the extracted keys, we integrated a rogue launch
token provider service into the untrusted runtime of the SGX SDK. The
rogue launch token provider transparently creates tagged einittokens using a
previously extracted key, and includes the corresponding (non-secret) keyid,
such that einit derives an identical launch key from the platform master
secret. Obtaining a single LE key thus suffices to launch arbitrarily many rogue
production enclaves on the same platform.

Impact. Bypassing Intel’s controversial [47] launch control policy allows one to
create arbitrary production enclaves without going through a license agreement
process. Removing control over which enclaves can be run is a clear breach of
Intel’s licensing interests, but by itself has limited impact on SGX’s security
objectives. We are not able to fabricate enclaves. Any properly implemented
key derivation in an enclave will depend on either the mrenclave or mrsigner
values (Section 6.2.1). Neither can be forged as they rely on cryptographic
properties of SHA-256 and the signer’s private key respectively. The ability to
create rogue production enclaves could be abused for hiding malware [225], but
does not provide an enclave writer with any substantial advantage.

There is one notable exception, related to CPU tracking privacy concerns [47].
Specifically, an attacker can now create enclaves with the ability to derive
a “provisioning key” that remains constant as a processor changes owners.
LE should make sure that only Intel-signed enclaves can derive such keys,
needed for securing long-term remote attestation keys (Section 6.5.2). All other
egetkey derivations include an internal ownerepoch register, which can be

3 Some reverse engineering is required for all symbols were stripped from the signed LE
image.
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re-randomized when a user sells her platform. This ensures that any remaining
secrets are approvedly destroyed when a computer changes owners [14]. Note
that provisioning key derivations do include mrsigner, however, such that we
cannot derive Intel’s provisioning key without access to Intel’s private enclave
signing key.

6.5.2 Attacking the Intel quoting enclave

Background. Section 6.2.1 introduced local, intra-platform attestation through
the ereport instruction. Such tagged local attestation reports are useless to a
remote stakeholder, however, as they can only be verified by a target enclave
executing on the same platform. The Intel SGX design therefore includes a
trusted Quoting Enclave (QE) [14, 47] to validate local attestation reports, and
sign them with an asymmetric private key. The resulting signed attestation
report, or quote, can now be verified by a remote party via the corresponding
public key.

Intel imposes itself as a trusted third party in the attestation process. To
address privacy concerns, QE implements Intel’s Enhanced Privacy Identifier
(EPID) [134] group signature scheme. An EPID group covers millions of CPUs
of the same type (e.g., core i3, i5, i7) and security version number. In fully
anonymous mode, the cryptosystem ensures that remote parties can verify
quotes from genuine SGX-enabled platforms, without being able to track
individual CPUs within a group or recognize previously verified platforms.
In pseudonymous mode, on the other hand, remote verifiers can link different
quotes from the same platform.

Figure 6.8 outlines the complete SGX remote attestation procedure. In an
initial platform configuration phase A , Intel deploys a dedicated Provisioning
Enclave (PE) to request an EPID private key, from here on referred to as the
platform attestation key, from the remote Intel Provisioning Service. Upon
receiving the attestation key, PE derives an author-based provisioning seal
key in order to securely store B the long-term attestation key on untrusted
storage. For a successful enclave attestation, the remote verifier issues 1 a
challenge, and the enclave executes 2 the ereport instruction to bind the
challenge to its identity. The untrusted application context now forwards 3 the
local attestation report to QE, which derives 4 its report key to validate the
report’s integrity. Next, QE derives the provisioning seal key to decrypt 5 the
platform attestation key received from system software. QE signs 6 the local
attestation report to convert it into a quote. Upon receiving the attestation
response, the remote verifier finally submits 7 the quote to Intel’s Attestation
Service for verification using the EPID group public key.
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Figure 6.8: SGX Quoting Enclave for remote attestation.

Attack and exploitation. Remote attestation, as implemented by the SGX
Quoting Enclave4, relies on two pillars. First, QE relies on the infallibility of
SGX’s local attestation mechanism. An attacker getting hold of QE’s report
key can make QE sign arbitrary enclave measurements, effectively turning QE
into a signing oracle. Second, QE relies on SGX’s sealing mechanism to securely
store the asymmetric attestation key. Should the platform provisioning seal
key leak, an attacker can get hold of the long-term attestation key and directly
sign rogue enclave reports herself. We exploited both options to show how
Foreshadow can adaptively dismantle different SGX primitives.

As with the LE attack, illustrated in Fig. 6.7, both our QE key extraction
exploits target the sgx_get_key trusted runtime function. We again constructed
a carefully crafted page fault state machine to deterministically preempt the QE
execution between the egetkey invocation and the key buffer being overwritten.
As with the LE exploit, our final attack does not rely on advanced single-stepping
or eldu prefetching techniques, and achieves a 100% success rate in practice.
That is, our exploit reliably extracts the full 128-bit report and provisioning
seal keys from a single QE run suffering 14 page faults in total.

We validated the correctness of the extracted keys by fabricating bogus local
attestation reports, using a previously extracted QE report key, and successfully
ordering the genuine Intel QE to sign them. Alternatively, we created a rogue
quoting service that uses the leaked platform provisioning seal key to get hold
of the long-term attestation key for signing. This allows an attacker to fabricate
arbitrary remote attestation responses directly, without even executing QE on
the victim platform.

4 libsgx_qe.signed.so from Intel SGX Linux SDK v2.0 with product ID 0x01 and security
version number 0x05.
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Impact. The ability to spoof remote attestation responses has profound
consequences. Attestation is typically the first step to establish a secure com-
munication channel, e.g., via an authenticated Diffie-Hellman key exchange [14].
Using our rogue quoting service, a network-level adversary (e.g., the untrusted
host application) can trivially establish a man-in-the-middle position to read
plus modify all traffic between a victim enclave and a remote party. All remotely
provisioned secrets can now be intercepted, without even executing the victim
enclave or requiring detailed knowledge of its internals—effectively rendering
SGX-based DRM or privacy-preserving analytics [169, 179] applications useless.
Apart from such confidentiality concerns, adversaries can furthermore fabricate
arbitrary remote SGX computation results. This observation rules out
transparent, integrity-only enclaved execution paradigms [245], and directly
threatens an emerging ecosystem of untrusted cloud environments [20] and
innovative blockchain technologies [111].

Intel’s EPID [134] group signature scheme implemented by QE makes matters
even worse. That is, in fully anonymous mode, obtaining a single EPID private
key suffices to forge signatures for the entire group containing millions of SGX-
capable Intel CPUs. Alarmingly, this allows us to use the platform attestation
key extracted from our lab machine to forge anonymous attestations for enclaves
running on remote platforms we don’t even have code execution on. This does
fortunately not hold for the officially recommended [134] pseudonymous mode,
however, as remote stakeholders would recognize our fabricated quotes as coming
from a different platform.

6.6 Discussion and mitigations

Impact of our findings. Concurrent research on transient-execution at-
tacks [146, 162, 101, 168, 67] revealed fundamental flaws in the way current CPUs
implement speculative out-of-order execution. So far, the focus of these attacks
has been on breaching traditional kernel-level memory isolation barriers from an
unprivileged user space process. Our work shows, however, that Meltdown-type
CPU vulnerabilities also apply to non-hierarchical intra-address space isolation,
as provided by modern Intel x86 SGX technology. This finding has profound
consequences for the development of adequate defenses. The widely-deployed
software-only KAISER [85] defense falls short of protecting enclave programs
against Foreshadow adversaries. Indeed, page-table isolation mitigations are
ruled out, for SGX explicitly distrusts the operating system kernel, and enclaves
live within the address space of an untrusted host process.
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We want to emphasize that Foreshadow exploits a microarchitectural imple-
mentation bug, and does not in any way undermine the architectural design of
Intel SGX and TEEs in general. We strongly believe that the non-hierarchical
protection model supported by these architectures is still as valuable as it
was before. An important lesson from the recent wave of transient-execution
attacks including Spectre, Meltdown, and Foreshadow, however, is that current
processors exceed our levels of understanding [19, 185]. We therefore want
to urge the research community to develop alternative hardware-software co-
designs [48, 62], as well as inspectable open-source [189, 185] TEEs in the hopes
of making future vulnerabilities easier to identify, mitigate, and recover from.

Mitigation strategies. State-of-the-art enclave side-channel hardening tech-
niques [229, 42, 84, 237, 227, 40] offer little protection only and cannot address
the root causes of the Foreshadow attack. These defenses commonly rely on
hardware transactional memory (TSX) support to detect suspicious page fault
and interrupt rates in enclave mode, which only marginally increases the bar for
Foreshadow attackers. First, not all SGX-capable processors are also shipped
with TSX extensions, ruling out TSX-based hardening techniques for Intel’s
critical Launch and Quoting Enclaves. Second, since the egetkey instruction is
not allowed within a TSX transaction [114], adversaries can always interrupt a
victim enclave unnoticed after key derivation to leak secrets (similar to Fig. 6.7).
Furthermore, while the high interrupt rates generated by SGX-Step would be
easily recognized, stealthy exploits can limit the number of enclave preemptions,
or SMT-based Foreshadow variants can be executed concurrently from another
logical core. Finally, we showed how to abuse SGX’s eldu instruction to extract
enclaved memory secrets without even executing the victim enclave, effectively
rendering any software-only defense strategy inherently insufficient.

Only Intel is placed in a unique position to patch hardware-level CPU
vulnerabilities. They recently announced “silicon-based changes to future
products that will directly address the Spectre and Meltdown threats in
hardware [. . . ] later this year.” [149] Likewise, we expect Foreshadow to be
directly addressed with silicon-based changes in future Intel processors. The
SGX design [14] includes a notion of TCB recovery by including the CPU
security version number in all measurements (Section 6.2.1). As such, future
microcode updates could in principle mitigate Foreshadow on existing SGX-
capable processors. In this respect, beta microcode updates [128] have recently
been distributed to mitigate Spectre, but, at the time of this writing, no
microcode patches have been released addressing Meltdown nor Foreshadow.
Given the fundamental nature of out-of-order CPU pipeline optimizations, we
expect it may not be feasible to directly address the Foreshadow/Meltdown
access control race condition in microcode. Alternatively, based on our findings
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(see Appendix D) that Foreshadow requires enclave data to reside in the L1 cache,
we envisage a hardware-software co-design mitigation strategy. Foreshadow-
resistant enclaves should be guaranteed that (i) both logical cores in an SMT
setting execute within the same enclave [84, 237, 40], and (ii) the L1 cache
is flushed upon each enclave exiting event [48]. We provide a comprehensive
analysis of the mitigations deployed by Intel in response to Foreshadow-SGX in
Section 6.9.4.

6.7 Related work

Several recent studies investigate attack surface for SGX enclaves. Existing
attacks either exploit low-level memory safety vulnerabilities [154, 266], or abuse
application-specific information leakage from side channels. Importantly, in
contrast to Foreshadow, all known attacks explicitly fall out-of-scope of Intel
SGX’s threat model [120, 133], and can be effectively avoided by rewriting the
victim enclave’s code to exclude such vulnerabilities.

Conventional microarchitectural side channels [71] are, however, considerably
amplified in the context of SGX’s strengthened attacker model. This point has
been repeatedly demonstrated in the form of a steady stream of high-resolution
Prime+Probe CPU cache [225, 29, 79, 181, 92, 50] and branch prediction [156,
59] attacks against SGX enclaves. The additional capabilities of a root-level
attacker have furthermore been leveraged to construct instruction-granular
enclave interrupt primitives [257], and to exploit side-channel leakage from x86
memory paging [277, 258] and segmentation [91]. Unexpected side channels can
also arise at the application level. We for example recently reported [118] a
side-channel vulnerability in auto-generated edger8r code of the official Intel
SGX SDK.

Concurrent research [39, 197] has demonstrated proof-of-concept Spectre-type
speculation attacks against specially crafted SGX enclaves. Both attacks rely
on executing vulnerable code within the victim enclave. Our attack, in contrast,
does not require any specific code in the victim enclave, and can even extract
memory contents without ever executing the victim enclave. While existing
work shows vulnerable gadgets exist in the SGX SDK [39], such Spectre-type
attack surface can be mitigated by patching the SDK. Recent Intel microcode
updates furthermore address Spectre-type attacks against SGX enclaves directly
at the hardware level, by cleansing the CPU’s branch target buffer on every
enclave transition [39].
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6.8 Conclusion

We presented Foreshadow, an efficient transient-execution attack that completely
compromises the confidentiality guarantees pursued by contemporary Intel
SGX technology. We furthermore contributed practical attacks against Intel’s
trusted architectural enclaves, essentially dismantling SGX’s local and remote
attestation guarantees as well.

While, in the absence of a microcode patch, current SGX versions cannot
maintain their hardware-level security guarantees, Foreshadow does assuredly
not undermine the non-hierarchical protection model pursued by trusted
execution environments, such as Intel SGX.

6.9 The microarchitecture behind Foreshadow

In the absence of a white-box view on Intel CPU internals, our original
Foreshadow publication could only provide limited insights into the microarchi-
tectural root cause behind the attack. After responsibly disclosing our findings,
however, subsequent internal analysis by Intel [107] revealed that the same
underlying processor vulnerability can also be abused to break conventional
process or even virtual machine isolation. This postscript, based on our
successive technical report [271], analyzes the microarchitectural root cause
behind Foreshadow-type attacks and reviews mitigations that have been rolled
out across the system stack.

6.9.1 L1 terminal fault

Modern Intel processors [114, 47] feature a carefully crafted virtually-indexed,
physically-tagged L1 cache design. As illustrated in Fig. 6.9, this allows the
first step of the address translation to proceed in parallel with the L1 cache set
lookup, as the latter is completely determined by the virtual address specified
by the load operation. After locating the correct L1 cache set, however, the
processor should still determine whether any of the non-vacant ways within
that set contain the required data. For this, the CPU matches the physical
page number resulting from the address translation process against an internal
metadata tag stored along each of the individual ways. Only when one of the
non-vacant ways contains the exact right physical address tag, i.e., upon an L1
hit event, is the data returned to the processor’s execution units
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Figure 6.9: CPU address translation and L1 terminal fault behavior: documented
architectural view (bottom) and undocumented microarchitectural transient-execution
interactions (top).

The original Meltdown-US [162] attack showed that affected Intel processors do
not transiently respect the “supervisor” page-table attribute, allowing to read
cached kernel memory from L1D. For Foreshadow, on the other hand, Intel
explains [107] that a special type of L1 Terminal Fault (L1TF) microarchitectural
condition occurs when accessing a page-table entry with either the “present”
bit cleared or a “reserved” bit set. In such cases, the CPU immediately aborts
address translation, before applying any additional sanitizations enforced by the
hypervisor or SGX in later stages of the page-table walk. Crucially, however, on
vulnerable processors an illegitimate physical address is still derived from the
faulting page-table entry and passed on to the L1D cache, before the exception is
eventually raised at the architectural level. Any data present in L1D and tagged
with that rogue physical address will now be illegally forwarded to the transient
instructions following the faulting load, regardless of access permissions.

As illustrated in the top half of Fig. 6.9, data residing in the L1D cache is
immediately forwarded to dependent operations upon successful tag comparison.
While desirable from a performance perspective in the common case where no
fault occurs, this behavior also implies that transient instructions may compute
on unauthorized data when the address translation process is prematurely
aborted due to a terminal fault. Hence, as with plain Meltdown, the non-
existent memory request is properly blocked at the architectural level, by raising
a terminal fault, but adversaries can still encode the results of secret-dependent
computations at the microarchitectural level. Especially dangerous in this
respect, is that the physical tag address has not been sanitized by subsequent
stages in the page-table walk. We will explain below how early outing the address
translation process due to a terminal fault allows Foreshadow adversaries to
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bypass all three successive memory protection phases, illustrated in Fig. 6.9,
enforced by the operating system, hypervisor, and SGX

6.9.2 Foreshadow-OS: Escaping process isolation

Whenever the operating system kernel decides to swap a virtual memory page
from DRAM to persistent storage, it is required to clear the present bit in
the corresponding page-table entry. According to the processor’s architectural
specification [114], however, the kernel can freely use the remaining bits in a
non-present page-table entry for bookkeeping purposes. The operating system
may, for instance, decide to leave these bits unchanged, zero them out, or use
them to store metadata that assists in bringing back the page from disk. Thus,
while unprivileged user-space applications have no direct control over page-table
entries, the metadata left by the OS may still be transiently interpreted as
a valid physical page number that could point to sensitive data out of the
process’s architecturally accessible address space. Making things worse, when
the operating system supports page sizes larger than 4KiB, a user-space attacker
can use the inadvertent mapping to access an unauthorized contiguous physical
memory range of up to 2MiB or 1GiB.

In response to Foreshadow-OS, the kernel has to sanitize the physical address
field of unmapped page-table entries so as to maintain process isolation on
vulnerable processors. The “PTE inversion” technique adopted by the Linux
kernel [46], for instance, simply inverts the physical page number bits in a
page-table entry when it is marked as being not present. This serves as an
elegant, zero-overhead mitigation that always ensures that unmapped pages
point into non-existent physical memory, beyond the physical-address width
supported by the processor [107].

6.9.3 Foreshadow-VMM: Escaping virtual machine isolation

While the above Foreshadow-OS variant allows unprivileged adversaries to
transiently compute on unauthorized physical memory locations, they have
no direct control over which exact physical addresses are being accessed.
Foreshadow-type attacks therefore become even more devastating when
considering untrusted virtual machines that directly control the guest-physical
address input to the L1D tag comparison in Fig. 6.9. Such Foreshadow-VMM
attacks allow an untrusted virtual machine to extract the host machine’s entire
L1D cache, including data belonging to the hypervisor or other virtual machines.
The underlying problem is that a terminal fault in the guest page tables early
outs the address translation process, such that guest-physical addresses are
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erroneously passed to the L1D data cache, without first being translated into a
proper host-physical address.

In response to Foreshadow-VMM, Intel released microcode updates that provide
a new ia32_flush_cmd MSR interface which allows the hypervisor to flush
the entire L1D cache before handing over control to an untrusted virtual
machine [107]. Additionally, to thwart SMT-based attacks across logical cores,
the hypervisor must ensure to not schedule threads belonging to different virtual
machines on the same physical CPU and to shoot down any guest executing on
the sibling logical core before accessing secrets in hypervisor mode.

6.9.4 Foreshadow-SGX: Escaping enclave isolation

This chapter first demonstrated how adversaries can abuse the untrusted
operating system’s control over page tables to provoke terminal faults and
read cached data from SGX enclaves, including full sealing and attestation
keys from Intel’s own architectural enclaves. This work directly led to Intel’s
subsequent discovery of the underlying L1TF microarchitectural condition and
the wider category of Foreshadow-NG attack variants. Analogous to Foreshadow-
VMM’s extended page-table bypass above, Foreshadow-SGX essentially early
outs the address translation, passing any cached enclave secrets to the transient
out-of-order execution before the SGX machinery is allowed to replace them
with abort page behavior.

Note that Section 6.3.1 furthermore proposed an alternative way to provoke
terminal fault behavior via EPCM sanity checks (cf. Fig. 3.1 on page 73)
when dereferencing a rogue virtual memory mapping from a customized attacker
enclave. This Foreshadow-SGX subvariant has been dubbed “enclave-to-enclave”
(E2E) in Intel’s analysis [107].

In response to Foreshadow-SGX, Intel issued microcode patches for existing
processors and developed silicon mitigations that are now included in newer
processors enumerating RDCL_NO. The microcode mitigations [107] protect SGX
enclaves in two ways: (i) by ensuring that no secrets are left in the L1D
cache when the enclave is not executing; and (ii) by including SMT status
during any key derivation and attestation. The former requirement is met by
transparently flushing the L1D cache on every enclave entry and exit event. As
we demonstrated in Section 6.3.5 that root adversaries can also abuse SGX’s
secure page swapping mechanism to bring secrets into the L1D cache without
even executing the victim enclave, the eldu microcode has furthermore been
modified to also perform an L1D flush before returning.

To address the second requirement, enabling remote parties to re-establish trust,
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Intel initiated TCB recovery [122] by upgrading SGX’s security version number
and extending remote attestation responses to reflect SMT status. Particularly,
with the new microcode, different keys are derived depending on whether SMT
is turned on or off by the BIOS. Since SMT cannot be dynamically re-enabled
after booting, enclave data sealed when SMT was turned off, cannot be unsealed
while SMT is active. Unfortunately, however, Intel [124] leaves it up to the
remote stakeholder to decide whether or not to trust attestation responses
from SMT-enabled systems. In light of the findings in Section 6.3.4 and also
regarding more recent transient-execution attack developments [223, 216, 251],
we consider SMT to be fundamentally broken and we decidedly recommend to
not trust current SMT-enabled SGX platforms. Chapter 8 outlines a possible
hardware mechanism that may aid to re-establish trust in SMT-enabled SGX
systems, as long as it can be guaranteed that both sibling logical cores enter
and exit the enclave in lock step [84, 40].

The above series of microcode countermeasures are indeed sufficient to block
the data leakage aspect of Foreshadow, as described in this chapter. However,
the next chapter introduces our insights on LVI [251], which shows that, despite
extensive microcode mitigations, the legacy of Foreshadow is still haunting
enclave security on vulnerable processors.
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Preamble

This chapter presents Load Value Injection (LVI), an innovative technique to
reversely exploit Meltdown-type microarchitectural data leakage. LVI abuses
that faulting or assisted loads, executed by a legitimate victim program, may
transiently use dummy values or poisoned data from various microarchitectural
buffers, before eventually being re-issued by the processor. We for the first
time combine Spectre-style code gadgets with Meltdown-type illegal data flows
to bypass existing defenses and inject attacker-controlled data into a victim
enclave’s transient execution. State-of-the-art Meltdown and Spectre defenses,
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including widespread silicon-level and microcode mitigations, are orthogonal
to our novel LVI techniques. Instead, fully mitigating our attacks requires
serializing the processor pipeline with lfence speculation barriers after possibly
every memory load. Depending on the application and optimization strategy,
we observe extensive overheads of factor 2 to 19 for prototype implementations
of the full mitigation.

The key idea of turning microarchitectural data sampling into microarchitectural
data injection developed when working on the Fallout and Zombieload transient-
execution attacks. We first reported this novel exploitation technique, including
proof-of-concepts for all of the variants described in this chapter, to Intel on
April 4, 2019, at which point we engaged in an extended embargo period until
March 10, 2020. Near the end of the embargo period, in February 2020, the
LVI-LFB subvariant was independently rediscovered and reported by researchers
at Bitdefender, who provided Intel with a proof-of-concept for LVI-LFB in a
synthetic cross-process SMT scenario. To raise awareness and disseminate our
findings to the wider public, the website https://lviattack.eu/ was created.

From an attack perspective, LVI represents an advanced exploitation technique
that ultimately combines many of the insights developed in the previous chapters:
from untrusted pointers in Chapter 2, via page-table manipulations and SGX-
Step in Chapters 3 and 4, to incorrect transient forwarding in Chapter 6. Given
these considerable exploitation challenges, we believe that LVI is principally
relevant as an attack by an untrusted operating system targeting Intel SGX
enclaves. While this chapter also shows that none of the ingredients for LVI are
strictly unique to Intel SGX, and LVI may in principle even apply to traditional
cross-process, user-to-kernel, and sandboxed environments, we presently consider
such unprivileged non-enclave attack scenarios to be of mainly academic interest.
That is, LVI presents an important attack vector in the privileged Intel SGX
adversary model, but further research should tell whether practically exploitable
LVI gadgets and reliable ways to provoke exceptions also exist for non-enclave
victim programs.

Current status of mitigations. From a defensive perspective, LVI marks the
end of transparently patching Meltdown-type processor vulnerabilities in CPU
microcode. Our research closed the gap between Spectre-type misspeculation
and Meltdown-type data extraction attacks, prompting Intel to refine their
terminology for software guidance and adopt the term “transient execution”
to more accurately describe the common underlying effect [125]. In response
to our findings, extensive lfence software mitigations landed in the GNU
assembler, LLVM, and Microsoft’s MSVC to allow at least compilation of SGX
enclaves to remain secure on LVI-vulnerable systems. In line with the evaluation

https://lviattack.eu/
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performed in this chapter, several independent researchers have since confirmed
the grave performance impact of these mitigations. Larabel [151] evaluates LVI
mitigation options provided by the GNU assembler in a variety of applications
and measures overheads of factor 4 to 15 for the full -mlfence-after-load
mitigation. To somewhat alleviate this impact, Intel developed an LLVM-based
compiler pass which optimally inserts lfence instructions [106]. The evaluation
in this chapter shows that Intel’s optimized LLVM mitigation indeed clearly
outperforms naive assembler-level solutions. Further, in line with our findings
for partial LVI mitigations, Larabel [150] reports moderate overheads in the
order of 9 % for LLVM’s new -mlvi-cfi option, which, however, only serializes
indirect branches and does not protect against data-only LVI attacks.

Finally, an alternative mitigation approach was proposed by Google engineers
in the form of “Speculative Execution Side Effect Suppression” (SESES) [30],
an experimental LLVM compiler pass that aims to provide a more generic, last-
resort measure for high-security SGX enclaves. Instead of blocking the illegal
transient data flow by inserting fences after vulnerable load instructions, SESES
attempts to more generally prevent side-channel leakage from the transient-
execution domain by inserting fences before every memory operation or control
flow redirection. Expectedly, however, in a performance evaluation on the
BoringSSL cryptographic library, this mitigation caused extensive slow downs
of factor 6 to 23 [30]. Moreover, by attempting to prevent known side-channel
leakage sources, SESES might not protect against alternative covert channels
that do not rely on redirecting transient control flow or data accesses.

7.1 Introduction

Recent research on transient-execution attacks has been characterized by a sharp
split between on the one hand Spectre-type misspeculation attacks, and on the
other hand, Meltdown-type data extraction attacks. The first category, Spectre-
type attacks [146, 148, 167, 23, 102], trick a victim into transiently diverting from
its intended execution path. Particularly, by poisoning the processor’s branch
predictor machinery, Spectre adversaries steer the victim’s transient execution
to gadget code snippets, which inadvertently expose secrets through the shared
microarchitectural state. Importantly, Spectre gadgets execute entirely within
the victim domain and can hence only leak architecturally accessible data.

The second category consists of Meltdown-type attacks [162, 249, 271, 234, 223,
216, 35], which target architecturally inaccessible data by exploiting illegal data
flow from faulting or assisted instructions. Particularly, on vulnerable processors,
the results of unauthorized loads are still forwarded to subsequent transient
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operations, which may encode the data before an exception is eventually raised.
Over the past year, delayed exception handling and microcode assists have been
shown to transiently expose data from various microarchitectural elements (i.e.,
L1D cache [162, 249], FPU register file [234], line-fill buffer [162, 223, 216], store
buffer [35], and load ports [216, 108]). Unlike Spectre-type attacks, a Meltdown
attacker in one security domain can directly exfiltrate architecturally inaccessible
data belonging to another domain (e.g., kernel memory). Consequently, existing
Meltdown mitigations focus on restricting the attacker’s point of view, e.g.,
placing victim data out of reach [85], flushing buffers after victim execution [107,
108], or zeroing unauthorized data flow directly at the silicon level [128].

Given the widespread deployment of Meltdown countermeasures, including
changes in operating systems and CPUs, we ask the following fundamental
questions in this chapter:

Can Meltdown-type effects only be used for leakage or also for injection? Would
current hardware and software defenses suffice to fully eradicate Meltdown-type
threats based on illegal data flow from faulting or assisted instructions?

7.1.1 Our results and contributions

In this chapter, we introduce an innovative class of Load Value Injection
(LVI) attack techniques. Our key contribution is to recognize that, under
certain adversarial conditions, unintended microarchitectural leakage can also
be inverted to inject incorrect data into the victim’s transient execution. Being
essentially a “reverse Meltdown”-type attack, LVI abuses that a faulting or
assisted load instruction executed within a victim domain does not always yield
the expected result, but may instead transiently forward dummy values or
(attacker-controlled) data from various microarchitectural buffers. We consider
attackers that can either directly or indirectly induce page faults or microcode
assists during victim execution. LVI provides such attackers with a primitive
to force a legitimate victim execution to transiently compute on “poisoned”
data (e.g., pointers, array indices) before the CPU eventually detects the fault
condition and discards the pending architectural state changes. Much like in
Spectre attacks, LVI relies on “confused deputy” code gadgets surrounding the
faulting or assisted load in the victim to hijack transient control flow and disclose
information. We are the first to combine Meltdown-style microarchitectural
data leakage with Spectre-style code gadget abuse to compose a novel type of
transient load value injection attacks.

Table 7.1 summarizes how Spectre [146] first applied an injection-based
methodology to invert prior branch prediction side-channel attacks, whereas LVI
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Table 7.1: Characterization of known side-channel and transient-execution attacks
in terms of targeted microarchitectural predictor or data buffer (vertical axis) vs.
leakage- or injection-based methodology (horizontal axis). The LVI attack plane,
first explored in this chapter, is indicated on the lower right and applies an injection-
based methodology known from Spectre attacks (upper right) to reversely exploit
Meltdown-type data leakage (lower left).

Buffer
Methodology

Leakage Injection

Pr
ed

ic
tio

n
hi

st
or

y

PHT BranchScope [59], Bluethunder [105] Spectre-PHT [146]
BTB SBPA [2], BranchShadow [156] Spectre-BTB [146]
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LFB/LP ZombieLoad [223], RIDL [216] LVI-LFB/LP

similarly shows that recent Meltdown-type microarchitectural data leakage can
be reversely exploited. Looking at Table 7.1, it becomes apparent that Spectre-
style injection attacks have so far only been applied to auxiliary history-based
branch prediction and dependency prediction buffers that accumulate program
metadata to steer the victim’s transient execution indirectly. Our techniques,
on the other hand, intervene much more directly in the victim’s transient data
stream by injecting erroneous load values straight from the CPU’s memory
hierarchy, i.e., intermediate load and store buffers and caches.

These fundamentally different microarchitectural behaviors (i.e., misprediction
vs. illegal data flow) also entail that LVI requires defenses that are orthogonal
and complementary to existing Spectre mitigations. Indeed, we show that
some of our exploits can transiently redirect conditional branches, even after
the CPU’s speculation machinery correctly predicted the architectural branch
outcome. Furthermore, since LVI attacks proceed entirely within the victim
domain, they remain intrinsically immune to widely deployed software and
microcode Meltdown mitigations that flush microarchitectural resources after
victim execution [107, 108]. Disturbingly, our analysis reveals that even state-
of-the-art hardened Intel CPUs [128], with silicon changes that zero out illegal
data flow from faulting or assisted instructions, do not fully eradicate LVI-based
threats.

Our findings challenge prior views that, unlike Spectre, Meltdown-type threats
could be eradicated straightforwardly at the operating system or hardware



192 LVI: HIJACKING TRANSIENT EXECUTION THROUGH LOAD VALUE INJECTION

levels [36, 278, 98, 170, 82]. Instead, we conclude that potentially every
illegal data flow in the microarchitecture can be inverted as an injection
source to purposefully disrupt the victim’s transient behavior. This observation
has profound consequences for reasoning about secure code. We argue that
depending on the attacker’s capabilities, ultimately, every load operation in
the victim may potentially serve as an exploitable LVI gadget. This is in
sharp contrast to prior Spectre-type effects that are contained around clear-cut
(branch) misprediction locations.

Successfully exploiting LVI requires the ability to induce page faults or microcode
assists during victim execution. We show that this requirement can be most
easily met in Intel SGX environments, where we develop several proof-of-concept
attacks that abuse dangerous real-world gadgets to arbitrarily divert transient
control flow in the enclave. We furthermore mount a novel transient fault attack
on AES-NI to extract full cryptographic keys from a victim enclave. While
LVI attacks in non-SGX environments are generally much harder to mount, we
consider none of the adversarial conditions for LVI to be unique to Intel SGX.
We explore consequences for traditional process isolation by showing that, given
a suitable LVI gadget and a faulting or assisted load in the kernel, arbitrary
supervisor memory may leak to user space. We also show that the same vector
could be exploited in a cross-process LVI attack.

Underlining the impact and the practical challenges arising from our findings,
Intel plans to mitigate LVI by extensive revisions at the compiler and assembler
levels to allow at least compilation of SGX enclaves to remain secure on LVI-
vulnerable systems. Particularly, fully mitigating LVI requires introducing
lfence instructions to serialize the processor pipeline after possibly every
memory load operation. Additionally, certain instructions featuring implicit
loads, including the pervasive x86 ret instruction, should be blacklisted and
emulated with equivalent serialized instruction sequences. We observe extensive
performance overheads of factor 2 to 19 for our evaluation of prototype compiler
mitigations, depending on the application and whether lfences were inserted
by an optimized compiler pass or through a naive post-compilation assembler
approach.

In summary, our main contributions are as follows:

• We show that Meltdown-type data leakage can be inverted into a Spectre-
like Load Value Injection (LVI) primitive. LVI transiently hijacks data
flow, and thus control flow.

• We present an extensible taxonomy of LVI-based attacks.

• We show the insufficiency of silicon changes in the latest generation of
acclaimed Meltdown-resistant Intel CPUs
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• We develop practical proof-of-concept exploits against Intel SGX enclaves,
and we discuss implications for traditional kernel and process isolation in
the presence of suitable LVI gadgets and faulting or assisted loads.

• We evaluate compiler mitigations and show that a full mitigation incurs a
runtime overhead of factor 2 to 19.

7.1.2 Responsible disclosure and impact

We responsibly disclosed LVI to Intel on April 4, 2019. We also described the
non-Intel-specific parts to ARM and IBM. To develop and deploy appropriate
countermeasures, Intel insisted on a long embargo period for LVI, namely,
until March 10, 2020 (CVE-2020-0551, Intel-SA-00334). Intel considers LVI
particularly severe for SGX and provides a compiler and assembler-based full
mitigation for enclave programs, described and evaluated in Section 7.9. Intel
furthermore acknowledged that LVI may in principle be exploited in non-SGX
user-to-kernel or process-to-process environments and suggested addressing by
manually patching any such exploitable gadgets upon discovery.

We also contacted Microsoft, who acknowledged the relevance when paging
out kernel memory and continues to investigate the applicability of LVI to the
Windows kernel. Microsoft likewise suggested addressing non-SGX scenarios by
manually patching any exploitable gadgets upon discovery.

7.2 Background

In this section, we provide background on CPU microarchitecture, Intel SGX,
and transient-execution attacks.

7.2.1 CPU microarchitecture

In a complex Instruction Set Architecture (ISA) such as Intel x86 [113]
instructions are decoded into RISC-like micro-ops. The CPU executes micro-ops
from the reorder buffer out of order when their operands become available but
retires micro-ops in order. Modern CPUs perform history-based speculation
to predict branches and data dependencies ahead of time. While the CPU
implements the most common fast-path logic directly in hardware, certain corner
cases are handled by issuing a microcode assist [47, 74]. In such a corner case,
the CPU flags the corresponding micro-op to be re-issued later as a microcode
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Figure 7.1: Overview of an x86 page-table entry and attributes that may trigger
architectural page fault exceptions (red, bold) or microcode assists (green, italic).
Attributes that are periodically cleared by some OS kernels are underlined; all other
fields can only be modified by privileged attackers.

routine. When encountering exceptions, misspeculations, or microcode assists,
the CPU pipeline is flushed, and any outstanding micro-op results are discarded
from the reorder buffer. This rollback ensures that the results of unintended
transient instructions, which were wrongly executed ahead of time, are never
visible at the architectural level.

Address translation Modern CPUs use virtual addresses to isolate concurrently
running tasks. A multi-level page-table hierarchy is set up by the operating
system (OS) or hypervisor to translate virtual to physical addresses. The lower
12 address bits are the index into a 4KiB page, while higher address bits index
a series of page-table entries (PTEs) that ultimately yield the corresponding
physical page number (PPN). Figure 7.1 overviews the layout of an Intel x86
PTE [114, 47]. Apart from the physical page number, PTEs also specify
permission bits to indicate whether the page is present, accessible to user space,
writable, or executable.

The translation lookaside buffer (TLB) caches recent address translations.
Upon a TLB miss, the CPU’s page-miss handler performs a page-table walk and
updates the TLB. The CPU’s TLB miss handler circuitry is optimized for the
fast path, and delegates more complex operations, e.g., setting of “accessed” and
“dirty” PTE bits, using microcode assists [74]. Depending on the permission
bits, a page fault (#PF) may be raised to abort the memory operation and
redirect control to the OS.

Memory hierarchy Superscalar CPUs consist of multiple physical cores
connected through a bus interconnect to the memory controller. As the main
memory is relatively slow, the CPU uses a complex memory subsystem (cf.
Fig. 7.2), including various caches and buffers. On Intel CPUs, the L1 cache is
the fastest and smallest, closest to the CPU, and split into a separate unit for
data (L1D) and instructions (L1I). L1D is usually a 32KiB 8-way set-associative
cache. It is virtually-indexed and physically-tagged, such that lookups can
proceed in parallel to address translation. A cache line is 64 bytes, which also
defines the granularity of memory transactions (load and store) through the
cache hierarchy. To handle various sized memory operations, L1D is connected
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Figure 7.2: Overview of the memory hierarchy in modern x86 microarchitectures.

to a memory-order buffer (MOB), which is interfaced with the CPU’s register
files and execution units through dedicated load ports (LPs).

The MOB includes a store buffer (SB) and load buffer (LB), plus various
dependency prediction and resolution circuits to safeguard correct ordering of
memory operations. The SB keeps track of outstanding store data and addresses
to commit stores in order, without stalling the pipeline. When a load entry in
LB is predicted to not depend on any prior store, it is executed out of order. If a
store-to-load (STL) dependency is detected, the SB forwards the stored data to
the dependent load. However, if the dependency of a load and preceding stores
is not predicted correctly, these optimizations may lead to situations where
the load consumes either stale data from the cache or wrong data from the SB
while the CPU reissues the load to obtain the correct data. These optimizations
within the MOB can undermine security [130, 102, 35].

Upon on L1D cache miss, data is fetched from higher levels in the memory
hierarchy via the line-fill buffer (LFB), which keeps track of outstanding load
and store requests without blocking the L1D cache. The LFB retrieves data from
the next cache levels or main memory and afterward updates the corresponding
cache line in L1D. An “LFB hit” occurs if the CPU has a cache miss for data
in a cache line that is in the LFB. Furthermore, uncacheable memory and
non-temporal stores bypass the cache hierarchy using the LFB.

7.2.2 Intel SGX

Intel Software Guard Extensions (SGX) [47] provides processor-level isolation
and attestation for secure “enclaves” in the presence of an untrusted OS.
Enclaves are contained in the virtual address space of a conventional user-space
process, and virtual-to-physical address mappings are left under explicit control
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of untrusted system software. To protect against active address remapping
attackers [47], SGX maintains a shadow entry for every valid enclave page in the
enclave page-cache map (EPCM) containing amongst others the expected virtual
address. Valid address mappings are cached in the TLB, which is flushed upon
enclave entry, and a special EPCM page fault is generated when encountering
an illegal virtual-to-physical mapping (cf. Fig. 3.1 on page 73).

However, previous work showed that Intel SGX root attackers can mount high-
resolution, low-noise side-channel attacks through the cache [181, 225, 29],
branch predictors [156, 59, 105], page-table accesses [277, 258, 257], or interrupt
timing [256]. In response to recent transient-execution attacks [249, 223, 216,
39], which can extract enclave secrets from side-channel resistant software, Intel
released microcode updates which flush microarchitectural buffers on every
enclave entry and exit [107, 108].

7.2.3 Transient-execution attacks

Modern processors safeguard architectural consistency by discarding the results
of any outstanding transient instructions when flushing the pipeline. However,
recent research on transient-execution attacks [146, 162, 249] revealed that these
unintended transient computations may leave secret-dependent traces in the
CPU’s microarchitectural state, which can be subsequently recovered through
side-channel analysis. Following a recent classification [36], we refer to attacks
exploiting misprediction [146, 141, 148, 167, 102] as Spectre-type, and attacks
exploiting transient execution after a fault or microcode assist [162, 249, 234,
35, 223, 216] as Meltdown-type.

Meltdown-type attacks extract unauthorized program data across architectural
isolation boundaries. Over the past years, faulting loads with different exception
types and microcode assists have been demonstrated to leak secrets from
intermediate microarchitectural buffers in the memory hierarchy: the L1 data
cache [162, 249, 271], the line-fill buffer and load ports [223, 216], the FPU
register file [234], and the store buffer [35, 220].

A perpendicular line of Spectre-type attacks, on the other hand, aims to steer
transient execution in the victim domain by poisoning various microarchitectural
predictors. Spectre attacks are limited by the depth of the transient-execution
window, which is ultimately bounded by the size of the reorder buffer [261].
Most Spectre variants [146, 148, 167] hijack the victim’s transient control flow
by mistraining shared branch prediction history buffers prior to entering the
victim domain. Yet, not all Spectre attacks depend on branch history, e.g., in
Spectre-STL [102] the processor’s memory disambiguation predictor incorrectly
speculates that a load does not depend on a prior store, allowing the load to



LOAD VALUE INJECTION 197

transiently execute with a stale outdated value. Spectre-STL has, for instance,
been abused to hijack the victim’s transient control flow in case the stale value
is a function pointer or indirect branch target controlled by a previous attacker
input [261].

7.3 Load value injection

Table 7.1 summarizes the existing transient-execution attack landscape.
The Spectre family of attacks (upper right) contributed an injection-based
methodology to invert prior prediction history side channels (upper left) by
abusing confused-deputy code gadgets within the victim domain. At the same
time, Meltdown-type attacks (lower left) demonstrated cross-domain data
leakage. The LVI attack plane (lower right) remains unexplored until now.
In this chapter, we adopt an injection-based methodology known from Spectre
attacks to reversely exploit Meltdown-type microarchitectural data leakage.
LVI brings a significant change in the threat model, similar to switching from
branch history side channels to Spectre-type attacks. Crucially, LVI has the
potential to replace the outcome of any victim load, including implicit load
micro-ops like in the x86 ret instruction, with attacker-controlled data. This is
in sharp contrast to Spectre-type attacks, which can only replace the outcomes
of branches and store-to-load dependencies by poisoning execution metadata
accumulated in various microarchitectural predictors.

7.3.1 Attack overview

We now outline how LVI can hijack the result of a trusted memory load operation,
under the assumption that attackers can provoke page faults or microcode assists
for (arbitrary) load operations in the victim domain. The attacker’s goal is
to force a victim to transiently compute on unintended data, other than the
expected value in trusted memory. Injecting such unexpected load values forces
a victim to transiently execute gadget code immediately following the faulting
or assisted load instruction with unintended operands.

Figure 7.3 overviews how LVI exploitation can be abstractly broken down into
four phases.

1. In the first phase, the microarchitecture is optionally prepared in the
desired state by filling a hidden buffer with an (attacker-controlled) value
A.
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Figure 7.3: Phases in a Load Value Injection (LVI) attack: (1) a microarchitectural
buffer is filled with value A; (2) the victim executes a faulting or assisted load to
retrieve value B which is incorrectly served from the microarchitectural buffer; (3)
the injected value A is forwarded to transient instructions following the faulting
or assisted load, which may now perform unintended operations depending on the
available gadgets; (4) the CPU flushes the faulting or assisted load together with all
other transient instructions.

2. The victim then executes a load micro-op to fetch a trusted value B.
However, in case this instruction suffers a page fault or microcode
assist, the CPU may erroneously serve the load request from the
microarchitectural buffer. This results in incorrect forwarding of value
A to dependent transient micro-ops following the faulting or assisted
load. At this point, the attacker has succeeded in tricking the victim into
transiently computing on the injected value A instead of the trusted value
B.

3. These unintended transient computations may subsequently expose victim
secrets through microarchitectural state changes. Depending on the
specific “gadget” code surrounding the original load operation, LVI may
either encode secrets directly or serve as a transient control or data flow
redirection primitive to facilitate second-stage gadget abuse, e.g., when B
is a trusted code or data pointer.

4. The architectural results of gadget computations are eventually discarded
at the retirement of the faulting or assisted load instruction. However,
secret-dependent traces may have been left in the CPU’s microarchitectural
state, which can be subsequently recovered through side-channel analysis.
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1 void call_victim(size_t untrusted_arg) {
2 *arg_copy = untrusted_arg;
3 array[**trusted_ptr * 4096];
4 }

Listing 7.1: An LVI toy gadget for leaking arbitrary data from a victim domain.

7.3.2 A toy example

Listing 7.1 provides a toy LVI gadget to illustrate how faulting loads in a victim
domain may trigger incorrect transient forwarding. Our example gadget bears a
high resemblance to known Spectre gadgets but notably does not rely on branch
misprediction or memory disambiguation. Furthermore, our gadget executes
entirely within the victim domain and is hence not affected by widely deployed
microcode mitigations that flush microarchitectural buffers on context switch.
Regardless of the prevalence of this specific toy gadget, it serves as an initial
example which is easy to understand and illustrates the power of LVI as a
generic attack primitive.

Following the general outline of Fig. 7.3, the gadget code in Listing 7.1 first copies
a 64-bit value untrusted_arg provided by the attacker into trusted memory
(e.g., onto the stack) at line 2. In the example, the argument copy is further not
used, and this store operation merely serves to bring some attacker-controlled
value into some microarchitectural buffer. Subsequently, in the second phase of
the attack, a pointer-to-pointer trusted_ptr (e.g., a pointer in a dynamically
allocated struct) is dereferenced at line 3. We assume that, upon the first-
level pointer dereference, the victim suffers a page fault or microcode assist.
The faulting load causes the processor to incorrectly forward the attacker’s
value untrusted_arg that was previously brought into the store buffer by the
completely unrelated store at line 2, like in a Meltdown-type attack [35]. At this
point, the attacker has succeeded in replacing the architecturally intended value
at address *trusted_ptr with her own chosen value. In the third phase of the
attack, the gadget code transiently uses untrusted_arg as the base address for
a second-level pointer dereference and uses the result as an index in a lookup
table. Similar to a Spectre gadget [146], the lookup in array serves as the
sending end of a cache-based side channel, allowing to encode arbitrary memory
locations within the victim’s address space.

Figure 7.4 illustrates how in the final phase of the attack, after the fault has
been handled and the load has been re-issued allowing the victim to complete,
adversaries can abuse access timings to the probing array to reconstruct secrets
from the victim’s transient execution. Notably, the timing diagram showcases
two clear drops: one dip corresponds to the architecturally intended value that
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Figure 7.4: Access times to the probing array after the execution of Listing 7.1. The
dip at 68 (‘D’) is the transmission specified by the victim’s architectural program
semantics. The dip at 83 (‘S’) is the victim secret at the address untrusted_arg
injected by the attacker.

was processed after the faulting load got successfully re-issued, while the second
dip corresponds to the victim secret at the address chosen by the attacker.
This toy example hence serves as a clear illustration of the danger of incorrect
transient forwarding following a faulting load in a victim domain. We elaborate
further on attacker assumptions and gadget requirements for different LVI
variants in Sections 7.4 and 7.6 respectively.

7.3.3 Difference with Spectre-type attacks

While LVI adopts a gadget-based exploitation methodology known from Spectre-
type attacks, both attack families exploit fundamentally different microarchi-
tectural behaviors (i.e., incorrect transient forwarding vs. misprediction). We
explain below how LVI is different from and requires orthogonal mitigations to
known Spectre variants.

LVI vs. branch prediction. Most Spectre variants [146, 148, 167, 36]
transiently hijack branch outcomes in a victim process by poisoning various
microarchitectural branch prediction history buffers. On recent and updated
systems, these buffers are typically not simultaneously shared anymore and
flushed on context switch. Furthermore, to foil mistraining strategies within
a victim domain, hardened compilers insert explicit lfence barriers after
potentially mispredicted branches.

In contrast, LVI allows to hijack the result of any victim load micro-op, not just
branch targets. By directly injecting incorrect values from the memory hierarchy,
LVI allows data-only attacks as well as control-flow redirection in the transient
domain. Essentially, LVI and Spectre exploit different subsequent phases of
the victim’s transient execution: while Spectre hijacks control flow before the
architectural branch outcome is known, LVI-based control-flow redirection
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manifests only after the victim attempts to fetch the branch-target address from
application memory. LVI does not rely on mistraining of any (branch) predictor,
and hence, applies even to CPUs without exploitable prediction elements, and
to systems protected with up-to-date microcode and compiler mitigations.

LVI vs. speculative store bypass. Spectre-STL [102] exploits the memory
disambiguation predictor, which may speculatively issue a load even before all
prior store addresses are known. That is, in case a load is mispredicted to not
depend on a prior store, the store is incorrectly not forwarded and the load
transiently executes with a stale outdated value.

Crucially, while Spectre-STL is strictly limited to injecting stale values for loads
that closely follow a store to the exact same address, LVI has the potential
to replace the result of any victim load with unrelated and possibly attacker-
controlled data. LVI therefore drastically widens the spectrum of incorrect
transient paths. As an example, the code in Listing 7.1 is not in any way
exposed to Spectre-STL since the store and load operations are to different
addresses, but this gadget can still be exploited with LVI in case the load suffers
a page fault or microcode assist. Consequently, LVI is also not affected by
Spectre-STL mitigations, which disable the memory disambiguation predictor
in microcode or hardware.

LVI vs. value prediction. While value prediction has already been proposed
more than two decades ago [160, 262], commercial CPUs do not implement it yet
due to complexity concerns [201]. As long as no commercial CPU supports value
speculation, Spectre-type value misprediction attacks are purely theoretical. In
LVI, there is no mistraining of any (value) predictor, and hence, it applies to
today’s CPUs already.

7.4 Attacker model and assumptions

We focus on software adversaries who want to disclose secrets from an isolated
victim domain, e.g., the OS kernel, another process, or an SGX enclave. For
SGX, we assume an attacker with root privileges, i.e., the OS is under control
of the attacker [47]. Successful LVI attacks require carefully crafted adversarial
conditions. In particular, we identify the following three requirements for LVI
exploitability:
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Incorrect transient forwarding. As with any fault injection attack, LVI
requires some form of exploitable incorrect behavior. We exploit that faulting
or assisted loads do not always yield the expected architectural result, but may
transiently serve dummy values or poisoned data from various microarchitectural
buffers. There are many instances of incorrect transient forwarding in modern
CPUs [162, 249, 234, 36, 223, 216, 35]. In this work, we show that such
incorrect transient forwarding is not limited to cross-domain data leakage. We
are the first to show cross-domain data injection and identify dummy 0x00
values as an exploitable incorrect transient forwarding source, thereby widening
the scope of LVI even to microarchitectures that were previously considered
Meltdown-resistant.

Faulting or assisted loads. LVI requires firstly the ability to (directly or
indirectly) provoke architectural exceptions or microcode assists for legitimate
loads executed by the victim. This includes implicit load micro-ops as part of
larger ISA instructions, e.g., popping the return address from the stack in the
x86 ret instruction. Privileged SGX attackers can straightforwardly provoke
page faults for enclave memory loads by modifying untrusted page tables, as
demonstrated by prior research [277, 258]. Even unprivileged attackers can
induce demand paging non-present faults by abusing the OS interface to unmap
targeted victim pages through legacy interfaces or contention of the shared page
cache [83]. Finally, more recent works showed that Meltdown-type effects are
not limited to architectural exceptions, but also exist for assisted loads [223,
216, 35]. In case a microcode assist is required, the load micro-op does not
architecturally commit, but may still transiently forward incorrect values before
being re-issued as a microcode routine. Microcode assists occur in a wide
variety of conditions, including subnormal floating point numbers and setting
of “accessed” and “dirty” PTE bits [47, 108].

Code gadgets. A final yet crucial requirement for LVI is the presence of a
suitable code gadget that allows to hijack the victim’s transient execution and
encode unintended secrets in the microarchitectural state. In practice, this
requirement comes down to identifying a load operation in the victim code that
can be faulting or assisted, followed by an instruction sequence that redirects
control or data flow based on the loaded value (e.g., a pointer, or array index).
We find that there are many different types of gadgets which mostly consist of
only a few ubiquitously used instructions. We provide practical instances of
such exploitable gadgets in Section 7.6.



BUILDING BLOCKS OF THE ATTACK 203

7.5 Building blocks of the attack

We compose transient fault-injection attacks using the three building blocks
described in the previous section and Fig. 7.3.

7.5.1 Phase P1: Microarchitectural poisoning

The main challenge in the first phase is to prepare the CPU’s microarchitectural
state such that a (controlled) incorrect transient forwarding happens for the
faulting load in the second stage. We later classify LVI variants based on the
microarchitectural buffer that forwards the incorrect data. Depending on the
variant, it suffices in this phase to fill a particular buffer (cf. Section 7.2.1: L1D,
LFB, SB, LP) with a chosen value at a chosen location. This is not always
a requirement, as we also consider a special LVI-NULL variant that abuses
incorrect forwarding of 0x00 dummy values which are often returned when
faulting loads miss the cache, or on Meltdown-resistant microarchitectures [128].
Such null values are “hard wired” in the CPU, and the poisoning phase can
hence be entirely omitted for LVI-NULL attacks.

In a straightforward scenario, the shared microarchitectural buffer can be
poisoned directly from within the attacker context. This scenario assumes,
however, that said buffer is not explicitly overwritten or flushed when switching
from the attacker to the victim domain, which is often not anymore the case
with recent software and microcode mitigations [107, 108]. Alternatively, for
buffers competitively shared among logical CPUs, LVI attackers can resort to
concurrent poisoning from a co-resident SMT core running in parallel to the
victim [249, 223, 216].

Finally, in the most versatile LVI scenario, the attack runs entirely within the
victim domain without placing any assumptions on prior attacker execution
or co-residence. We abuse appropriate “fill gadgets” preceding the faulting
load within the victim execution. As explored in Section 7.6, LVI variants may
impose more or fewer restrictions on suitable fill gadget candidates. The most
generically exploitable fill gadget loads or stores attacker-controlled data from
or to an attacker-chosen location, without introducing any architectural security
problem. This is a common case if attacker and victim share an address space
(enclave, user-kernel boundary, sandbox) and exchange arguments or return
values via pointer passing.
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7.5.2 Phase P2: Provoking faulting or assisted loads

In the second and principal LVI phase, the victim executes a faulting or assisted
load micro-op triggering incorrect transient forwarding. The crucial challenge
here is to provoke a fault or assist for a legitimate and trusted load executed by
the victim.

Intel SGX. When targeting Intel SGX enclaves, privileged adversaries can
straightforwardly manipulate PTEs in the untrusted OS to provoke page-fault
exceptions [277] or microcode assists [223, 35]. Even user-space SGX attackers
can indirectly revoke permissions for enclave code and data pages through the
unprivileged mprotect system call [249]. Alternatively, if the targeted LVI
gadget requires a more precise temporal granularity, privileged SGX attackers
can leverage a single-stepping interrupt attack framework like SGX-Step [257] to
manipulate PTEs and revoke enclave-page permissions precisely at instruction-
level granularity.

Generalization to other environments. In the more general case of un-
privileged cross-process, cross-VM, or sandboxed attackers, we investigated
exploitation via memory contention. Depending on the underlying OS or
hypervisor implementation and configuration, an attacker can forcefully evict
selected virtual memory pages belonging to the victim via legacy interfaces
or by increasing physical memory utilization [83]. The “present” bit of the
associated PTE is cleared (cf. Fig. 7.1), and the next victim access faults. On
Windows, this can even affect the kernel heap due to demand paging [213].

Furthermore, prior research has shown that the page-replacement algorithm
on Windows periodically clears “accessed” and “dirty” PTE bits [223]. Hence,
unprivileged attackers can simply wait until the OS clears the accessed bit on the
victim PTE. Upon the next access to that page, the CPU’s page-miss handler
circuitry prematurely aborts the victim’s load micro-op to issue a microcode
assist for re-setting the accessed bit on the victim PTE [47, 223]. Finally, even
without any OS intervention, a victim program may expose certain load gadget
instructions that always require a microcode assist (e.g., split-cache line accesses
which have been abused to leak data from load ports [216, 215]).

7.5.3 Phase P3: Gadget-based secret transmission

The key challenge in the third LVI phase is to identify an exploitable code
“gadget” exhibiting incorrect transient behavior over poisoned data forwarded
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from a faulting load micro-op in the previous phase. In contrast to all
prior Meltdown-type attacks, LVI attackers do not control the instructions
surrounding the faulting load as the load runs entirely in the victim domain.
We, therefore, propose a gadget-oriented exploitation methodology closely
mirroring the classification from the Spectre world [36, 146].

Disclosure gadget. A first type of gadget, akin Spectre-PHT-style information
disclosure, encodes victim secrets in the instructions immediately following
the faulting load (cf. Listing 7.1). The gadget encodes secrets in conditional
control flow or data accesses. Importantly, however, this gadget does not need
to be secret-dependent. Hence, LVI can even target side-channel resistant
constant-time code [71]. That is, at the architectural level, the victim code only
dereferences known, non-confidential values when evaluating branch conditions
or array indices. At the microarchitectural level, however, the faulting load
in the second LVI phase causes the known value to be transiently replaced.
As a result of this “transient remapping” primitive, the gadget instructions
may now inadvertently leak secret values that were brought into the targeted
microarchitectural buffer during prior victim execution.

Control-flow hijack gadget. A second and more powerful type of LVI gadgets,
mirroring Spectre-BTB-style branch-target injection, exploits indirect branches
in the victim code. In this case, the attacker’s goal is not to disclose forwarded
values, but instead to abuse them as a transient control-flow hijacking primitive.
That is, when dereferencing a function pointer (call, jmp) or loading a
return address from the stack (ret), the faulting load micro-op in the victim
code may incorrectly pick up attacker-controlled values from the poisoned
microarchitectural buffer. This essentially enables the attacker to arbitrarily
redirect the victim’s transient control flow to selected second-stage code gadgets
found in the victim address space. Adopting established techniques from
jump-oriented [25] and return-oriented programming (ROP) [228], second-
stage gadgets can further be chained together to compose arbitrary transient
instruction sequences. Akin traditional memory-safety exploits, attackers may
also leverage “stack pivoting” techniques to transiently point the victim stack
to an attacker-controlled memory region.

Although they share similar goals and exploitation methodologies, LVI-based
control-flow hijacking should be regarded as a complementary threat compared
to Spectre-style branch-target injection. Indeed, LVI only manifests after
the victim attempts to fetch the architectural branch target, whereas Spectre
abuses speculative execution before the actual branch outcome is determined.
Hence, the CPU may first (correctly or incorrectly) predict transient control



206 LVI: HIJACKING TRANSIENT EXECUTION THROUGH LOAD VALUE INJECTION

flow based on the history accumulated in the BTB and RSB, until the victim
execution later attempts to verify the speculation by comparing the actual
branch-target address loaded from application memory. At this point, LVI
kicks in since the faulting load micro-op yields an incorrect attacker-controlled
value and erroneously redirects the transient instruction stream to a poisoned
branch-target address.

LVI-based control-flow hijack gadgets can be as little as a single x86 ret
instruction, making this case extremely dangerous. As explained in Section 7.9,
fully mitigating LVI requires blacklisting all indirect branch instructions and
emulating them with equivalent serialized instruction sequences.

Widening the transient window. A final challenge is that, unlike traditional
fault-injection attacks that cause persistent bit flips at the architectural level [140,
241, 188], LVI attackers can only disturb victim computations for a limited
time interval before the CPU eventually catches up, detects the fault, and
aborts transient execution. This implies that there is only a limited “transient
window” in which the victim inadvertently computes on the poisoned load
values, and all required gadget instructions need to complete within this window
to transmit secrets. The transient window is ultimately bounded by the size of
the processor’s reorder buffer [261].

Naturally, widening the transient window is a requirement common to all
transient-execution attacks. Therefore, we can leverage techniques known from
prior Spectre attacks [39, 148, 167]. Common techniques include, e.g., flushing
selected victim addresses or PTEs from the CPU cache.

Summary. To summarize, we construct LVI attacks with the three phases
P1 (poisoning), P2 (provoking injection), P3 (transmission). For each of the
phases, we have different instantiations, based on the specific environment,
hardware, and attacker capabilities. We now discuss gadgets in Section 7.6 and,
subsequently, practical LVI attacks on SGX in Section 7.7.

7.6 LVI Taxonomy and gadget exploitation

We want to emphasize that LVI represents an entirely new class of attack
techniques. Building on the (extended) transient-execution attack taxonomy by
Canella et al. [36], we propose an unambiguous naming scheme and multi-level
classification tree to reason about and distinguish LVI variants in Appendix E.1.
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In the following, we overview the leaves of our classification tree by introducing
the main LVI variants exploiting different microarchitectural injection sources
(cf. Table 7.1). Given the particular relevance of LVI to Intel SGX, we especially
focus on enclave adversaries but also include a discussion on gadget requirements
and potential applicability to other environments.

7.6.1 LVI-L1D: L1 data cache injection

In this section, we contribute an innovative “reverse Foreshadow” injection-based
exploitation methodology for SGX attackers. Essentially, LVI-L1D can best be
regarded as a transient page-remapping primitive allowing to arbitrarily replace
the outcome of any legitimate enclave load value (e.g., a return address on the
stack) with any data currently residing in the L1D cache and sharing the same
virtual page offset.

Microarchitectural poisoning. An “L1 terminal fault” (L1TF) occurs when
the CPU prematurely early-outs address translation when a PTE has the present
bit cleared or a reserved bit set [249, 271]. A special type of L1TF may also
occur for SGX EPCM page faults if the untrusted PTE contains a rogue physical
page number [249, 107]. In our LVI-L1D attack, the root attacker replaces
the PPN field in the targeted untrusted PTE, before entering or resuming the
victim enclave. If the enclave dereferences the targeted location, SGX raises
an EPCM page fault. However, before the fault is architecturally raised, the
poisoned PPN is sent to the L1D cache. If a cache hit occurs at the rogue
physical address (composed of the poisoned PPN and the page offset specified
by the load operation), illegal values are “injected” into the victim’s transient
data stream.

Gadget requirements. LVI-L1D works on processors vulnerable to Foreshadow,
but with patched microcode, i.e., not on more recent silicon-resistant CPUs [107].
The P1 gadget, a load or store, brings secrets or attacker-controlled data into
the L1D cache. The P2 gadget is a faulting or assisted memory load. The P3
gadget creates a side channel from the transient domain, or it redirects control
flow based on the injected data (e.g., x86 call or ret), ultimately also leading to
the execution of an attacker-chosen P3 gadget. The addresses in both memory
operations must have the same page offset (i.e., lowest 12 virtual address bits).
This is not a limiting factor since L1D can hold 32KiB of data, allowing the
three gadgets (P1, P2, P3) to be far apart in the enclaved execution. Similar
to architectural memory-safety SGX attacks [254], we found that high degrees
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Figure 7.5: Transient control-flow hijacking using LVI-L1D: (1) the enclave’s stack
PTE is remapped to a user page outside the enclave; (2) a P1 gadget inside the
enclave loads attacker-controlled data into L1D; (3) a P2 gadget pops trusted data
(return address) from the enclave stack, leading to faulting loads which are transiently
served with poisoned data from L1D; (4) the enclave’s transient execution continues
at an attacker-chosen P3 gadget encoding arbitrary secrets in the microarchitectural
CPU state.

of attacker control are often provided by enclave entry and exit code gadgets
copying user data to or from chosen addresses outside the enclave.

Current microcode flushes L1D on enclave entry and exit, and SMT is
recommended to be disabled [107]. We empirically confirmed that if SMT
is enabled, no P1 gadget is required and that on outdated microcode, L1D can
trivially be poisoned before enclave entry.

Gadget exploitation. Figure 7.5 illustrates LVI-L1D hijacking return control
flow in a minimal enclave. First, the attacker uses a page fault controlled-
channel [277] or SGX-Step [257] to precisely advance the enclaved execution to
right before the desired P1 gadget. Next, the attacker sets up the malicious
memory mapping 1 by changing the PPN of the enclave stack page to a
user-controlled page. The enclave then executes a P1 gadget 2 accessing
the user page and loading attacker-controlled data into the L1D cache (e.g.,
when invoking memcpy to copy parameters into the enclave). Next, the enclave
executes the P2 gadget 3 which pops some data plus a return address from the
enclave stack. For address resolution, the CPU first walks the untrusted page
tables leading to the rogue PPN to be forwarded to L1D. Since the prior P1
gadget ensured that data is indeed present in L1D at the required address, a
cache hit occurs, and the poisoned data (including the return address) is served
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to the dependent transient micro-ops. Now, execution transiently continues at
the attacker-chosen P3 gadget 4 residing at an arbitrary location inside the
enclave. The P3 gadget encodes arbitrary secrets into the microarchitectural
state before the CPU resolves the EPCM memory accesses, unrolls transient
execution, and raises a page fault.

Note that for clarity, we focused on hijacking ret control flow in the above
example, but we also demonstrated successful LVI attacks for jmp and call
indirect control-flow instructions. We observe that large or repeated P1 loads
enable attackers to setup a fake “transient stack” in L1D to repeatedly inject
illegal values for consecutive enclave stack loads (pop-ret sequences). Much like
in architectural ROP code re-use attacks [228], we experimentally confirmed that
attackers may chain together multiple P3 gadgets to compose arbitrary transient
computations. LVI attackers are only limited by the size of the transient window
(cf. Section 7.5.3).

Applicability to non-SGX environments. We carefully considered whether
cross-process or virtual machine Foreshadow variants [271] may also be reversely
exploited through an injection-based LVI methodology. However, we concluded
that these variants are already properly prevented by the recommended PTE
inversion [46] countermeasure, which has been widely deployed in all major OSs
(cf. Appendix E.1).

7.6.2 LVI-SB, LVI-LFB, and LVI-LP: Buffer and port injection

LVI-SB applies an injection-based methodology to reversely exploit store buffer
leakage. The recent Fallout [35] attack revealed how faulting or assisted loads can
pick up SB data if the page offset of the load (least-significant 12 virtual address
bits) matches with that of a recent outstanding store. Similarly, LVI-LFB
and LVI-LP inject from the line-fill buffer and load ports, respectively, which
were exploited for data leakage in the recent RIDL [216] and ZombieLoad [223]
attacks.

Gadget requirements. In response to Fallout, RIDL, and ZombieLoad, recent
Intel microcode updates now overwrite SB, LFB, and LP entries on every enclave
and process context switch [108]. Hence, to reversely exploit SB, LFP, or LP
leakage, we first require a P1 gadget to bring interesting data (e.g., secrets
or attacker-controlled addresses) into the appropriate buffer. Next, we need
a P2 gadget consisting of a trusted load operation which can be faulted or
assisted, followed by a P3 gadget creating a side channel for data transmission
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1 ; %rbx: user-controlled argument ptr (outside enclave)
2 sgx_my_sum_bridge:
3 ...
4 call my_sum ; compute 0x10(%rbx) + 0x8(%rbx)
5 mov %rax,(%rbx) ; P1: store sum to user address
6 xor %eax,%eax
7 pop %rbx
8 ret ; P2: load from trusted stack

Listing 7.2: Intel edger8r-generated code snippet with LVI-SB gadget.

or control flow redirection. For LVI-SB, we further require that the store and
load addresses in P1 and P2 share the same page offset and are sufficiently
close, such that the injected data in P1 has not yet been drained from the store
buffer. Alternatively, for LVI-LFB and LVI-LP, attackers may resort to injecting
poisoned data from a sibling logical core, as LFB and LP are competitively
shared between SMT cores [223, 108].

Gadget exploitation. We found that LVI-SB can be a particularly powerful
primitive, given the prevalence of store operations closely followed by a return
or indirect call. We illustrate this point in Listing 7.2 with trusted proxy bridge
code that is automatically generated by Intel’s edger8r tool of the official SGX
SDK [116]. The edger8r-generated bridge code is responsible for transparently
verifying and copying user arguments to and from enclave memory. The omitted
code verifies that the untrusted argument pointer, which is also used to pass
the result, lies outside the enclave [254].

An attacker can interrupt the enclave after line 4, clear the supervisor or accessed
bit for the enclave stack, and resume the enclave. As the edger8r bridge code
solely verifies that the attacker-provided argument pointer lies outside the
enclave, it provides the attacker with full control over the lower 12 bits of the
store address (P1). When the enclave code returns at line 8, the control flow is
redirected to the attacker-injected location, as the faulting or assisted ret (P2)
incorrectly picks up the value from the SB (which in this case is the sum of two
attacker-provided arguments). Similar to LVI-L1D (Fig. 7.5), an attacker can
encode arbitrary enclave secrets by chaining together one or more P3 gadgets
in the victim enclave code.

Finally, note that LVI is not limited to control flow redirection as secrets may
also be encoded directly in the data flow through a combined P2-P3 gadget
(e.g., by means of a double-pointer dereference as illustrated in the toy example
of Listing 7.1).
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Applicability to non-SGX environments. Importantly, in contrast to LVI-
L1D above, SB, LFB, and LP leakage does not necessarily require adversarial
manipulation of PTEs, or rely on microarchitectural conditions that are specific
to Intel SGX. Hence, given a suitable fault or assist primitive plus the required
victim code gadgets, LVI-SB, LVI-LFB, and LVI-LP may be relevant for other
contexts as well (cf. Section 7.8).

7.6.3 LVI-NULL: 0x00 dummy injection

A highly interesting special case is LVI-NULL, which is based on the observation
that known Meltdown-type attacks [162, 249] commonly report a strong bias to
the value zero for faulting loads. We experimentally confirmed that the latest
generation of acclaimed Meltdown-resistant Intel CPUs (RDCL_NO [128] from
Whiskey Lake onwards) merely zero-out the results of faulting load micro-ops
while still passing a dummy 0x00 value to dependent transient instructions.
While this nulling strategy indeed suffices to prevent Meltdown-type data leakage,
we show that the ability to inject zero values in the victim’s transient data
stream can be dangerously exploitable. Hence, LVI-NULL reveals a fundamental
shortcoming in current silicon-level mitigations, and ultimately requires more
extensive changes in the way the CPU pipeline is organized.

Gadget requirements. Unlike the other LVI variants, LVI-NULL does not rely
on any microarchitectural buffer to inject poisoned data, but instead directly
abuses dummy 0x00 values injected from the CPU’s silicon circuitry in the P1
phase. The P2 gadget consists of a trusted load operation that can be faulted or
assisted, followed by a P3 gadget which, when operating on the unexpected value
null, creates a side channel for secret transmission or control-flow redirection.

In some scenarios, transiently replacing a trusted load micro-op with the
unexpected value zero may directly lead to information disclosure, as explored
in the AES-NI case study of Section 7.7.2. Moreover, LVI-NULL is especially
dangerous in the common case of indirect pointer dereferences.

Gadget exploitation. While transiently computing on zero values might at
first seem rather innocent, we make the key insight that zero can be regarded as a
valid virtual address and that SGX root attackers can trivially map an arbitrary
memory page at virtual address null. Using this technique, we contribute an
innovative transient null-pointer dereference primitive that allows to hijack
the result of any indirect pointer dereference in the victim enclave’s transient
domain.
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Figure 7.6: Transient control-flow hijacking using LVI-NULL: (1) a P2 gadget inside
the enclave dereferences a function pointer-to-pointer, leading to a faulting load which
forwards the dummy value null; (2) the following indirect call transiently dereferences
the attacker-controlled null page outside the enclave, causing execution to continue at
an attacker-chosen P3 gadget address.

We first consider the case of a data pointer stored in trusted memory, e.g., as
a local variable on the stack. After revoking access rights on the respective
enclave memory page, loading the pointer forces its value to zero, causing any
following dereferences in the transient domain to read attacker-controlled data
via the null page. This serves as a powerful “transient pointer-value hijacking”
primitive to inject arbitrary data in a victim enclaved execution, which can be
subsequently used in a P3 gadget to disclose secrets or redirect control flow.

Figure 7.6 illustrates how the above technique can furthermore be exploited to
arbitrarily hijack transient control flow in the case of function pointer-to-pointer
dereferences, e.g., a function pointer in a heap object. The first dereference yields
zero, and the actual function address is thereafter retrieved via the attacker-
controlled null page. For the simpler case of single-level function pointers, we
experimentally found that transient control flow cannot be directly redirected
to the zero address outside the enclave, which is in line with architectural
restrictions imposed by Intel SGX [47]. However, adversaries might load the
relocatable enclave image at virtual address null. We, therefore, recommend
that the first page is marked as non-executable or that a short infinite loop is
included at the base of every enclave image to effectively “trap” any transient
control flow redirections to virtual address null.

Finally, a special case is loading a stack pointer. Listing 7.3 shows a trusted
code snippet from the Intel SGX SDK [116] to restore the enclave execution
context when returning from an untrusted function.1 An attacker can interrupt
the victim code right before line 3, and revoke access rights on the trusted stack
page used by the enclave entry code. After resuming the enclave, the victim

1 Note that we also found similar, potentially exploitable gadgets in the rsp-rbp function
epilogues emitted by popular compilers such as gcc.
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1 asm_oret: ; (linux-sgx/sdk/trts/linux/trts_pic.S#L454)
2 ...
3 mov 0x58(%rsp),%rbp ; %rbp <- NULL
4 ...
5 mov %rbp,%rsp ; %rsp <- NULL
6 pop %rbp ; %rbp <- *(NULL)
7 ret ; %rip <- *(NULL+8)

Listing 7.3: LVI-NULL stack hijack gadget in Intel SGX SDK.

then page faults at line 3. However, the transient execution first continues
with a zeroed %rbp register, which eventually gets written to the %rsp stack
pointer register at line 5. Crucially, at this point, all subsequent pop and ret
transient instructions dereference the attacker-controlled memory page mapped
at virtual address null. This stack pointer zeroing primitive essentially allows
LVI-NULL attackers to setup an arbitrary fake transient “shadow stack” at
address null. We experimentally validated that this technique can furthermore
be abused to mount a full transient ROP [228] attack by chaining together
multiple subsequent pop-ret gadgets.

Applicability to non-SGX environments. LVI-NULL does not exploit any
microarchitectural properties that are specific to Intel SGX, and may apply to
other environments as well. However, we note that exploitation may be hindered
by various architectural and software-level defensive measures that are in place
to harden against well-known architectural null pointer dereference bugs. Some
Linux distributions do not allow to map virtual address zero in user space.
Furthermore, recent x86 Supervisor Mode Access Prevention (SMAP) and
Supervisor Mode Execution Prevention (SMEP) architectural features further
prohibit respectively user-space data and code pointer dereferences in kernel
mode. SMAP and SMEP have been shown to also hold in the microarchitectural
transient domain [115, 36].

7.7 LVI case studies on Intel SGX

7.7.1 Gadget in Intel’s quoting enclave

In this section, we show that exploitable LVI gadgets may occur in real-world
software. We analyze Intel’s trusted quoting enclave (QE), which has been
widely studied in previous transient-execution research [249, 39, 223] to dismantle
remote attestation guarantees in the Intel SGX ecosystem. As a result, the
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1 __intel_avx_rep_memcpy: ; libirc_2.4/efi2/libirc.a
2 ... ; P1: store to user address
3 vmovups %xmm0,-0x10(%rdi,%rcx,1)
4 ...
5 pop %r12 ; P2: load from trusted stack
6 ret

Listing 7.4: LVI gadget in SGX SDK intel_fast_memcpy used in QE.

QE trusted codebase has been thoroughly vetted and hardened against all
known Meltdown-type and Spectre-type attacks by manually inserting lfence
instructions after potentially mispredicted branches, as well as flushing leaky
microarchitectural buffers on every enclave entry and exit.

Gadget description. We started from the observation that most LVI variants
first require a P1 load-store gadget with an attacker-controlled address and
data, followed by a faulting or assisted P2 load that picks up the poisoned data.
Similar to the edger8r gadget discussed in Section 7.6.2, we therefore focused
our manual code review on pointer arguments which are passed to copy input
and output data via untrusted memory outside the enclave [254]. Particularly,
we found that QE securely verifies that the output pointer to hold the resulting
quote falls outside the enclave while leaving the base address in unprotected
memory under attacker control. An Intel SGX quote is composed of various
metadata fields, followed by the asymmetric signature (cf. Appendix E.2). After
computing the signature, but before erasing the EPID private key from enclave
memory, QE invokes memcpy to copy the corresponding quote metadata fields
from trusted stack memory to the output buffer outside the enclave. Crucially,
we found that as part of the last metadata fields, a 64-byte attacker-controlled
report_data value is written to the attacker-provided output pointer.

We reverse engineered the proprietary intel_fast_memcpy function used in
QE and found that in this case, the quote is outputted using 128-bit vector
instructions. Listing 7.4 provides the corresponding assembly code snippet,
where the final 128-bit store at line 3 (including 12 bytes of attacker data)
is closely followed by a pop and ret instruction sequence at lines 5-6 when
returning from the memcpy invocation. This forms an exploitable LVI-SB
transient control-flow hijacking gadget: the vmovups instruction (P1) first fills
the store buffer with user data at a user-controlled page offset aligned with
the return address on the enclave stack, and closely afterwards the faulting or
assisted ret instruction (P2) incorrectly picks up the poisoned user data. The
attacker now succeeded to redirect transient control flow to an arbitrary P3
gadget address in the enclave code, which may subsequently lead to QE private
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key disclosure [39]. Note that when transiently executing the P3 gadget, the
attacker also controls the value of the %r12 register popped at line 5 (which
can be injected via the prior stores similarly to the return address). We further
remark that Listing 7.4 is not limited to LVI-SB, since the store data may also
have been committed from the store buffer to the L1 cache and subsequently
picked up using LVI-L1D.

The Intel SGX SDK [116] randomizes the 11 least significant bits of the stack
pointer on enclave entry. However, as return addresses are aligned, the entropy
is only 7 bits, resulting on average in a correct alignment in 1 out of every 128
enclave entries when fixing the store address in P1.

Experimental results. We validate the exploitability and success rate of the
above assembly code using a benchmark enclave on an i7-8650U with the latest
microcode 0xb4. We inject both the return address and the value popped into
%r12 via the store buffer. For P3, we can use the poisoned value in %r12 to
transmit data over an address outside the enclave. We ensure that the code in
Listing 7.4 is page aligned to interrupt the victim enclave using a controlled-
channel attack [277]. Before resuming the victim, we clear the user-accessible
bit for the enclave stack. Additionally, to extend the transient window, we
inserted a memory access which misses the cache before line 3.

In the first experiment, we disable stack randomization in the victim enclave
to reliably quantify the success rate of the attack in the ideal case. LVI works
very reliably, picking up the injected values 99 453 times out of 100 000 runs.
With on average 9090 tries per second, we achieve an error-free transmission
rate of 9.04 kB/s for our disclosure gadget.

In the second experiment, we simulate the full attack environment including
stack randomization. As expected, the success rate drops by an average factor
of 128. The injected return address is picked up 776 times out of 100 000
runs, leading to a transmission rate of 70.54 B/s. We did not reproduce this
attack against Intel’s officially signed quoting enclave, as we found it especially
challenging to debug the attack for production QE binaries and to locate P3
gadgets that fit within the limited transient window without excessive TLB
misses. However, we believe that our experiments showcased all the required
primitives to break Intel SGX’s remote attestation guarantees, as demonstrated
before by SGXPectre [39] and Foreshadow [249]. In response to our findings,
Intel will harden all architectural enclaves with full LVI software mitigations
(cf. Section 7.9) so as to restore trust and initiate TCB recovery for the SGX
ecosystem [122].
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7.7.2 Transient fault attack on AES-NI

In this case study, we show that LVI-NULL can be exploited to perform a
cryptographic fault attack [241, 188] on Intel’s constant-time AES-NI hardware
extension. We exploit that a privileged SGX attacker can induce faulty all-zero
round keys into the transient data stream of a minimal AES-NI enclave. After
the fault, the output of the decryption carries a faulty plaintext in the transient
domain. To simplify the attack, we consider a known-ciphertext scenario and we
assume a side channel in the post-processing which allows to recover the faulty
decryption output from the transient domain. Note that prior research [261] on
Spectre-type attacks has shown that transient execution may fit a significant
number of AES-NI decryptions (over 100 rounds on modern Intel processors).

Intel AES-NI [90] is implemented as an x86 vector extension. The aesdec and
aesdeclast instructions perform one round of AES on a 128-bit register using
the round key provided in the first register operand. Round keys are stored
in trusted memory and, depending on the available registers and the AES-NI
software implementation, the key schedule is either preloaded or consulted at
the start of each round. In our case study, we assume that round keys are
securely fetched from trusted enclave memory before each aesdec instruction.

Attack outline. Figure 7.7 illustrates the different phases in our transient fault
injection attack on AES-NI:

1. We use SGX-Step [257] to precisely interrupt the victim enclave after
executing only the initial round of AES.

2. The root attacker clears the user-accessible bit on the memory page
containing the round keys.

3. The attacker resumes the enclave, leading to a page fault when loading
the next round keys from trusted memory. We abuse theses faulting load
as P2 gadgets which transiently forward dummy (all-zero) round keys
to the remaining aesdec instructions. Note that we do not need a P1
gadget, as the CPU itself is responsible for zero-injection.

4. Finally, we use a P3 disclosure gadget after the decryption.

By forcing all but the first AES round key to zero, our attack essentially causes
the victim enclave to compute a round-reduced AES in the transient domain.
To recover the first round key, and hence the full AES key, the attacker can
simply feed the faulty output plaintext recovered from the transient domain
to an inverse AES function with all keys set to zero. This results in an output
that holds the secret AES first round key, xor-ed with the (known) ciphertext.
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movdqu						(%rdx),	%xmm0
movdqu						(%rcx),	%xmm4
add													$0x10,	%rdx
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aesdec									%xmm4,	%xmm0
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movdqu						0xa0(%rcx),	%xmm4
aesdeclast			%xmm4,	%xmm0
movdqu						%xmm0,	-0x10(%r8,%rdx,1)	
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Figure 7.7: Overview of the AES-NI fault attack: (1) the victim architecturally
executes the initial AES round, which xors the input with round key 0; (2) access
rights on the memory page holding the key schedule are revoked; (3) upon the next
key access (P2), the enclave suffers a page fault, causing the CPU to transiently
execute the next 10 AES rounds with zeroed round keys; (4) finally the faulty output
is encoded (P3) through a cache-based side channel.

Experimental results. We run the attack for 100 different AES keys on a Core
i9-9900K with RDCL_NO and the latest microcode 0xae. For each experiment, we
run the attack to recover 10 candidates for each byte of the faulty output. On
average, each recovered key candidate matches the expected faulty output 83 %
of the time. Using majority vote for the 10 candidates, we recover the correct
output for an average of 15.61 out of 16 bytes of the AES block, indicating that
the output matches the attack model with 97 % accuracy. The attack takes on
average 25.94 s (including enclave creation time) and requires 246 707 executions
of the AES function.

For post-processing, we modified an AES implementation to zero out the round
keys after the first round. We successfully recovered the secret round-zero key
using any of the recovered faulty plaintext outputs to the inverse encryption
function.

7.8 LVI in other contexts

7.8.1 User-to-kernel

The main challenge in a user-to-kernel LVI attack scenario is to provoke faulting
or assisted loads during kernel execution. As any application, the kernel may
encounter page faults or microcode assists, e.g., due to demand paging via the
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extended page tables setup by the hypervisor, or when swapping out supervisor
heap memory pages in the Windows kernel [213]. We do not investigate the
more straightforward scenario where the kernel encounters a page fault when
accessing a user-space address, as in this case the user already architecturally
controls the value read by the kernel.

Experimental setup. We focus on exploiting LVI-SB via microcode assists for
setting the accessed bit in supervisor PTEs. In our case study, we execute the
P1 poisoning phase directly in user space by abusing that current microcode
mitigations only flush the store buffer on kernel exit to prevent leakage [35,
108]. As the store buffer is not drained on kernel entry, it can be filled with
attacker-chosen values by writing to arbitrary user-accessible addresses before
performing the system call. Note that, alternatively, the store buffer could also
be filled during kernel execution by abusing a selected P1 gadget, similar to
our SGX attacks.

In the P2 phase, the attacker needs to trigger a faulting or assisted load micro-op
in the kernel. In our proof-of-concept, we assume that the targeted supervisor
page is swappable, as is the case for Windows kernel heap objects [213], but
to the best of our knowledge not for the Linux kernel. In order to repeatedly
execute the same experiment and assess the overall success rate, we simulate
the workings of the page-replacement algorithm by means of a small kernel
module, which artificially clears the accessed bit on the targeted kernel page.

As we only want to demonstrate the building blocks of the attack, we did
not actively look for real-world gadgets in the kernel. For our evaluation, we
manually added a simple P3 disclosure gadget, which, similar to a Spectre
gadget, indexes a shared memory region based on a previously loaded value as
follows: array[(*kernel_pt) * 4096]. In case the trusted load on kernel_pt
requires a microcode assist, the value written by the user-space attacker will be
transiently injected from the store buffer and subsequently encoded into the
CPU cache.

Experimental results. We evaluated LVI-SB on an Intel Core i7-8650U with
Linux kernel 5.0. On average, 1 out of every 7739 (n = 100 000) assisted
loads in the kernel use the injected value from the store buffer instead of the
architecturally correct value. For our non-optimized proof-of-concept, this
results on average in a successfully injected value into the kernel execution
every 6.5 s. One of the reasons for this low success rate is the context switch
between P1 and P2, which reduces the probability that the attacker’s value
is still outstanding in the store buffer [35]. We verified this by evaluating the
injection rate without a context switch, i.e., if the store buffer is poisoned via a
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suitable P1 gadget in the kernel. In this case, on average, 1 out of every 8 (n =
100 000) assisted loads in the kernel use the injected value.

7.8.2 Cross-process

We now demonstrate how LVI-LFB may inject poisoned data from a concurrently
running attacker process.

Experimental setup. For the poisoning phase P1, we assume that the attacker
and the victim are co-located on the same physical CPU core [223, 216, 249].
The attacker directly poisons the line-fill buffer by writing or reading values to
or from the memory subsystem. To ensure that the values travel through the
fill buffer, the attacker simply flushes the accessed values using the unprivileged
cflflush instruction. In case SMT is disabled, the adversary would have to find
a suitable P1 gadget that processes untrusted, attacker-controlled arguments in
the victim code, similar to our SGX attacks.

In our proof-of-concept, the victim application loads a value from a trusted
shared-memory location, e.g., a shared library. As shown by Schwarz et al. [223],
Windows periodically clears the PTE accessed bit, which may cause microcode
assists for trusted loads in the victim process. The attacker flushes the targeted
shared-memory location from the cache, again using clflush, to ensure that the
victim’s assisted load P2 forwards incorrect values from the line-fill buffer [223,
216] instead of the trusted shared-memory content.

Experimental results. We evaluated the success rate of the attack on an Intel
i7-8650U with Linux kernel 5.0. We used the same software construct as in the
kernel attack for the transmission phase P3. Both attacker and victim run on
the same physical core but different logical cores. On average, 1 out of 101 (n
= 100 000) assisted loads uses the value injected by the attacker, resulting in
an injection probability of nearly 1 %. With on average 1122 tries per second,
we achieve a transmission rate of 11.11 B/s for our disclosure gadget.

7.9 Discussion and mitigations

In this section, we discuss both long-term silicon mitigations to rule out LVI at
the processor design level, as well as compiler-based software workarounds that
need to be deployed on the short-term to mitigate LVI on existing systems.
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7.9.1 Eradicating LVI at the hardware design level

The root cause of LVI needs to be ultimately addressed through silicon-level
design changes in future processors. Particularly, to rule out LVI, the hardware
has to ensure that no illegal data flows from faulting or assisted load micro-
ops exist at the microarchitectural level. That is, no transient computations
depending on a faulting or assisted instruction are allowed. We believe this is
already the behavior in certain ARM and AMD processors, where a faulting
load does not forward any data [13]. Notably, we showed in Section 7.6.3 that
it does not suffice to merely zero out the forwarded value, as is the case in the
latest generation of acclaimed Meltdown-resistant Intel processors enumerating
RDCL_NO [128].

7.9.2 A generic software workaround

Silicon-level design changes take considerable time, and at least for SGX enclaves
a short-term solution is needed to mitigate LVI on current, widely deployed
systems. In contrast to previous Meltdown-type attacks, merely flushing
microarchitectural buffers before or after victim execution is not sufficient
to defend against our novel, gadget-based LVI attack techniques. Instead, we
propose a software-based mitigation approach which inserts explicit lfence
speculation barriers to serialize the processor pipeline after every vulnerable
load instruction. The lfence instruction is guaranteed by Intel to halt transient
execution until all prior instructions have completed [128]. Hence, inserting an
lfence after every potentially faulting or assisted load micro-op guarantees that
the value forwarded from the load operation is not an injected value but the
architecturally correct one. Relating to the general attack scheme of Fig. 7.3,
we introduce an lfence instruction in between phases P2 and P3 to inhibit any
incorrect transient forwarding by the processor. Crucially, in contrast to existing
Spectre-PHT compiler mitigations [128, 36] which only insert lfence barriers
after potentially mispredicted conditional jump instructions, fully mitigating
LVI requires stalling the processor pipeline after potentially every explicit as
well as implicit memory-load operation.

Explicit memory loads, i.e., instructions with a memory address as input
parameter, can be protected straightforwardly. A compiler, or even a binary
rewriter [53], can add an lfence instruction to ensure that any dependent
operations can only be executed after the load instruction has successfully
retired. However, some x86 instructions also include implicit memory load
micro-ops which cannot be mitigated in this way. For instance, indirect branches
and the ret instruction load an address from the stack and immediately redirect
control flow to the loaded, possibly injected value. As the faulting or assisted
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Table 7.2: Indirect branch instruction emulations needed to prevent LVI and whether
or not they require a scratch register which can be clobbered.

Instruction Possible emulation Clobber-free

ret pop %reg; lfence; jmp *%reg 7
ret not (%rsp); not (%rsp); lfence; ret 3

jmp (mem) mov (mem),%reg; lfence; jmp *%reg 7
call (mem) mov (mem),%reg; lfence; call *%reg 7

load micro-op in this case forms part of a larger ISA-level instruction, there is
no possibility to add an lfence barrier between the memory load (P2) and the
control-flow redirection (P3). Table 7.2 shows how indirect branch instructions
have to be blacklisted and emulated through an equivalent sequence of two or
more instructions, including an lfence after the formerly implicit memory load.
Notably, as some of these emulation sequences clobber scratch registers, LVI
mitigations for indirect branches cannot be trivially implemented using binary
rewriting techniques and should preferably be implemented in the compiler
back-end, before the register allocation stage.

Evaluation of our prototype solution. We initially implemented a prototypical
compiler mitigation using LLVM [164] (8.3.0) and applied it to a recent
OpenSSL [199] version (1.1.1d) with default configuration. We chose OpenSSL
as it serves as the base of the official Intel SGX-SSL library [121] allowing to
approximate the expected performance impact of the proposed mitigations.
Our proof-of-concept mitigation tool allows to augment the building process of
arbitrary C code by first instrumenting the compiler to emit LLVM intermediate
code, adding the necessary lfence instructions after every explicit memory
load, and finally proceeding to compile the modified file to an executable.
Our prototype tool cannot mitigate loads which are not visible at the LLVM
intermediate representation, e.g., the x86 back-end may introduce loads for
registers spilled onto the stack after register allocation. To deal with assembly
source files, our tool introduces an lfence after every mov operating on memory
addresses. Our prototype does not mitigate all types of indirect branches, but
can optionally replace ret instructions with the proposed emulation code, where
%r11 is used as a caller-save register that can be clobbered.

To measure the performance impact of the introduced lfence instructions and
the ret emulation, we recorded the average throughput (n = 10) of various
cryptographic primitives using OpenSSL’s speed tool on an isolated core on
an Intel i7-6700K. As shown in Fig. 7.8, the performance overhead reaches
from a minimum of 0.91 % for a partial mitigation which only rewrites ret
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Figure 7.8: Performance overhead of our LLVM-based prototype (fence loads + ret
vs. ret-only) for OpenSSL on an Intel i7-6700K CPU.

instructions to a maximum of 978.13 % for the full mitigation including ret
emulation and load serialization. Note that for real-world deployment, the
placement of lfence instructions should be evaluated for completeness and
more optimized than in our prototype implementation. Still, our evaluation
serves as an approximation of the expected performance impact of the proposed
mitigations.

Evaluation of Intel’s proposed mitigations. To further evaluate the overheads
of more mature, production-quality implementations, we were provided with
access to Intel’s current compiler-based mitigation infrastructure. Hardening of
existing code bases is facilitated by a generic post-compilation script that uses
regular expressions to insert an lfence after every x86 instruction that has a
load micro-op. Working exclusively at the assembly level, the script is inherently
compiler-agnostic and can hence only make use of indirect branch emulation
instruction sequences that do not clobber registers. In general, it is therefore
recommended to first decompose indirect branches from memory using existing
Spectre-BTB mitigations [126]. As not all code respects calling conventions, ret
instructions are by default replaced with a clobber-free emulation sequence which
first tests the return address, before serializing the processor pipeline and issuing
the ret (cf. Table 7.2). We want to note that this emulation sequence still allows
privileged LVI adversaries to provoke a fault or assist on the return address
when leveraging a single-stepping framework like SGX-Step [257] to precisely
interrupt and resume the victim enclave after the lfence and before the final
ret. However, we expect that in such a case the length of the transient window
would be severely restricted as eresume appears to be a serializing instruction
itself [114]. Furthermore, as recent microcode flushes microarchitectural buffers
on enclave entry, the poisoning phase would be limited to LVI-NULL. Any
inadvertent transient control-flow redirections to virtual address null can be
mitigated by marking the first enclave page as non-executable (cf. Section 7.6.3).
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Figure 7.9: Performance overhead of Intel’s mitigations for non-optimized assembler
gcc (fence loads + ret) and optimized clang (fence loads + indirect branch + ret vs.
ret-only) for OpenSSL on an Intel i7-6700K CPU.

Intel furthermore developed an optimized LVI mitigation pass for LLVM-based
compilers. The pass operates at the LLVM intermediate representation and
uses a constraint solver from integer programming to optimally insert lfence
instructions along all paths in the control-flow graph from a load (P2) to
a transmission (P3) gadget [21, 110]. As the pass operates at the LLVM
intermediate representation, any additional loads introduced by the x86 back-
end are not mitigated. We expect such implicit loads from e.g., registers that
were previously spilled onto the stack to be difficult to exploit in practice, but
we leave further security evaluation of the mitigations as future work. The
pass also replaces indirect branches, and ret instructions are eliminated in an
additional machine pass using a caller-save clobber register.

Figure 7.9 provides the OpenSSL evaluation for the Intel mitigations (n = 10).
The unoptimized gcc post-compilation full mitigation assembly script for fencing
all loads and ret instructions clearly incurs the highest overheads from 352.51 %
to 1868.15 %, which is slightly worse than our own (incomplete) LLVM-based
prototype. For the OpenSSL experiments, Intel’s optimized clang LLVM
mitigation pass for fencing loads, conditional branches, and ret instructions
generally reduces overheads within the same order of magnitude, but more
significantly in the AES case. Lastly, in line with our own prototype evaluation,
smaller overheads from 2.52 % to 86.23 % are expected for a partial mitigation
strategy which patches only ret instructions while leaving other loads and
indirect branches potentially exposed to LVI attackers.

Finally, to assess expected overheads in larger and more varied applications,
we evaluated Intel’s mitigations on the SPEC2017 intspeed benchmark suite.
Fig. 7.10 provides the results as executed on an isolated core on a i9-9900K
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Figure 7.10: Performance overhead of Intel’s mitigations for non-optimized assembler
gcc (fence loads + ret) and optimized clang (fence loads + indirect branch + ret vs.
ret-only) for SPEC2017 on an Intel i9-9900K CPU.

CPU, running Linux 4.18.0 with Ubuntu 18.10 (n = 3).2 One clear trend is that
Intel’s optimized LLVM mitigation pass outperforms the naive post-compilation
assembly script.

7.10 Outlook and future work

We believe that our work presents interesting opportunities for developing more
efficient compiler mitigations and software hardening techniques for current,
widely deployed systems.

7.10.1 Implications for transient-execution research

LVI again illustrates the constant race between attackers and defenders. With
LVI, we introduced an advanced attack technique that bypasses existing software
and hardware defenses. While potentially harder to exploit than previous
Meltdown-type attacks, LVI shows that Meltdown-type incorrect transient
forwarding effects are not as easy to fix as expected [162, 36, 278]. The main
insight with LVI is that transient-execution attacks, as well as side-channel
attacks, have to be considered from two viewpoints: observing and injecting
data. It is not sufficient to only mitigate data leakage direction, as it was done
so far, and the injection angle also needs to be considered. Hence, in addition
to flushing microarchitectural buffers on context switch [108, 107], additional
mitigations are required. We believe that our work has a substantial influence on

2 Note that we had to exclude the 648.exchange2_s benchmark program as it is written
in Fortran and hence not supported by the mitigation tools.
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future transient-execution attacks as new discoveries of Meltdown-type effects
now need to be studied in both directions.

Although the most realistic LVI attack scenarios are secure enclaves such as
Intel SGX, we demonstrated that none of the ingredients for LVI are unique to
SGX and other environments can possibly be attacked similarly. We encourage
future attack research to further investigate improved LVI gadget discovery and
exploitation techniques in non-SGX settings, e.g., cross-process and sandboxed
environments [146, 167].

An important insight for silicon mitigations is that merely zeroing out unintended
data flow is insufficient to protect against LVI adversaries. At the compiler
level, we expect that advanced static analysis techniques may further improve
the extensive performance overheads of current lfence-based mitigations (cf.
Section 7.9.2). Particularly, for non-control-flow hijacking gadgets, it would be
desirable to serialize only those loads that are closely followed by an exploitable
P3 gadget for side-channel transmission.

7.10.2 Raising the bar for LVI exploitation

While not completely eliminated, our analysis in Section 7.6 and Appendix E.1
revealed that the LVI attack surface may be greatly reduced by certain system-
level software measures in non-SGX environments. For instance, the correct
sanitization of user-space pointers and the use of x86 SMAP and SMEP features
in commodity OS kernels may greatly reduce the possible LVI gadget space.
Furthermore, we found that certain software mitigations, which were deployed
to prevent Meltdown-type data leakages, also unintentionally thwart their LVI
counterparts, e.g., eager FPU switching [234] and PTE inversion [46]. LVI can
also be inhibited by preventing victim loads from triggering exceptions and
microcode assists. However, this may come with significant changes in system
software, as e.g., PTE accessed and dirty bits must not be cleared anymore,
and kernel pages must not be swapped anymore. Although such changes are
possible for the OS, they are not possible for SGX, as the attacker is in control
of the page tables.

As described in Section 7.9.2, Intel SGX enclaves require extensive compiler
mitigations to fully defend against LVI. However, we also advocate architectural
changes in the SGX design which may further help raising the bar for LVI
exploitation. LVI is, for instance, facilitated by the fact that SGX enclaves
share certain microarchitectural elements, such as the cache, with their host
application [47, 181, 225]. Furthermore, enclaves can directly operate on
untrusted memory locations passed as pointers in the shared address space [219,
254]. As a generic software hardening measure, we suggest that pointer
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sanitization logic [254] further restricts the attacker’s control over page offset
address bits for unprotected input and output buffers. To inhibit transient
null-pointer dereferences in LVI-NULL exploits, we propose that microcode
marks the memory page at virtual address zero as uncacheable [222, 26, 239].
Similarly, LVI-L1D could be somewhat restricted by terminating the enclave or
disabling SGX altogether upon detecting a rogue PPN in the EPCM microcode
checks, which can only indicate a malicious or buggy OS.

7.11 Conclusion

We presented Load Value Injection (LVI), a novel class of attack techniques
allowing the direct injection of attacker data into a victim’s transient data
stream. LVI complements the transient-execution research landscape by
turning around Meltdown-type data leakage into data injection. Our findings
challenge prior views that, unlike Spectre, Meltdown threats could be eradicated
straightforwardly at the operating system or hardware levels and ultimately
show that future Meltdown-type attack research must also consider the injection
angle.

Our proof-of-concept attacks against Intel SGX enclaves and other environments
show that LVI gadgets exist and may be exploited. Existing Meltdown and
Spectre defenses are orthogonal to and do not impede our novel attack techniques,
such that LVI necessitates drastic changes at the compiler level. Fully mitigating
LVI requires including lfences after possibly every memory load, as well as
blacklisting indirect jumps, including the ubiquitous x86 ret instruction. We
observe extensive slowdowns of factor 2 to 19 for our prototype evaluation of this
countermeasure. LVI demands research on more efficient and forward-looking
mitigations on both the hardware and software levels.



Chapter 8

Conclusion

“As the level of program gets lower, these bugs will be
harder and harder to detect. A well installed microcode
bug will be almost impossible to detect.”

— Ken Thompson (ACM Turing award lecture, 1984)

The need for hardware trust anchors to establish software security is universal.
Recently, hardware-based Trusted Execution Environments (TEEs), such as
Intel’s Software Guard Extensions (SGX), have been developed as a promising
new security paradigm to isolate enclaved software components directly in the
processor, without having to trust the underlying operating system or hypervisor.
This dissertation developed several innovative attack techniques that nuance
the trust placed in TEEs in general and Intel SGX in particular.

Our research outcomes do not stand in a vacuum, but form part of a wider
landscape of SGX attacks that unfolded in synergy with this PhD trajectory.
We, therefore, conclude this dissertation by summarizing our results and placing
them in the wider perspective of the contemporary TEE attack scene. Building
upon the insights gained from the past five years of SGX attacks, this chapter
then proceeds to look forward by formulating recommendations for future
research and overviewing possible defense avenues and pitfalls for the next
generation of fortified TEE designs.

227
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8.1 Summary of contributions

In this thesis, we researched security limitations of TEE protection and asked
which new attack vectors can be exploited by privileged adversaries. From
our work, we conclude that the isolation offered by TEEs is relative and that
several misconceptions existed about developing intrinsically secure enclave
applications and protecting against privileged side-channel attacks.

First, in Chapter 2, we showed that the enclave software itself remains fully
trusted. Our analysis uncovered a wide and reoccurring vulnerability landscape
in real-world TEE runtime libraries, which hold the crucial responsibility of
maintaining a secure bridge between the enclave and its untrusted environment.
From this work, we conclude that the enclave interface forms a large attack
surface and needs to be methodologically vetted to protect against various kinds
of memory corruptions and side-channel leakages. We furthermore showed that
the privileged adversary’s control over the untrusted operating system offers
a substantial advantage to reliably exploit such subtle interface sanitization
oversights in practice.

Next, we changed focus from software to the underlying processor architecture,
by developing a line of innovative side-channel attack techniques that leverage
the privileged adversary’s first-rate control over hardware-software interfaces.
These attacks show that even if the processor safeguards confidentiality and
integrity of enclave memory directly, enclaved execution is not completely
opaque and various kinds of metadata, such as code and data access patterns,
can still be reconstructed through side-channel analysis. Centering on the
state-of-the-art Intel SGX [14, 176] TEE as a relevant case-study architecture
shipped in recent Intel processors, we showed that several traditionally privileged
x86 processor interfaces can be reliably abused to mount new and unexpected
types of side-channel attacks. In Chapter 3, we exploited the adversary’s
control over untrusted page-table memory to design stealthy attack variants
that can accurately reconstruct enclave memory accesses at a 4KiB spatial
granularity without provoking page faults. This work illustrates the security
implications of traversing page tables in untrusted memory, even if the address
translation result is afterwards verified, and defeats any defenses that are based
on merely detecting page-fault events. In Chapter 4, we presented the SGX-Step
framework which delegates traditionally privileged operating system powers to
user space via a small kernel driver and a practical attack library. This work
includes a novel APIC timer manipulation that allows to drastically increase
the temporal resolution of enclave side-channel attacks. With SGX-Step we
permanently refined the TEE threat landscape and enabled a new line of
extremely high-resolution SGX attacks [91, 249, 256, 223, 254, 182, 6, 105,
251, 208] by showing that enclaves can be precisely interrupted exactly one
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instruction at a time. Finally, Chapter 5 presented a particular high-resolution
attack, named Nemesis, which shows that carefully timed interrupts not only
improve the temporal resolution of existing attacks, but also in themselves
induce subtle microarchitectural timing leakage in the processor pipeline.

In the final chapters of this dissertation, we moved from execution metadata
leakage to direct data extraction, i.e., from side channels to transient-execution
attacks. This work highlights that the processor itself remains trusted and
that subtle oversights in the underlying microarchitectural pipeline design can
undermine all of the TEE’s pursued security guarantees. With Foreshadow,
presented in Chapter 6, we revisited privileged page-table manipulations and
contributed a novel attack technique to leak plaintext enclave secrets from the
CPU cache. By extracting long-term, private attestation keys from Intel’s
architectural enclaves, we for the first time decisively dismantled security
guarantees in the SGX ecosystem. This research led to Trusted Computing
Base (TCB) recovery through microcode patches for existing processors, as well
as silicon-level changes in the newest generations of Intel processors. With Load
Value Injection (LVI), presented in Chapter 7, we highlighted the inadequacy of
existing microcode and silicon mitigations by contributing innovative, gadget-
driven reverse exploitation techniques for prior microarchitectural data leakage
sources. Our findings challenge prior views that, unlike Spectre, Meltdown-
type threats could be eradicated straightforwardly at the operating system or
hardware levels [36, 278]. Instead, LVI necessitates improved silicon-level
changes in future processors and SGX TCB recovery for current, widely
deployed CPUs. In response to our findings, Intel developed extensive compiler
mitigations that incur substantive slowdowns by serializing the processor pipeline
after potentially every memory load operation, and rewriting ubiquitous x86
instructions, including ret.

8.2 Systematizing the SGX attack landscape

Following the launch of Intel SGX in 2015, several researchers have explored
security limitations of this new enclave technology. This section overviews the
past five years of SGX attacks with an explicit focus on the central theme of
this thesis, i.e., the increased advantages for privileged adversaries.

Table 8.1 summarizes the SGX attack scene by listing the different techniques
that have been leveraged to extract secrets from enclaves, along with a
characterization of the privileged x86 features they abuse plus any additional
constraints they might have. In Sections 8.2.1 to 8.2.4, we first perform a vertical
reading of this table by overviewing the different attack techniques and leakage
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Table 8.1: Characterization of demonstrated SGX attacks in terms of the privileged
x86 processor interfaces they abuse (left to right: page table, global descriptor table,
interrupts, model-specific registers, control registers, performance-monitoring counters).
Additional constraints (simultaneous multithreading, repetitions, shared address space)
and the offered spatial resolution for side-channel observations are indicated on the
right. Symbols indicate whether a feature is required ( ) or optional (G#). Attacks
contributed to over the course of this PhD are indicated in the highlighted rows.

Attack
Properties x86 Interface Constraints

PT
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GD

T
IRQ MSR CR

0
PM

C
SM

T
RE
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SA

S
Granular

µ
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rc
h
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nt

en
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on Cache priming [181, 92, 29, 225, 79] G# # G# G# # G# G#  # 64B
Branch prediction [156, 59, 105] G# # G# G# G# G# G#  # Inst
DRAM row buffer conflicts [263] # # # G# G# # #  # 1-8KiB
False dependencies [180] # # # G# # #   # 4B
Interrupt latency [256, 95, 208] G# #  G# # # #  # Inst
Port contention [7] # # # G# # #   # µ-op

C
on

tr
ol

ch
an

ne
l Page faults [277]  # # # # # # # # 4KiB

Page table A/D [258, 263]  # G# # G# # G# # # 4KiB
Page table flushing [258]  # G# # # # G# # # 32KiB
Interrupt counting [182]  #  # # # # # # Inst
IA32 segmentation faults [91] G#  G# # # # # # # 1B-4KiB
Alignment faults [254] # #  #  # # # # 1B

Tr
an

si
en

t Foreshadow L1D extraction [249]  # G# # # # G# # # –
Data sampling [223, 216, 211]  # G# # # # G# G# # –
Spectre [39, 148] G# # G# # # # G# G# G# –
Load value injection [251]  # G# # # # G# G# G# –

In
te

rf
ac

e Memory safety [254, 154, 24, 266] G# # G# # # # # G# G# –
Undervolting [188, 137, 210] G# # G#  # # G#  G# –
Off-chip memory address bus [152]  # G# # G# # # # # 64B

sources. Then, in Section 8.2.5, we proceed horizontally to identify tendencies
across the spectrum and to draw conclusions that can lead to important insights
for possible defenses.

8.2.1 Microarchitectural contention side-channel attacks

A first category of attacks observes that, although Intel SGX enclaves are strictly
isolated at the architectural level, they still share various microarchitectural
elements with untrusted, potentially malicious code executing on the same
platform. Microarchitectural contention arises whenever these resources are
competitively shared during enclave execution or not flushed on enclave exit.
By competing for the same resources as the victim enclave, attackers can cause



SYSTEMATIZING THE SGX ATTACK LANDSCAPE 231

measurable timing differences in their own or the victim’s execution, allowing to
infer enclave-private control flow decisions or data access patterns with varying
degrees of granularity. In general, such microarchitectural timing side-channel
attacks have been recognized for decades already, and many of the specific
leakage sources were known before SGX [71, 133, 47]. Attack research in
this category has, therefore, mainly focused on demonstrating the increased
advantage of privileged adversaries by either exploiting previously known leakage
sources with significantly less noise and higher resolution, or devising innovative
new types of contention that are specific to enclave attackers.

CPU cache. Since the public release of Intel SGX, several researchers [181, 92,
29, 225, 79] have demonstrated efficient Prime+Probe cache timing attacks
that can accurately reconstruct enclave memory accesses at a 64-byte cache
line granularity. These attacks exploit contention in either the shared CPU
caches or off-core DRAM row buffers [204, 263]. Notably, one work [225] has
shown that privileged adversary capabilities are not a strict requirement for
Prime+Probe attacks on SGX, and effective last-level cache timing attacks
can even be mounted from one unprivileged user-space enclave to another.

In the context of SGX-based Prime+Probe cache attacks, all other works [181,
92, 29, 79] have focused on a root adversary model and have developed several
techniques to construct more accurate leakage. First, all these attacks reduce
noise by instructing the operating system scheduler to pin the victim enclave to
an isolated CPU core and possibly fix the clock by disabling dynamic frequency
scaling features like TurboBoost through the processor’s Model Specific Register
(MSR) interface. Second, some attacks [92, 263] optionally disable the hardware
prefetcher in the BIOS or through MSRs. Third, a subset of cache attacks [181,
92] abuses frequent enclave preemptions through a combination of page faults
and APIC timer interrupts to sample the enclave’s cache footprint at an improved
temporal resolution. This technique has been demonstrated to defeat traditional
side-channel hardening techniques, like software prefetching [181], and has
furthermore been used to attack Intel’s architectural quoting enclave which
was vulnerable due to a non-constant-time cryptographic implementation [50].
Ultimately, using the SGX-Step [257] framework, such interrupt-driven cache
attacks can achieve a maximal temporal resolution by probing the cache after
every single instruction. Fourth, a perpendicular line of work [29, 79] has
explored the opposite direction by developing stealthy cache attacks that proceed
without interrupting the victim enclave at all, thereby defeating defenses [42, 229]
that are based on detecting frequent enclave preemptions. These attacks exploit
that the L1D cache is shared among logical CPUs and Prime+Probe-style
contention can be induced in parallel to the victim enclave’s execution using
Simultaneous Multithreading (SMT) technology. Furthermore, to eliminate
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timing noise in the probing phase and to increase the overall accuracy of the
attack, Performance Monitoring Counters (PMCs) can be abused as a privileged
x86 processor interface to deterministically measure cache evictions in the
unprotected code [29, 79].

Branch prediction. As a second important leakage source, several studies have
exploited contention in the processor’s Branch Target Buffer (BTB) [156] and
directional branch predictors [59, 105] to spy on enclave-private control flow.
These works essentially follow the general principle of the above Prime+Probe
cache attacks by first forcing the internal branch predictor history buffer in a
known state, before entering the enclave, and afterwards measuring a dedicated
shadow branch in unprotected code so as to establish whether the secret-
dependent victim branch in the enclave was executed or not. Importantly,
unlike memory access side channels which are limited to a cache line granularity,
branch shadowing attacks can leak control flow at the level of individual branch
instructions, i.e., basic blocks.

In the specific context of Intel SGX, several privileged adversary capabilities
have been abused to improve the accuracy of branch prediction attacks. First,
Lee et al. [156] mount a high-resolution BTB attack against SGX enclaves
by similarly abusing page faults and APIC timer interrupts to interleave
the unprotected branch shadowing code. Bluethunder [105] further uses
SGX-Step to sample the directional branch predictor at a maximal temporal
resolution, thereby improving the previously demonstrated BranchScope [59]
attack. Second, all of these attacks abuse x86 performance-monitoring counters,
including the last-branch record, to sample the unprotected shadow branches
more precisely. As a third feature, Lee et al. [156] furthermore abuse the
privileged CR0 x86 control register to disable the CPU cache and slow down
the victim enclave. Finally, it has been recognized that branch prediction
attacks can also take place in an SMT setting when the indirect and directional
predictor buffers are not partitioned across sibling cores [156, 59, 105].

CPU pipeline. Apart from amplifying conventional side channels, SGX attack
research has also revealed new and unexpected sub-cache level leakage sources
that arise from contention in the CPU pipeline itself. Chapter 5 presented our
work on Nemesis which showed that, while single-stepping, the response time to
service an interrupt may reveal which instruction is being executed in the enclave.
Nemesis can be leveraged to derive several fine-grained microarchitectural
properties, including instruction type, operand values, page-table walks, and
cache misses. Concurrent to and independent from our work, He et al. [95]
presented a coarse-grained covert channel based on interrupt latency correlations
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paging unit SGX checks

page fault (#PF)

logical address physical address

Figure 8.1: By provoking page faults in the untrusted address translation process,
before SGX checks are applied, privileged adversaries can deterministically learn
enclave memory accesses at a 4KiB page-level granularity.

to the state of the store buffer, which has to be drained on enclave exit. More
recently, Puddu et al. [208] leveraged the Nemesis framework to study subtle
interrupt latency variations based on the alignment of enclaved store instructions.
MemJam [180] furthermore exploits selective instruction timing penalties from
false dependencies induced by an attacker-controlled SMT logical processor to
reconstruct enclave-private memory access patterns at an improved, intra-cache
line granularity. PortSmash [7] similarly exploits SMT-based contention to
establish which microarchitectural execution ports are in use during execution
of the victim enclave.

8.2.2 Controlled-channel attacks

A second attack category, referred to as controlled channels [277], observes
that enclaved execution does not only occupy hidden microarchitectural
resources, but also adheres to key architectural restrictions configured by the
untrusted operating system. Particularly, as Intel SGX enclaves are confined to
unprivileged ring-3 code [114], operating systems are free to restrict enclaved
execution in space, through virtual memory, or in time, by means of interrupts.
Microarchitectural contention attacks have abused these capabilities to amplify
existing leakage sources, whereas controlled-channel attacks show that privileged
processor interfaces can also in themselves be abused to construct new and
dangerous types of deterministic side channels.

Page tables. While Intel SGX provides strong architectural protection against
page remapping attacks [183, 97] by an untrusted operating system, several
researchers have demonstrated new types of side-channel attacks that abuse
SGX’s untrusted address translation scheme. Even before the official launch
of Intel SGX, Xu et al. [277] showed how privileged adversaries in control of
the untrusted operating system can revoke access rights on a specific enclave
code or data page and be deterministically notified by means of a page-fault
signal when the enclave next accesses that page, as illustrated in Fig. 8.1. They
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overcome the relatively coarse-grained 4KiB spatial granularity of the page-fault
channel by observing that the sequence of page faults can uniquely identify
specific points in the victim’s execution. This attack technique has proven to
be highly practical and effective, extracting full enclave secrets in a single run
and without noise [277, 230, 270]. Notably, page-fault attacks have also been
demonstrated for non-root adversaries, e.g., by registering a signal handler and
abusing Linux’s unprivileged mprotect system call [266, 249].

In Chapter 3, we contributed stealthy page-table attack techniques [258] that can
reconstruct enclave page accesses without provoking page faults. These attacks
proceed by issuing inter-processor interrupts to force Translation Lookaside
Buffer (TLB) shootdowns and querying “accessed” and “dirty” attributes or
monitoring the caching behavior of untrusted page-table memory. Wang
et al. [263] furthermore showed that TLB entries can be evicted without
interrupting the victim enclave by causing contention from a sibling SMT
logical core. SGX-Step [257], presented in Chapter 4, leverages root capabilities
to construct practical attack primitives for manipulating page-table entries
and scheduling precise timer interrupts directly from the user-space enclave
host application. Our work on CopyCat [182] finally proposes an innovative
composite attack technique that combines coarse-grained 4KiB page-table
“accessed” bit patterns with deterministic interrupt counts harvested by SGX-
Step to reconstruct control flow within a single enclave code page. Intuitively,
where page-fault sequences only capture the relative order of consecutive page
visits, CopyCat’s notion of instruction-granular page access traces enriches the
spatial resolution of the paging channel with an additional temporal dimension,
revealing the exact number of enclave instructions between consecutive page
visits. Figure 8.2 illustrates how CopyCat can deterministically reconstruct a
page-aligned branch outcome by merely counting the number of instructions
executed on the P0 code page containing the if branch, before control flow
is eventually transferred to the P1 code page containing the add function.
While traditional page-fault adversaries always observe the same fault sequence
(P0, P1), independent of the secret, CopyCat’s interrupt counting technique
results in distinguishable page access traces (P0, P0, P1) vs. (P0, P0, P0, P1).

Other vectors. Aside from the paging channel, we have demonstrated an
alternative controlled-channel attack which abuses legacy IA32 segmentation
faults [91]. Interestingly, before recent microcode updates, this attack could
offer an improved, byte-level granularity in the first MiB of the enclave address
space, but only for the unusual case of 32-bit SGX enclaves. Finally, Chapter 2
included a peculiar instance of a controlled-channel attack that abuses x86 #AC
alignment-check exceptions to deterministically reveal unaligned data accesses
in a victim enclave [254]. This attack can be mitigated by sanitizing processor



SYSTEMATIZING THE SGX ATTACK LANDSCAPE 235

if (c == 0){ r = add(r, d); } else { r = add(r, s); }

test %eax,%eax
je 1f
mov %edx,%esi

1:
call add
mov %eax,-0xc(%rbp)

test/je call
P0

P1
c = 0

test/je mov call
P0

P1
c = 1

Figure 8.2: Balanced if/else statement (top), compiled to assembly (left). Precise
page-aligned conditional control flow can be deterministically reconstructed with
instruction-granular CopyCat page access traces (right).

flags on enclave entry and further relies on privileged control registers and
single-stepping timer interrupts.

8.2.3 Transient-execution attacks

A third and more recent category of SGX attacks exploits side effects from
speculative and out-of-order CPU pipeline optimizations. All of these attacks
rely on the observation that processors may execute “transient” instructions
out of the program’s intended code or data paths, e.g., following a branch
misprediction or exception event. While the processor’s in-order commit scheme
ensures that the illegitimate results of such unintended transient instructions
are never persisted to the architectural state, attackers may inventively leverage
side-channel analysis to reconstruct secret-dependent traces left by transient
computations in the microarchitectural state. Crucially, where traditional side
channels are restricted to leaking execution metadata, this new class of transient-
execution attacks directly exposes raw enclave data and can hence not anymore
be mitigated through constant-time code paradigms. Instead, over the last two
years, transient-execution attack discoveries have necessitated a series of TCB
recoveries [122] for the Intel SGX ecosystem, through a combination of processor
microcode updates [107, 108], silicon fixes [149], and software patches [110, 117].

Leakage-oriented exploitation. Our work on Foreshadow [249], presented in
Chapter 6, first explored the security implications of transient execution for
Intel SGX enclaves. This research was conducted concurrently to Spectre [146]
and Meltdown [162]. Where the latter is restricted to leaking privileged kernel
data within the current address space and does not apply to SGX, Foreshadow
contributes a highly practical attack primitive to leak arbitrary data from
the L1D cache, regardless of access permissions or address space restrictions.
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Foreshadow can extract enclave secrets on the current core, either preemptively,
after exiting the victim enclave or swapping in an encrypted enclave page, or
concurrently from a co-resident SMT logical processor. While this attack can
even be mounted by unprivileged user-space adversaries through the mprotect
system call,1 underlying the root cause of Foreshadow is a privileged capability to
manipulate page-table entries. We additionally developed several optimization
techniques that may further improve the attack’s overall effectiveness in a
root adversary setting. These techniques include isolating the victim enclave
on a dedicated core, flushing the cache hierarchy through the privileged
wbinvd instruction, setting up aliased virtual memory mappings, and single-
stepping enclaves with SGX-Step timer interrupts. Foreshadow furthermore first
demonstrated an innovative “zero-stepping” technique which abuses page faults
to force a victim enclave to repeatedly execute the same instruction and bring
enclave register contents in the L1D cache without making forward progress. In
response to Foreshadow, Intel issued microcode patches for existing processors
and developed silicon mitigations that are now included in newer processors.
The microcode mitigations flush the L1D cache on every enclave transition and
furthermore extend attestation responses to enable remote parties to verify that
SMT has been disabled [107].

The more recent class of Microarchitectural Data Sampling (MDS) attacks,
including ZombieLoad [223] and RIDL [216], demonstrated that transient data
leakage for faulting or assisted loads on Intel processors goes beyond the L1D
cache and also affects internal line-fill buffers, load ports, and the store buffer.
In the context of Intel SGX, both ZombieLoad and RIDL exploited line-fill
buffer leakage to expose recently accessed enclave secrets. The more recent
CrossTalk [211] attack furthermore showed that line-fill buffer leakage can
also be leveraged to leak enclave requests from the on-chip hardware random
number generator. The buffers exploited by MDS are an order of magnitude
smaller than the L1D cache and offer restricted attacker control over addressing,
necessitating data filtering and synchronization techniques. While MDS-style
leakage is not exclusive to SMT scenarios, practical SGX attacks have focused on
real-time data sampling and filtering from a concurrent logical processor. These
attacks have even been demonstrated for unprivileged, user-space attackers [223,
216], but kernel-level adversaries typically have more leverage to manipulate
page-table entries directly so as to cause faulting or assisted loads that trigger
the transient data leakage. Furthermore, privileged adversaries can leverage
aforementioned techniques using SGX-Step to precisely synchronize execution of
the victim enclave through page faults, single-stepping, and zero-stepping [223].
In response to MDS attacks, Intel deployed microcode patches that flush affected

1Before PTE inversion [46] countermeasures were applied, the mprotect Linux system call
could be used by the host application to clear the “present” bit in enclave page-table entries.
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CPU buffers whenever entering or exiting an SGX enclave [108]. Furthermore,
as with Foreshadow, remote attestation responses reflect whether or not SMT
is enabled on the target platform.

Injection-oriented exploitation. In the aftermath of the original Spectre [146]
attack, several researchers have demonstrated Spectre-type control-flow hijacking
attacks against Intel SGX enclaves. While one initial proof-of-concept [197]
validated the possibility of Spectre v1-style bounds check bypassing through
mispredicted directional branches inside a victim enclave, practical SGX attack
demonstrations have focused on poisoning more potent indirect branches which
allow to arbitrarily hijack transient control flow through either the Branch
Target Buffer (BTB) [39] or Return Stack Buffer (RSB) [148]. None of
the ingredients for Spectre-type attacks strictly requires root privileges, but
expectedly researchers have once more employed several of the aforementioned
privileged attack techniques to construct more effective Spectre exploits in an
SGX setting. Particularly, Chen et al. [39] propose to leverage enclave execution
control primitives through page faults [277] and interrupts [257] to precisely
advance the victim enclave to the desired attack point, before poisoning the
BTB from the current core or a sibling SMT core. Spectre-style exploitation
furthermore benefits from SGX’s single-address-space design as transient code
gadgets can directly access unprotected memory outside of the enclave, allowing
to transmit secrets over highly effective Flush+Reload covert channels. In
response to Spectre-type threats, Intel released software patches [117] that insert
lfence speculation barriers after selected directional branches and furthermore
issued microcode updates that flush indirect branch predictor state and disable
speculative store bypass optimizations on enclave entry [128].

With Load Value Injection (LVI) [251], presented in Chapter 7, we showed that
prior Meltdown-type microarchitectural data leakages, including Foreshadow
and ZombieLoad, can also be reversely exploited as inventive injection primitives.
By revoking access rights on enclave memory, LVI adversaries force a victim
enclave to transiently compute on poisoned data forwarded from faulting or
assisted load instructions. Similar to Spectre-type attacks, LVI relies on code
gadgets in the victim enclave, which, when transiently executed with illegal
data operands, expose secrets directly or allow to hijack transient control flow
for second-stage gadget abuse. Crucially, in order to trigger page faults or
microcode assists for trusted enclave load operations, LVI requires the privileged
adversary’s capability to manipulate untrusted page-table entries. Furthermore,
analogous to Spectre-style exploitation, LVI attackers benefit from SGX’s single-
address-space design to setup convenient cache-based Flush+Reload covert
channels in the untrusted memory region outside the enclave. SGX-Step single-
stepping timer interrupts can further be leveraged to precisely advance the
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victim enclave to the desired code gadget location, before initiating the needed
page-table manipulations. Importantly, LVI does not strictly rely on SMT, but
gadget requirements may be somewhat relaxed when attacker-controlled data
can be injected via a sibling logical processor. LVI essentially highlights the
inadequacy of existing microcode and silicon mitigations that are based on
zeroing illegal data flow or flushing leaky microarchitectural buffers after victim
execution. In response, Intel developed extensive compiler mitigations that
stall the processor pipeline by inserting explicit lfence speculation barriers
after potentially every memory load operation. Additionally and even worse,
due to implicit loads, certain instructions have to be blacklisted, including the
ubiquitous x86 ret instruction.

Side-channel amplification. As a notable exemption to the rule that transient-
execution attacks focus on data leakage, MicroScope [233] showed that transient
instructions may also be abused to arbitrarily amplify traditional side-channel
metadata leaks in only a single architectural run of a victim enclave. Similar to
the aforementioned zero-stepping technique, first introduced by SGX-Step [257]
and Foreshadow [249], their attack revokes access rights on a selected enclave
trigger page and abuses that the processor’s out-of-order pipeline may have
transiently executed instructions following the faulting trigger instruction,
before eventually exiting the enclave and delivering the exception to the
untrusted OS. Crucially, this allows side-channel adversaries to gain insights
into the microarchitectural resource utilization of a narrow amount of transient
instructions following the trigger instruction, without actually advancing the
architectural instruction pointer in the enclave. Hence, by repeatedly resuming
the enclave, without re-instantiating access rights on the trigger page, privileged
adversaries can sample arbitrarily many side-channel observations in only a single
architectural invocation of the victim enclave. A similar effect of side-channel
traces left by out-of-order transient instructions following a timer interrupt has
also been observed in the CacheZoom [181] attack.

8.2.4 Attacks based on untrusted interfaces

A final category of attacks targets various kinds of interfaces between the
enclaved execution environment and the untrusted world. This can be both
explicit interfaces visible at the software level, as well as implicit interfaces used
by the trusted processor to connect to untrusted hardware components like the
voltage regulator or the DRAM controller.
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Software interface. While TEEs, such as Intel SGX, provide strong
architectural protection against malicious or buggy software running outside
the enclave, these security guarantees are crucially dependent on the absence of
exploitable bugs inside the enclave itself. Several authors have challenged
this implicit assumption by either providing evidence [254] of real-world
vulnerabilities in enclave software interfaces, or by developing improved
attack techniques [154, 24, 218, 266] to practically exploit memory corruption
vulnerabilities in an enclave setting.

AsyncShock [266] abuses enclave execution control through timers and page
faults [277] to efficiently exploit synchronization bugs in multithreaded SGX
enclaves. Alternatively, Schwarz et al. [218] abuse cache side channels to reliably
expose double-fetch bugs for untrusted pointer dereferences in SGX enclaves.
DarkROP [154] augments established return-oriented programming [228] attack
techniques with information leakage from page fault side-channel oracles [277] to
practically discover gadgets in unknown, encrypted enclave application binaries.
This attack requires kernel privileges and a static enclave memory layout. More
recently, Biondo et al. [24] relaxed these requirements by demonstrating an
improved ROP attack which allows even non-privileged adversaries to hijack
vulnerable enclave applications by leveraging gadgets in the enclave’s trusted
runtime, which is not considered by state-of-the-art enclave address-space
randomization solutions [227]. Both of these attacks further benefit from SGX’s
single-address-space design, where code gadgets can directly read or write
to attacker-controlled memory locations outside the enclave, and where the
CPU register file is shared across enclave transitions. In a perpendicular line
of research, Schwarz et al. [219] criticized SGX’s design choice of providing
enclaves with unlimited access to untrusted memory outside the enclave. They
considered an inverse attacker model, where not the code inside the enclave, but
the host application is under attack. Their attack demonstrates that malware
code executing inside an SGX enclave can mount stealthy code-reuse attacks to
arbitrarily hijack control flow in the host application.

In Chapter 2, we considered the question as to how prevalent these vulnerabilities
are in real-world enclave software, uncovering a wide and reoccurring
vulnerability landscape across 8 major open-source TEE runtime libraries. This
work demonstrated several confused-deputy attacks that abuse pointer passing
in the shared address space, and furthermore employed diverse exploitation
techniques for privileged adversaries. One particular case-study attack, for
instance, leverages SGX-Step interrupts and page-table “accessed” bits to
deterministically exploit a subtle timing side-channel oversight in the pointer
validation logic of Intel’s SGX SDK.
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Power management. To address ever-growing heat and power consumption
concerns, modern processors commonly expose privileged software interfaces
for dynamically adjusting the processor’s operating frequency or voltage levels.
These interfaces have traditionally received little security scrutiny as they
are made exclusively available to the privileged operating system kernel, out
of reach for traditional user-space adversaries. This changes, however, in a
TEE setting, where kernel-level adversaries can now abuse power management
features to forcibly operate the trusted processor at an increased frequency
or a lowered voltage during enclaved execution [241]. Crucially, when this
affects the processor’s critical path circuitry, faulty computation results may
arise in enclave mode. Our research on Plundervolt [188] for the first time
broke Intel SGX’s integrity guarantees by abusing an undocumented MSR
privileged software interface for voltage scaling on recent Intel processors.
Particularly, we showed that, by fixing the processor’s frequency and slightly
lowering its operating voltage before entering a victim enclave, predictable
bit flips can be triggered in certain high-latency x86 operations, including
ubiquitous multiplication and AES-NI instructions. Apart from breaking several
cryptographic implementations, this research also demonstrated an inventive new
kind of memory-corruption attacks that induces bit flips in pointer arithmetics so
as to redirect trusted in-enclave pointers to attacker-controlled memory locations
in the untrusted address space outside the enclave. Similar to many of the
aforementioned SGX attacks, kernel-level adversaries may furthermore benefit
from control over page tables and interrupts to precisely advance the victim
enclave’s execution, before eventually triggering the undervolting by writing to
the privileged MSR. Concurrent to our work, Qiu et al. [210] demonstrated a
similar fault attack against a software-based AES implementation, and Kenjar
et al. [137] explored the effects of undervolting x86 vector operations in SGX
enclaves while additionally exercising stress from a sibling SMT logical processor.
In response to these attacks, Intel updated SGX remote attestation to reflect
whether the undocumented voltage scaling MSR has been disabled [129].

Memory bus. Intel SGX was purposely designed to protect even against
advanced adversaries who have unrestricted physical access to the enclave host
machine, e.g., untrusted cloud providers under the jurisdiction of foreign nation
states. More precisely, the Intel SGX architecture solely trusts the processor
package, while leaving any external hardware components explicitly untrusted.
SGX therefore includes a dedicated Memory Encryption Engine (MEE) [89] that
protects the confidentiality, integrity, and freshness of all enclave memory while it
resides in untrusted off-chip DRAM. However, the MEE does not protect address
metadata and can hence not defend against physical side-channel adversaries
who tap the unencrypted memory address bus to deterministically learn enclave
last-level cache misses at a 64B cache line granularity [89, 47]. The recent
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Membuster [152] attack indeed practically demonstrated such an attack by
physically placing a custom DRAM interposer to record all off-chip memory
traffic. This attack further relies on the privileged adversary’s control over
untrusted page tables for strategically interrupting the enclave, back-translating
the observed physical addresses to the corresponding enclave virtual addresses,
and artificially increasing pressure on the last-level cache. Depending on the
required level of stealthiness, attackers may furthermore consider disabling the
CPU cache altogether through the privileged CR0 x86 control register.

Finally, as another attack vector potentially related to the untrusted memory
bus, Intel recently disclosed a processor vulnerability [123] which may allow
privileged system adversaries to extract the first two words of every enclave cache
line through an obscure interaction with the integrated graphics card. In the
absence of more details or independent reproduction, we can only hypothesize
on the root cause and impact of this vulnerability. The fact that the processor’s
integrated graphics card is involved hints at a possible interaction with the
Direct Memory Access (DMA) subsystem. In response to this vulnerability,
Intel extended SGX’s remote attestation responses to reflect whether integrated
processor graphics technology has been disabled [129]. Alarmingly, for SGX
applications who are unable to disable integrated graphics, Intel recommends
extensive software mitigations that should change all enclave-internal memory
allocations to avoid the affected regions of a cache line [123].

8.2.5 Tendencies and lessons learned

This section aims to pave the way for reasoning about effective defense strategies
by investigating trends and commonalities across the attack spectrum. We
further identify challenges and future directions, and distill lessons for future
TEE designs.

Privileged attack primitives. Looking back at Table 8.1, several clear tenden-
cies can be observed. Perhaps the most important lesson is that potentially every
privileged processor interface can be abused as an unconventional attack vector.
Some of these privileged hardware-software interfaces have remained restricted
to niche attack scenarios, e.g., segmentation faults for 32-bit enclaves [91]
or control registers to spy on unaligned data accesses [254], whereas others
have proven to be extremely versatile and have been re-purposed across many
different attack scenarios. The question hence arises which privileged interfaces
are considered most dangerous and should receive increased attention in next-
generation fortified TEE designs (cf. Section 8.3).
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In this respect, the systematization in Table 8.1 clearly reveals that untrusted
page tables and interrupts have been most widely leveraged across different
attack categories. Better understanding the security implications of these
privileged interfaces was indeed the primary motivation behind the SGX-Step
framework, presented in Chapter 4, which exposes both virtual memory page-
table mappings and APIC timer interrupts via a practical user-space attack
library. As further evident from Table 4.1 on page 101, these primitives have
enabled a long line of high-resolution attacks. Untrusted page tables in particular
have been taken advantage of for a wide variety of purposes: from constructing
deterministic side-channel oracles [277, 258, 263], over coarse-grained enclave
execution control [257, 266, 156], to ultimately the driving force behind many
transient-execution pipeline vulnerabilities [249, 223, 216, 251]. Likewise, precise
timer interrupts have been leveraged both to drastically improve the temporal
resolution of existing attacks [257, 181, 92, 156, 249, 105, 251], as well as to
mount new and unexpected types of side channels [256, 254, 182]. The tandem
of interrupts and page tables became even more explicit in more recent versions
of SGX-Step which leverage page-table “accessed” bits to deterministically filter
out superfluous zero-step observations [256]. CopyCat [182] furthermore showed
that accessed bit patterns can be leveraged in combination with SGX-Step
interrupt counts to precisely reconstruct enclave control flow within a single
4KiB code page.

As to the remaining processor interfaces, especially the model-specific registers
related to privileged power management have proven to be particularly
advantageous. Almost all microarchitectural timing attacks unanimously abuse
MSRs for noise reduction by disabling dynamic frequency scaling, fixing the
processor’s clock, and optionally disabling the hardware prefetcher. Likewise,
on-core performance-monitoring counters, which are disabled for production
enclaves in the SGX design [114], have been widely abused as a noise-reduction
technique for probing shared microarchitectural resources in the attacker’s
own, unprotected code execution [79, 29, 156, 59, 105]. More recently,
Plundervolt [188] for the first time demonstrated the potentially devastating
security impact of the model-specific register interface, beyond merely noise
reduction, by abusing an undocumented MSR for voltage scaling to reliably
induce bit flips in enclave computations. Given the vast amount of MSR and
PMC registers in modern x86 processors, further analysis should tell whether
and how they could be leveraged to mount new varieties of attacks against SGX
enclaves.

SMT-based processor scheduling interfaces have been uniformly abused, across
all attack categories, to induce microarchitectural contention from a sibling
logical processor. SMT has proven to be particularly dangerous in the context of
transient-execution attacks, which may directly leak values being processed on a
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co-located enclave thread [249, 223, 216], prompting Intel to include SMT status
in remote attestation responses. Importantly, however, only very few attacks [7,
180] critically rely on SMT and almost all leakages can also be induced in a
non-SMT setting, i.e., by frequently interrupting the victim enclave and probing
the microarchitectural state on the current physical processor [257, 181].

A last important tendency in Table 8.1 is that almost none of the
microarchitectural-contention attacks strictly requires root capabilities, yet
all of them repeatedly execute the victim enclave so as to compensate for
measurement noise. The controlled-channel family of attacks, on the other hand,
behaves fully deterministically in a single run of the victim enclave, yet all of
these attacks require some form of control over page tables or interrupts.2 This
observation stems from the fundamentally different nature of these attack
categories: controlled channels derive execution metadata via adversarial
manipulations of traditionally privileged processor interfaces, whereas traditional
side channels derive similar, potentially even finer-grained metadata from subtle
timing differences caused by undocumented contention sources in the underlying
microarchitecture. This separation essentially implies that it might be feasible
to eradicate certain types of controlled channels by carefully re-designing the
privileged hardware-software contract, for instance by removing attacker control
over page tables [48, 58] or avoiding virtual memory altogether [189], while
restricting the adversary’s control over privileged processor interfaces would
at best only somewhat raise the bar for microarchitectural-contention attacks.
Indeed, effective microarchitectural timing attacks have even been demonstrated
for unprivileged enclave adversaries [225].

Side-channel leakage. In summary, the above research results show that
enclave code and data accesses on SGX platforms can be accurately
reconstructed, both in space, at a 4KiB page, 64-byte cache line, or even
sub-cache line granularity, as well as in time, after every single instruction.
Given that attacks only improve over time, we should expect this tendency
to continue and lead to even more advanced side-channel exploits that leak
execution metadata at ever-growing granularity and accuracy.

According to Intel SGX’s official threat model [119], execution metadata
leaks through side channels are explicitly considered out-of-scope, and it is
recommended to employ constant-time cryptographic algorithms in enclave
applications. Unfortunately, however, the past years of SGX attack experience
have shown that adequately preventing side-channel leakage is particularly
difficult—to the extent where even Intel’s own vetted enclave entry code [254],

2Note that such control could potentially also be indirectly provided through the
unprivileged system call interface, e.g., mprotect [249].
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architectural quoting enclave [50], and cryptographic IPP library [180] all
suffered from subtle yet dangerously exploitable side-channel vulnerabilities.
Moreover, several attack studies [277, 29, 92, 256] have considered non-
cryptographic SGX applications, showing that sensitive enclave data may be
more ill-defined, and hence harder to keep track of in constant-time code
paradigms, compared to the typical cryptographic keys of side-channel analysis.

Overall, while some side-channel attack vectors, like page faults, cache timing
attacks, or port contention have been recognized early-on [47], the SGX attack
scene has also revealed several new and unexpected leakage sources [256, 180,
91, 182]. Furthermore, by implementing practical attacks and exploring the
offensive potential of privileged processor interfaces, researchers have shown
that traditionally noisy side channels can be exploited at a considerably higher
resolution and increased success rate in an enclave setting. This research on the
interplay between the processor’s architectural specification and the underlying
microarchitecture ultimately paved the way for transient-execution attacks,
which could not have been anticipated at SGX design time.

Transient execution. In the transient-execution attack landscape, that
unfolded over the last two years, we have seen similar tendencies. Researchers
first focused on relatively well-understood microarchitectural structures like the
L1D cache [249, 162] and branch target buffer [146, 39], before moving on to
smaller and more ill-defined structures, like the return address predictor [148],
line-fill buffers [216, 223], store buffer [35], and load ports [61]. Interestingly, we
notice that, as these attacks become more involved and target deeper realms of
the processor pipeline, mitigations similarly become less clear-cut. Following
the classic cat-and-mouse game, several iterations of processor microcode
mitigations [109, 127] have been refined to protect against ever-changing attack
variants. This tendency is likely to continue until more principled silicon
mitigations are widely deployed. Finally, as a turning point, our research on
LVI [251] showed that even microcode mitigations are fundamentally insufficient
to protect against privileged SGX adversaries that can resort to an injection-
oriented exploitation methodology for incorrect transient forwarding, even if all
leaky microarchitectural buffers are cleared at the enclave boundary.

Fault attacks. Transient injection attacks, like LVI and Spectre, manifest
entirely at the microarchitectural level: the faulty computations out of the
intended path are only “transiently” executed and are never persisted to the
architectural state. Our work on Plundervolt [188], however, for the first time
induced persistent architectural faults by exploiting more fundamental properties
of the logic fabric of the physical CPU itself—namely the need for a stable



SYSTEMATIZING THE SGX ATTACK LANDSCAPE 245

supply voltage. This research for the first time extended the software-exposed
attack surface of SGX from the “high-level” microarchitectural design to the
underlying physical properties of the electronic circuitry itself.

We can only expect more, yet-undiscovered physical effects to be exploited
in the future. The smartcard industry has spent decades on defending much
less complex chips against physical side-channel and fault attacks. It remains
to be seen how many of those attacks apply to high-end processors, be that
for physical or software-level adversaries, and whether Intel and others can
learn from the smartcard experience to strike a cost-to-benefit balance between
performance, functionality, and security.

TEE design. An important conclusion, overarching five years of continued SGX
attack research, is that Intel SGX’s architectural design [14, 176, 89] proved to be
very stable and has so far never been fundamentally broken. This is in notable
contrast with, for instance, AMD’s Secure Encrypted Virtualization (SEV)
technology [136] which similarly aims to protect against malicious hypervisors
by means of hardware-level memory encryption. Yet, SEV repeatedly fell
victim to a concurrent line of attacks. Some of the architectural limitations
demonstrated in current and previous SEV versions include the lack of protecting
register file contents across interrupts [97, 272], the lack of verifying untrusted
extended page-table translations [183, 97], and the absence of freshness and
integrity checks for encrypted memory [274]. Importantly, all of these limitations
are properly prevented in the Intel SGX design, ruling out this considerable
attack surface at the architectural level. Note that some of these attacks are
also addressed in revised versions of AMD’s SEV architecture: in the form of
SEV-ES [135] which protects register state, similar to SGX’s AEX scheme, and
the recently announced SEV-SNP [11] extension which will safeguard untrusted
address translations, similar to SGX’s EPCM protections.

In fact, many of the issues we have witnessed stem from SGX’s decision
to implement high-assurance enclave “fortresses” on top of arguably weak
foundations, i.e., a complex out-of-order x86 processor. This has not only
led to a proliferation of microarchitectural side-channel attacks, which were
anticipated and considered out-of-scope at design time [133], but ultimately
also paved the way for a dangerous new type of transient-execution processor
vulnerabilities. Such transient leakages in the underlying microarchitecture were
not foreseen at design time and led to dramatic consequences, subverting all of
SGX’s security guarantees on unpatched systems [249]. This attack surface will
likely continue to be addressed by the development of several more iterations
of processor microcode updates, silicon-level changes, and software patches.
Fortunately, yet once more in contrast to alternative TEE designs such as AMD
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SEV [32], SGX’s remote attestation [14] and TCB recovery [122] schemes have
proven to be sufficiently versatile and resilient to allow remote stakeholders to
verify that all of these mitigations have indeed been properly applied.

A final TEE design consideration relates to the decision to embed SGX enclaves
in the virtual address space of an untrusted containing host application,
resembling alternative single-address-space TEEs such as Sancus [189] or
Sanctum [48]. This design closely mimics existing user-to-kernel boundaries
and allows for flexible enclave transitions by passing input and output buffers
as pointers in the shared address space. However, several researchers have
abused the enclave’s unrestricted access to unprotected memory to facilitate
confused-deputy attacks after hijacking the enclave through either transient
execution [39, 251], memory-safety misbehavior [254, 154], or undervolting [188].
While none of these attacks critically relies on a shared address space, we expect
that they would be considerably harder to exploit in alternative dual-world TEE
designs, like ARM TrustZone [10], AMD SEV [136], or RISC-V Keystone [153],
where enclaves live in their own designated virtual address space and all external
communication is restricted to explicit shared memory regions.

Generalization to other TEEs. The past years have seen a remarkable synergy,
where some of the insights gained from attack research on SGX platforms have
been transposed to, or inspired by, other TEEs and ultimately even non-TEE
settings. As a telling example, Ryan [214] recently adapted techniques from
SGX-Step [257] and CacheZoom [181] to develop the Cachegrab framework for
precisely measuring cache evictions and branch prediction leakage on ARM
TrustZone TEEs. Mimicking privileged adversary advantages in the SGX world,
Cachegrab reports significantly less noise and an improved temporal resolution
compared to prior cache attacks on TrustZone [161, 37]. Likewise, several
researchers [97, 183, 272, 274] have exploited page-fault side channels, first
introduced in the context of Intel SGX [277], as a building block for various
attacks on the AMD SEV architecture. In this respect, Werner et al. [272]
further propose to abuse the debug trap flag as a “hyper-stepping” primitive
for SEV enclaves, closely resembling the effect SGX-Step achieves with timer
interrupts. The design of SGX-Step has similarly inspired the Sancus-Step [49]
framework for single-stepping interruptible Sancus enclaves.

There have also been notable influences in the inverse direction. For instance,
the CLKscrew [241] attack, first demonstrated on ARM TrustZone, paved the
way for subsequent software-based fault attacks [188, 210, 137] on Intel SGX
platforms. Likewise, our own work on Nemesis interrupt latency side-channel
attacks, presented in Chapter 5, was first prototyped on the embedded Sancus
TEE and only later generalized to Intel SGX enclaves. This once again illustrates
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that open-source academic architectures, such as Sancus, may serve as a research
vehicle to explore limitations of and possible improvements for real-world TEEs
like Intel SGX [34, 185].

A final tendency worth noting is that SGX attack research has often sparked
generalizations to traditional unprivileged process isolation, as also observed by
Schwarz et al. [221]. A telling example of this is our own work on Foreshadow-
SGX, presented in Chapter 6, which directly led to the discovery of the
even more impactful Foreshadow-NG [271] attack variant affecting widespread
virtual machine isolation. A further example is provided by address translation
side channels, which have been a historic area of interest for breaking kernel
ASLR [104, 86, 132]. Informed by recent research results [277, 258] for SGX
root adversaries, such address translation side channels have since received
renewed attention in restricted environments as well [81, 259, 83]. Likewise,
older research on branch prediction side channels [3, 2] was revived and
significantly strengthened in the context of SGX enclaves [156, 59]. This renewed
interest in branch prediction side channels led to an improved understanding
of the underlying microarchitectural structures, ultimately contributing to the
discovery of Spectre. We can assume that this fruitful interchange of ideas will
only continue and lead to new and improved research results beyond the Intel
SGX architecture.

8.3 Moving forward: Avenues for TEE hardening

Following a systematic understanding of the attack scene, this section formulates
concrete recommendations for hardening current and next-generation TEE
designs. Table 8.2 lists selected countermeasures from both industry and
academia and summarizes their effectiveness across the different attack categories
introduced in the previous section and Table 8.1. An important first observation
is that no known silver-bullet solution exists to single-handedly address leakage
from side channels, controlled channels, transient execution, and interface-
based attacks. Instead, in practice, the fundamentally different nature of
these threats requires an intricate composition of perpendicular protective
measures. For instance, an exemplary “ideal” enclave would presently be
developed using (i) a memory-safe language or formal verification tool [131]
to rule out traditional software vulnerabilities, like buffer overflows; (ii) an
expert developer or compiler-assisted solution [43] to safeguard constant-time
behavior for secret-dependent code and data accesses; and, finally, (iii) a series
of thoughtful lfence instructions [117, 251] to avert leakage from inadvertent
transient-execution paths. Table 8.2 furthermore shows that present, rather
ad-hoc solutions are characterized by a somewhat rigid separation between the



248 CONCLUSION

Table 8.2: Overview of selected countermeasures. Round symbols indicate defenses
that can fully ( ) or partially (G#) mitigate an attack category, whereas diamonds
represent hardening techniques that can impede ( ) or detect ( ) exploitation attempts.
The colored plane demarcates academic proposals, which are not currently available.
Defense techniques first proposed in this thesis are highlighted.
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hardware and software levels. In between lies an unfolding research space, where
well-considered changes to the traditional hardware-software contract may lead
to more principled and inclusive mitigation strategies.

In the following, we first overview mitigation strategies that can be transparently
applied at the microarchitectural level. Next, we explore the more integrated
spectrum of hardening techniques that aim to practically improve side-channel
resistance via balanced revisions to the hardware-software contract. The final
section is devoted to the question of efficiently restraining transient execution,
rightly identified as one of the major challenges in the coming decade’s “new
golden age for computer architecture” [96].

8.3.1 Microarchitectural hardening

Side-channel leakage based on contention to a shared microarchitectural
resource can in principle be mitigated by providing the enclave with exclusive
access to said resource. This slicing can either proceed in time, by flushing
core-private resources on enclave entry and exit, or in space, by statically
partitioning larger structure that are shared across cores, e.g., the processor’s
last-level cache. Given the required hardware primitives, such approaches may
ultimately shield application software in a transparent manner, as for instance
exemplified by the ongoing “time protection” [70] effort for the seL4 microkernel.
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Enclaves furthermore have the additional advantage that protection boundary
transitions are well-marked through dedicated entry and exit instructions,
which recently indeed have been extended in the light of transient-execution
threats to progressively flush ever more microarchitectural buffers at the enclave
boundary [128, 107, 108].

There is obviously an associated cost to be payed, however, by constraining
some of the very optimizations that have traditionally driven microarchitectural
performance advances. Furthermore, perhaps the key weakness of this approach
lies in its singularity. That is, identifying and partitioning every individual
microarchitectural contention source may well turn out to be an endless endeavor
for modern x86 processors. Effective partitioning would hence be more likely to
succeed for much simpler RISC-based processors [34, 63] where an open-source
understanding of the underlying microarchitecture could further strengthen
confidence in the resulting security guarantees [185, 19]. Ultimately, however,
even in a fortified and fully partitioned microarchitecture, enclaves would be
akin to isolated networked machines, where it is well-known that response
time for remote API calls can still be abused as a capable side channel [31].
Researchers have, for instance, constructed fully remote, time-driven cache
attacks [4], which rely on statistical inference to derive secrets from overall
execution time correlations to the aggregate number of cache hits and misses.
Likewise, NetSpectre [224] demonstrates that, provided with sufficient gadgets
in the victim code, even transient-execution attacks can be mounted against
a fully remote, isolated microarchitecture. As a final important limitation,
microarchitectural partitioning cannot protect against side-channel leakage
that stems from higher or lower levels in the system stack. As an example of
the former, consider controlled-channel attacks [277, 258] that abuse ISA-level
abstractions, and as an instance of the latter, consider off-chip memory address
bus tapping [152] attacks that fully manifest at the physical level.

Flushing core-private resources. The Intel SGX architecture originally only
flushed the TLB on enclave transitions to safeguard architectural consistency
and protect against page remapping attacks, while leaving other core-private
resources untouched [47]. This decision was likely made with performance
of enclave transitions in mind. Interestingly, however, in response to the
recent wave of transient-execution findings, a series of microcode updates now
clears increasingly many core-private microarchitectural buffers at the enclave
boundary, retarding context switch times with at least a factor > 2× [265]. At
the time of this writing, these buffers include indirect branch prediction history
via the BTB and RSB to mitigate a subset of Spectre [39, 148] variants; the L1D
data cache to mitigate Foreshadow [249]; and the line-fill buffers, store buffer,
and load ports to mitigate data sampling attacks [223, 216, 35]. Additionally,
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to prevent concurrent exploitation from a sibling SMT logical processor, SGX’s
remote attestation scheme has been extended to reflect whether SMT is disabled.

Importantly, the above measures were designed to counter a subset of transient
data leakage attacks, but do currently not necessarily prevent metadata leakage
through side-channel analysis. For instance, even when the L1D cache is flushed
on enclave exit, adversaries can straightforwardly adjust to infer access patterns
from the L2 and last-level caches [225]. Furthermore, Hosseinzadeh et al. [103]
observe that up-to-date Spectre microcode patches, which properly flush or
tag indirect branch predictor buffers on enclave entry, appear not to flush
said buffers on enclave exit, allowing side-channel leakage through branch
shadowing attacks [156]. Huo et al. [105] report a similar observation for the
PHT directional branch predictor. As performance for enclave transitions is
already impacted by the current measures anyway, it seems appropriate to
extend the microcode to at least flush branch prediction history buffers on
enclave exit as well.

Partitioning shared resources. In contrast to core-private buffers, some
structures like the last-level cache are competitively shared across multiple,
mutually distrusting CPU cores and hence present a much more conceptual
challenge to partition securely. One possible solution could build on Intel’s recent
Cache Allocation Technology (CAT) [112], which allows to reserve portions of
the last-level cache for exclusive use by a particular core. However, CAT was
originally developed as a quality-of-service solution and its applicability to secure
enclaves seems far from straightforward. Furthermore, adding to the tension with
the operating system’s traditional role as a resource manager, enclave memory
in the last-level cache should either remain locked or be flushed on interrupts.
Alternatively, solutions based on cache coloring schemes [48] relieve contention
in the last-level cache by making sure to never assign physical addresses with
identical set indices to different security domains. Unfortunately, however, this
approach does not apply to Intel SGX as it would require somehow restricting
the privileged adversary’s control over enclave physical address allocations.

Alternatively, when rigid partitioning is considered infeasible, adequate
randomization could be applied in the shared microarchitectural resource, such
that exploiting the contention becomes heuristically infeasible. This might
be especially opportune to preserve the performance benefits of competitively
sharing a sizable last-level cache without the associated attack surface in terms
of side-channel leakage. ScatterCache [273] recently proposed to replace the
fixed cache-set address mappings of present processors with a keyed pseudo-
random function so as to thwart the construction of targeted Prime+Probe
eviction sets. ScatterCache’s hardware design appears to lend it self especially
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well to an enclave context, as it permits to mutually isolate different security
domains by including a configurable domain identifier in each key derivation.
ScatterCache suggests to specify the domain identifier via page-table attributes
configured by the trusted operating system. In the context of SGX, however,
domain identifiers could be trivially set and reset by the processor on enclave
transitions.

Partitioning the pipeline. A final microarchitectural hardening consideration
relates to contention in the CPU pipeline itself. Our work on Nemesis, presented
in Chapter 5, showed that interrupt latency may reveal instruction-granular
microarchitectural state inside the enclave. From this research we can conclude
that, when time slicing the CPU between code of different privilege levels,
transitions should ideally be constant time. In this respect, a closely related
requirement is that the microarchitectural flushing primitives themselves should
also behave deterministically, which is not the case on current processors where,
for instance, the time to flush L1D correlates with the number of dirty lines [70].

We have recently devised and verified a provably constant-time enclave interrupt
mechanism for fully deterministic 16-bit embedded Sancus processors, relying
on an intricate two-level execution time padding scheme [34]. This static
padding solution relies on predictable instruction execution time and does
not straightforwardly generalize to a complex x86 processor, however, where
execution time is generally non-predictable and instructions may have many
more observable side effects. In this setting, randomization might therefore
pose a better alternative. Particularly, timing differences encoded via interrupt
latency could be partially masked by including wide enough random timing
delays for Asynchronous Enclave Exit (AEX) events, or at the end of the
eresume instruction. Provided that these operations are implemented in
microcode [47], such masking could likely even be retroactively applied to existing
SGX processors. An important consideration, however, is that uncorrelated
and uniformly distributed random noise can always be compensated for with
repeated measurements over multiple runs [71]. This countermeasure would
hence additionally require enclaves to refuse to repeatedly compute over the same
data. From the Nemesis analysis in Chapter 5, we can furthermore conclude that
random timing delays should in practice measure several hundreds of cycles and
that the CPU’s random number generator would require several hundreds more
cycles on top, making this a potentially costly approach that might significantly
delay high-priority interrupts. Depending on the real-time requirements of the
underlying host operating system, such delays may or may not be acceptable.

Apart from masking interrupt latency, randomization seems tempting as well
to thwart single-stepping frameworks like SGX-Step [257], which have proven
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Figure 8.3: Adversaries can precisely single-step a victim enclaved execution
(green, solid) without resorting to timers by sending inter-processor interrupts from a
concurrent spy thread (red, dashed) that monitors unprotected page-table accesses.

to be particularly advantageous across many different attack categories (cf.
Tables 4.1 and 8.1 on pages 101 and 230). Crucially, however, we do not
consider mere randomization in itself to considerably raise the bar for SGX-Step
adversaries. While ample random padding in eresume would indeed make it
harder to reliably configure the APIC interrupt timer delay before entering
the enclave, adversaries may adapt in at least three distinct ways. First, for
many (but not all) scenarios true single-stepping is not a requirement and
simply overestimating the delay would still result in a practical, yet coarser-
grained multi-step primitive. Prior work on branch prediction side channels
has, for instance, demonstrated practical attacks even with a noisy preemption
primitive of up to 50 instructions [156]. Second, adversaries may conservatively
underestimate the random padding delay and rely on page-table “accessed”
bits to filter out the abounding zero-step observations [256], resulting in a
substantially slower, yet accurate single-stepping primitive. Last and most
crucial, we observe that any single-stepping defense based on restricting the
adversary’s control over timer interrupts on the current core is inherently
insufficient in a multi-core setting. That is, attackers can always resort to
a dedicated spy thread which monitors side effects of the enclaved execution
and shoots down the victim CPU via inter-processor interrupts. Precisely this
technique has indeed been demonstrated in Chapter 3 to reliably interrupt a
victim enclave at instruction-level granularity, even in a non-SMT setting, by
monitoring enclave page-table activity in the shared last-level cache [258].

Figure 8.3 summarizes how inter-processor interrupts can be leveraged to single-
step a victim enclave on a hypothetical CPU with randomized eresume padding.
The adversary first synchronizes 1 with a dedicated spy thread on a separate
physical CPU core, before entering the victim enclave with eresume. After
restoring private register contents and stalling the processor with a random
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timing delay 2 the victim eventually starts executing the first instruction (mov
in this example). The execution fetch stage requires at least one page-table
walk 3 to retrieve the physical address of the enclave code page, and optionally
another page-table walk to resolve any data operand addresses. At this point, i.e.,
after the random timing delay and before completion of the enclave instruction,
the attacker-controlled spy thread observes an update of the “accessed” bit or
caching behavior of the corresponding untrusted page-table entry and finally
4 sends an inter-processor interrupt, which instructs the victim CPU to halt
enclaved execution and initiate AEX after completion of the current, single
instruction. Notably the above example focuses on monitoring page-table entries,
but in principle any observable side effect from the enclaved execution could
be used as a side-channel oracle to trigger the inter-processor interrupt at the
desired time. At an abstract level, the adversary only needs to distinguish
the added dummy padding from the actual execution. While some additional
protection against this type of inter-processor attacks could be achieved by
shifting some of the instruction fetch and decode logic within eresume, before
applying the random padding delay, we expect that it will generally be infeasible
to masquerade all observable side effects for the complex x86 instruction set,
where data access micro-ops, for instance, only occur later during the actual
instruction execution phase.

8.3.2 Revising the hardware-software contract

As evident from Table 8.2, current solutions in the defensive landscape lean
strongly toward either the hardware or software sides. However, such rigid
abstraction levels are relative in the eyes of attackers, as side channels commonly
allow to bypass high-level security restrictions by exploiting unconstrained
optimizations at lower levels. In light of these findings, one of the major
challenges in the field of computer architecture is how to rethink the traditional
hardware-software interface so as to allow security restrictions to be more
explicitly expressed and maintained across the system stack. The current and
the next section overview several concrete proposals in this respect.

Interrupt-awareness for enclaves via eresume interception

Resembling Intel’s virtual machine extensions, the current SGX architecture
leaves enclave applications explicitly interrupt-unaware by design. That is,
SGX enclaves can be transparently continued through the dedicated eresume
instruction following a page fault or external interrupt event. Software handlers
can optionally be registered by the enclave, but this requires the explicit
cooperation of the untrusted application by first calling the exception handler
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through eenter before invoking eresume. This is in sharp contrast to alternative,
interrupt-aware TEE designs such as Sancus [189] or Sanctum [48], which always
require re-entering a previously interrupted enclave via its normal software entry
point so as to inspect and resume the paused execution state from the trusted
runtime inside the enclave itself. These alternative architectures strike an
arguably cleaner balance between hardware and software concerns by allowing
the enclave entry point to enforce flexible service contracts with the untrusted
operating system, e.g., in terms of interrupt rates.

SGX’s obliviousness to interrupts and page faults has been a key driving
factor for many of the attacks summarized in Table 8.1. Making enclaves
aware of asynchronous exits would allow to implement certain software-level
security policies, e.g., heuristically detecting suspicious interrupt rates [229, 42]
or prefetching [237, 175] secret-dependent memory locations into a trusted
cache. Over the past years, several researchers have proposed such side-
channel hardening techniques, summarized below, which all commonly aim
to detect asynchronous attacker interferences through preemptions or evictions
during the execution of a security-critical routine inside an enclave. Upon such
detection, execution is redirected to a trusted software handler routine which
can subsequently decide to terminate the enclave or to re-establish a security
invariant by repopulating microarchitectural caches with evicted entries.

Hardware transactional memory. Recent Intel x86 processors ship with
Transactional Synchronization Extensions (TSX) which simplify concurrent
programming by synchronizing the critical sections of multiple threads without
the overhead of software-based locks. Code executing in a TSX transaction is
aborted and automatically rolled back whenever encountering a cache conflict
or exception. Various authors [229, 42, 84, 237, 40, 9] have proposed to leverage
TSX transactional aborts in SGX enclaves as an indicator for an ongoing,
possibly interrupt-driven, attack. However, this approach suffers from several
limitations. First, frequent transaction aborts may also occur in benign scenarios,
e.g., under heavy system load with many device interrupts or concurrent activity
in the last-level cache. Second, heuristic detection policies inevitably suffer from
false positive or negative rates, as further discussed below. Lastly, wrapping
code in TSX transactions may induce substantial performance overheads [229,
237] and TSX is furthermore not available on all SGX-enabled processors. We
hence argue that the TSX-based defenses in this category should rather be
regarded as academic exercises to explore the possibilities of the proposed native
instruction set extensions discussed below.

T-SGX [229] aims to protect against page-fault-driven attacks via an LLVM-
based compiler transformation that wraps each basic block in a TSX transaction.
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Any page fault while in TSX mode will not be reported to the operating system,
but instead causes execution to be redirected to the in-enclave abort handler.
T-SGX proposes to terminate the enclave after counting too many consecutive
transaction aborts. Instead of wrapping the entire enclave program in costly
transactions, Déjà Vu [42] proposes to instead use TSX to construct a dedicated
in-enclave reference counter thread that cannot be silently stopped by the
operating system. The enclave program is further instrumented to time its own
activity, relative to the counter thread, so as to detect the execution slowdown
associated with an unusually high number of AEXs. S-FaaS [9] uses a similar
mechanism for trusted, in-enclave resource accounting. Apart from recognizing
AEXs, Cloak [84] leveraged TSX aborts to detect adversarial evictions in the
processor’s last-level cache. This work furthermore includes a clever mechanism
to rule out SMT-based side channels by ensuring that two sibling logical CPU
cores enter and exit the enclave in lock step. Cloak achieves this property by
proving co-location through a cache-based microarchitectural covert channel
and furthermore including an SSA marker that will be overwritten on interrupt
in each of the thread’s transaction read set. HyperRace [40] later refined this
co-location test mechanism to also protect against man-in-the-middle attacks
by abusing contrived data races on a shared variable. Finally Heisenberg [237]
proposes to leverage TSX, or alternatively minimal hardware extensions, to
hook enclave resumptions and preload selected physical address translations in
the processor’s TLB before continuing the enclave application. This ensures that
subsequent secret-dependent code or data accesses in the preloaded pages will
be directly served from the TLB, without being observable through page-table
side channels [277, 258].

Instruction set extensions. From the above research results and the attack
systematization in Table 8.1, we can conclude that minimal hardware support
for eresume interception would lift one of the key limitations of the current
SGX architecture and may turn out to be an important enabler for a new class
of hardware-assisted enclave software hardening techniques. As a requirement
closely related to eresume interception, software defenses would furthermore
benefit from a processor interface to efficiently and securely enforce that both
SMT cores enter and exit the enclave in lock step. Indeed, a long line of
side channels [180, 7, 29] and more recently also transient-execution [249,
223, 216, 251] attacks have decidedly shown that SMT should not be trusted
across security domains. In the aftermath of Foreshadow [249], Intel finally
extended remote attestation to reflect whether SMT has been disabled at
boot time. Unfortunately, however, this binary solution precludes the use of
SMT altogether. A more flexible hardware mechanism that exposes the SMT
abstraction to the enclave software would allow to securely use this important
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performance optimization, as long as it can be guaranteed that both logical
cores always execute in the same enclave protection domain.

Interestingly, a recent Intel patent [175] describes how an interrupt interception
mechanism could be integrated into the SGX architecture. In this proposal, the
eresume instruction is automatically converted into eenter, so as to enable the
enclave to invoke a custom interrupt handler procedure, which can implement
arbitrary software-defined policies before eventually resuming the previously
interrupted enclave thread through a new popssa instruction. Likewise, another
recent Intel patent [163] describes instruction set extensions to support an
“event-notify” mode of operation where any cache evictions or interrupt events
redirect execution to a user-level exception handler. In both proposals, the
software handler can, for instance, be extended to prefetch selected enclave
address translations into the TLB, which would eliminate page-table-based
side channels under the assumption that the set of secret-dependent code and
data pages can be easily identified for prefetching. We suppose that hardware
requirements for eresume interception may be further simplified by imposing a
restricted programming model for enclave exception handlers, where only start-
to-end atomicity is guaranteed and any additional interrupts during execution
of the handler merely revert the program counter to the start of the handler.

Apart from the above prefetching mechanism, we expect that eresume
interception may proof especially useful as a low-cost anomaly detection
technique that can be transparently applied in the enclave’s trusted runtime.
A straightforward security policy would already practically raise the bar by
blocking at least the brutal approach of existing tools like SGX-Step [257],
which often trigger several hundreds of thousands of rapid interrupts in a single
enclaved execution. It remains important to recognize, however, that heuristic
detection approaches will inevitably suffer from both false positives and false
negatives. The former can impede practical deployability by, for instance,
incorrectly classifying benign “interrupt storms”, which are known to occur
under heavy system load in real-world operating systems, as an artifact of
an ongoing attack. False negatives, on the other hand, would likely trigger a
continuous attacker-defender race where adversaries are expected to develop
improved, ever-more stealthy techniques that stay under the radar of the
enclave’s interrupt detection policy (e.g., by invoking different copies of the
same enclave). A final limitation of detection-oriented approaches is that it is
not always clear which actions can be taken in response to a suspected attack
attempt. Certain secrets are long-lived and cannot be straightforwardly deleted,
e.g., attestation keys or user fingerprints, and they may already have been
partially exposed at the time of detection. In summary, interrupt detection
approaches appear promising as an incomplete first line of defense, but future
research should tell which detection strategies would be effective and strike a
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Figure 8.4: Spectrum of TEE resilience against address translation attacks, ordered
by decreasing adversary control over enclave page-table attributes: from no restrictions
in the SEV architecture, via physical address and accessibility checks in SGX and
SEV-SNP, to academic proposals. The red page-table attributes (physical page
number) affect enclaved execution integrity, green attributes (execute-disable, read-
only) facilitate defense-in-depth access restrictions, and yellow attributes (accessed,
dirty, supervisor, present) reveal enclave page accesses through side channels.

balance between performance, usability, and security.

Restricting adversary control over page tables

Conventional virtual address translation via page tables represents a major
challenge across TEE designs [176, 58, 48, 11]. From a security perspective,
the privileged adversary’s control over untrusted page tables proved to be
an important enabler in the SGX attack landscape. From the perspective of
the operating system’s traditional role as a resource manager, on the other
hand, virtual memory represents an indispensable primitive for sandboxing
and memory availability. This tension between security and usability has
made page-table-based attacks very challenging to mitigate in a principled way,
despite considerable research and industry attention. In fact, Fig. 8.4 shows
that existing solutions span an entire spectrum: ranging from no protection
at all, as in the current AMD SEV [136] architecture, via the trust-but-verify
approach of Intel SGX [176], to ultimately moving page tables entirely in the
enclave, as in the Sanctum [48] architecture. Since the processor’s privileged
paging interface was never designed with an inverse security model in mind,
almost every field in an x86 page-table entry can be abused as an attack vector
(cf. Table 4.1 on page 101). In the following, we move along this spectrum, and
we recognize several opportunities for relatively low-cost and straightforward
measures that could further reduce attack surface without necessarily moving
all the way to the extreme end.
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Physical address verification. Considering that kernel-level adversaries can
arbitrarily modify page-table entries, TEE processors should at least verify
the outcome of physical address translations while in enclave mode. At an
abstract level, TEEs supporting untrusted virtual memory require some form
of “back-translation” to ensure that every physical enclave page is only ever
accessed from a corresponding, well-defined virtual address belonging to that
enclave. If this is not the case, adversaries can straightforwardly modify page
tables to fool a victim enclave to architecturally compute on code or data
that belongs to an entirely different execution path. Such address-remapping
attacks have, for instance, been repeatedly demonstrated [97, 183, 272, 274]
to create arbitrary decryption oracles in current versions of the AMD SEV
architecture, which only offers hardware-level memory encryption for virtual
machines while leaving host page tables entirely under control of the untrusted
hypervisor [136]. AMD recently announced SEV-SNP [11] processor extensions
to thwart these attacks through a reverse-map table that back-translates every
host-physical address to its expected guest-physical address. Interestingly, in
contrast to SGX enclaves, SEV-SNP encrypted virtual machines remain in full
control of internal guest page-table mappings. This may bring a considerable
defensive advantage and somewhat raise the bar for side-channel adversaries, as
the untrusted hypervisor now only observes guest physical page access patterns
and should still somehow connect them to the virtual addresses referenced in
the victim application.

The SGX architecture [176] natively protects against page-remapping attacks by
maintaining explicit shadow EPCM entries in the processor to track ownership,
type, expected virtual address, and permission metadata for every physical
enclave page. A page fault is signaled to the untrusted operating system when
accessing mapped pages that do not belong to the currently executing enclave,
are accessed through an unexpected virtual address, or do not comply with
the read/write/execute permissions imposed by the EPCM. SGX furthermore
safeguards the consistency of address translation caches by flushing the TLB
on enclave transitions and requiring all enclave threads to exit before evicting
pages. However, despite all these measures, we showed in Chapter 7 that not
all current SGX processors properly enforce EPCM restrictions in the transient
domain, allowing to mount an innovative type of “inverse Foreshadow” transient
page-remapping attacks known as LVI-L1D [251].

A/D attribute masking. Chapter 3 presented our research on stealthy page-
table attacks [258], which for the first time called attention to the security
implications of updating “accessed” and “dirty” bits in enclave mode. A long
line of attacks [263, 257, 256, 254, 6, 182] has since abused A/D bits to spy on
enclave memory access patterns without triggering page faults. Most notably,
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Nemesis [256] extended SGX-Step with fully deterministic zero-step filtering
by observing that the accessed bit of the page-table entry mapping the current
enclave code page is only ever set by the processor when the interrupt arrived
after eresume and the enclave instruction has indeed been retired. CopyCat [182]
furthermore abused this noiseless single-stepping primitive as a deterministic side
channel to reveal intra-page conditional control flow by counting the number of
enclave instructions between consecutive page accesses, as illustrated in Fig. 8.2
on page 235. Importantly, these research results clearly demonstrate that A/D
bits, in combination with precise SGX-Step interrupts, provide a substantial
additional advantage over prior page-fault adversaries [277] who merely clear
the “present” bit to learn the coarse-grained sequence of enclave page accesses.

As a simple countermeasure, we hence recommend that SGX processors do
not anymore update page-table accessed and dirty bits while in enclave mode.
We expect that this would only have limited impact on memory-management
functionality, as real-world operating systems appear to only make limited use of
A/D bits anyway [223]. Furthermore, previous research [223, 47] suggests that
the setting of accessed and dirty attributes is not implemented by the processor’s
page-miss handler silicon circuitry, but instead proceeds through microcode
assists [74]. We hence presume that the responsible microcode procedure can
be straightforwardly extended to not update A/D bits while in enclave mode.
If this were the case, a microcode update could even be distributed that applies
retroactively to existing SGX processors. An important consideration to assess
the effectiveness of this countermeasure, however, is that we showed in Chapter 3
that enclave page access patterns can also be reliably deduced from the caching
behavior of untrusted page-table entries. From this research we conclude that
the root cause of enclave address translation side channels is the page-table
walk in unprotected memory, and A/D masking would at best only reduce but
decidedly not eliminate this attack surface.

Given the apparent simplicity of A/D masking, however, we expect that this
countermeasure would still yield a high benefit-cost ratio for at least 3 reasons.
First, monitoring page-table entries through the cache using Flush+Flush
or Flush+Reload techniques is not completely noise-free and suffers from
a reduced spatial granularity of 32KiB, since one cache line can hold up to
8 adjacent page-table entries. If stealthiness is less of a concern, revoking
access rights through the “present” bit and monitoring the associated page
faults would still yield a 4KiB spatial resolution, but at the cost of loosing the
instruction-granular temporal dimension exploited by CopyCat. Adversaries
would therefore likely be forced to fall back to a more involved and possibly
weakened approach using a combination of SGX-Step interrupt counting and
page fault marker events. Second, in the absence of page-table accessed bits
that are set on instruction retirement, SGX-Step adversaries would loose their
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deterministic oracle to filter out zero-step observations when the APIC timer
interrupt fires too early. The proposed A/D masking technique would hence
break SGX-Step’s perfect single-stepping functionality by introducing some zero-
stepping noise. We do not expect that this in itself would pose a major hassle,
since a well-configured APIC timer interval can achieve single-stepping ratios
close to 99% [257]. However, even a limited number of zero-step events may
already complicate the correlation of repeated side-channel measurements for the
same instruction over different enclave invocations. Third, A/D masking may
be especially effective to complicate single-stepping timer interval configuration
when applied in combination with the randomization-based hardening measures
proposed in Section 8.3.1. In this respect, Fig. 8.3 on page 252 illustrated
the alternative possibility of precise single-stepping through inter-processor
interrupts. Chapter 3 indeed contributed a highly accurate Flush+Flush-
based page-table monitoring technique to shoot down a victim enclave CPU
at instruction-level granularity (cf. Table 3.1 on page 90). When applying
Flush+Flush to monitor enclave page-table entries, we observed distinctly
larger, highly recognizable timing differences. Interestingly, this observation
is in notable contrast to the original Flush+Flush [87] attack, which suffers
from considerable noise when spying on read-only shared memory mappings.
Our subsequent analysis in Chapter 3 attributed this effect to implicit A/D
updates by the enclave. Namely, our novel application of Flush+Flush for the
first time spied on page-table memory that is concurrently being updated when
the enclave processor sets the accessed bit, resulting in distinctly larger timing
differences as the clflush instruction now needs to write back a modified
cache line.3 In light of these findings, we expect that the proposed A/D
masking countermeasure would also offset our precise Flush+Flush spying
technique, thereby forcing adversaries to fall back to significantly higher-latency
Flush+Reload techniques that may not accommodate rapid single-stepping
through inter-processor interrupts (cf. Fig. 3.3 on page 83).

Uncacheability control. Current SGX processors do not offer fine-grained
cacheability control of enclave memory pages, only allowing the untrusted
operating system to mark the entire physical memory range protected by SGX
as either write-back or uncacheable at boot time [47]. The default write-back
policy implies that all protected memory references by the enclave end up in the
processor cache, enabling address metadata extraction through Prime+Probe
side channels [181, 92, 29, 225, 79], or even direct data extraction through
Foreshadow [249] on unpatched machines. Provably marking the entire enclave
memory range as uncacheable would increase security, but expectedly at an

3Intel’s software optimization manual [113] indeed confirms that “flushing cache lines in
modified state are more costly than flushing cache lines in non-modified states”.
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unacceptable performance loss. A more flexible hardware-software interface
would hence be desirable to allow trusted enclave software to selectively mark
some of its own critical pages as uncacheable. We expect that extending current
SGX processors with page-level uncacheability for enclaves may be relatively
straightforward when leveraging existing hardware support for EPCM shadow
entries and page-level cache-disable functionality.

Importantly, as with some of the previous proposals, selectively marking enclave
pages as uncacheable may considerably raise the bar for attackers, but does not
in itself represent a bullet-proof defense strategy. As evident from Table 8.1,
adversaries can indeed fall back to alternative microarchitectural structures
including DRAM row buffers [204, 263] or branch predictors [156, 105]. We
argue, however, that processor support for trusted page-level uncacheability
would offer a tempting and adaptable solution. Exposing cacheability, one of
the major hidden and leaky microarchitectural optimizations, to the software
level would ultimately provide enclave applications with more control over the
performance vs. security trade-off. Interestingly, the idea of marking selected
pages as uncacheable also echoes recent proposals for a new “non-speculative”
memory type [222, 26, 239]. The ConTExT-light [222] solution, further discussed
in the next section, indeed relies on the observation that uncacheable memory
locations in recent Intel x86 processors can generally not be dereferenced in
the transient-execution domain. Hence, a trusted processor interface to mark
well-defined sensitive enclave pages, e.g., cryptographic keys and the state-save
area holding interrupted register contents, as uncacheable would also enable
a ConTExT-light approach to prevent these high-value secrets from leaking
through Spectre or LVI-type unrestrained transient execution. One of the
remaining challenges to strike a good balance between performance and security
for this type of solution would be to accurately identify uncacheable candidate
enclave pages that are either accessed in a secret-dependent fashion, e.g., lookup
tables, or contain long-term secrets that should not be transiently dereferenced.

Self paging. Even with additional restrictions in place, enclave address
translation side channels ultimately boil down to the tension between
indispensable demand-paging interfaces for benign memory management OS
functionality vs. information leakage through page-fault side channels. At the
extreme end of the page-table defense spectrum are therefore more radical TEE
research prototypes [48, 58] that place enclave page tables completely out of reach
of the attacker. The Sanctum [48] architecture, for instance, allows enclaves
to maintain their own virtual-to-physical mappings in a separate page-table
hierarchy in enclave-private memory. However, the Sanctum design necessitates
a trusted security monitor software layer plus additional hardware to verify that
enclave physical address mappings always remain within selected DRAM regions
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owned by that particular enclave. Furthermore, when applying Sanctum’s
enclave-private page table design to modern x86 processors, it remains unclear
how to securely integrate widespread virtualization extensions and particularly
the extended page tables setup by the hypervisor.

Altogether, putting enclaves in full control of their own paging decisions would
indeed eliminate an important side-channel attack vector, and may even preclude
certain types of transient-execution attacks like LVI [251], but these solutions
appear to sidestep the actual underlying problem. That is, moving page tables
inside the enclave interferes with demand paging and the ability of the operating
system to quickly regulate different users competing for scarce platform resources
like encrypted EPC memory. In this respect, the more minimal hardware
extensions for eresume interception and TLB prefetching [175, 237], discussed
above, would strike a better balance that puts software in control without
moving to the extreme end of the spectrum. TLB prefetching can indeed rule
out page-table leakage for selected enclave pages, while still relying on the
demand-paging interface for non-sensitive pages and allowing the operating
system to arbitrarily swap out enclave pages at any time.

As a potentially more scalable alternative, Autarky [200] recently proposed
minimal extensions to the SGX architecture, which would enable an enclave
to retain control over its own paging decisions without moving page tables
into enclave memory. In this proposal, the modified processor implements the
A/D masking and eresume interception building blocks, described above, and
additionally clears the reported page-fault address entirely. This forces the
untrusted operating system to involve the enclave in its paging decisions, allowing
the latter to hide private page accesses through any software-defined policy,
e.g., ORAM, page clustering, or rate limiting [200]. While Autarky presents
a compelling design that remains largely compatible with the existing SGX
ISA, and indeed properly blocks controlled-channel attacks at the architectural
level, an important limitation is that microarchitectural attack vectors remain
out-of-scope. Particularly concerning in this respect is that Autarky explicitly
leaves the untrusted page-table data structure in attacker-controlled memory.
As shown in Chapter 3, this design decision allows adversaries to reliably deduce
enclave-private page visits from the caching behavior of untrusted page-table
entries [258]. While cache timing attacks in general could possibly be addressed
through perpendicular measures, such as cache partitioning, these defenses may
not always cover implicit memory accesses made by the processor’s page-miss
handler [259]. Page-table entries essentially reside in untrusted shared memory
that is accessed by both the enclave and the operating system and would, hence,
likely end up in the same cache partition.
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Taming confused-deputy attacks via address-space restrictions

As a last opportunity for enclave hardening through the hardware-software
interface, we observe that a considerable subset of the aforementioned SGX
attacks takes advantage of the enclave’s unrestricted access to unprotected
memory to facilitate confused-deputy [93] attacks (cf. single-address-space
column in Table 8.1). At an abstract level, these attacks first hijack execution
inside the enclave through a variety of techniques, including memory-safety
misbehavior [254, 154, 24], illegal transient data or control flow [39, 251], or
even undervolting [188]. In the second phase of the attack, once the enclave
has diverted from its intended execution path, the adversary abuses the victim
enclave’s unrestricted access to the unprotected address space to directly leak or
encode secrets, or to setup fake data structures like a stack or linked list entries
that allow to further steer the enclaved execution as desired. While none of
these attacks critically relies on a shared address space and can be eradicated
through different mitigations, experience tells that real-world hardware and
software is not perfect. Hence, we advocate for a relatively simple hardware
mechanism that would raise the bar for practical exploitation and allow enclave
software to adhere to the principle of least privilege by restricting access rights
to unprotected memory over time.

Particularly, we propose a new “enclave mode access prevention” processor
feature that would allow enclave software to optionally disable access to
unprotected memory outside the enclave after configuring a bit in the rflags
x86 register. This would be similar in nature and purpose to the already
existing Supervisor Mode Access Prevention (SMAP) processor extension that
was added as an operating system hardening measure to hinder user-to-kernel
confused-deputy attacks.4 While SMAP is not intended to be a bullet-proof
solution, it is known to practically raise the bar for memory-safety exploitation
at a low cost. SMAP was furthermore recently shown to also be effective for
impeding gadget-based transient-execution attacks [251, 36]. Since SGX already
adds several checks to the address translation process while in enclave mode (cf.
Fig. 3.1 on page 73), we expect that the implementation and runtime overhead
of our proposed enclave mode access prevention feature would be minimal.
Provided that the page-miss SGX logic is implemented in microcode [47], this
functionality could even be retroactively applied to existing SGX processors.
As a potential implementation caveat, unprotected address translations may
have to be flushed from the TLB when enabling enclave mode access prevention.
Alternatively, support for memory-protection keys in recent Intel processors [114]

4Note that the existing SGX architecture already precludes direct jumps to unprotected
code outside the enclave, similar in effect to Supervisor Mode Execution Prevention (SMEP).
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could potentially also be leveraged to dynamically restrict enclave accesses to
the unprotected address space.

Note that prior work [268] has advocated for an inverse mechanism, where the
operating system can restrict unprotected memory accesses to safeguard against
potential enclave malware [219]. Both solutions aim to address complementary
aspects of the SGX single-address-space design, and could even be combined into
a unified solution that allows to configure restrictions from both the perspective
of the enclave and the untrusted operating system.

8.3.3 Towards a notion of safe speculation

The threat of transient-execution attacks arose suddenly and, as a consequence,
real-world defenses have so far mainly focused on stopping the bleeding. When
setting out a longer-term road map for efficiently restraining transient execution,
we want to reiterate the importance of differentiating Meltdown-type and
Spectre-type threats. Where the former presents a critical mitigation challenge
for current systems, the latter defines the research agenda for the coming decade.
That is, building on the insights contributed in Chapters 6 and 7, Meltdown-type
threats based on illegal data flow from faulting instructions will be efficiently
addressed on the medium term, through relatively contained silicon-level design
changes in the CPU pipeline. This is already evident from unaffected processor
designs [13] and in the newest generations of hardened Intel processors [128].
Spectre-type threats, on the other hand, exploit indispensable CPU pipeline
performance optimizations and, hence, represent an industry-wide, long-term
challenge. In this regard, we argue that Spectre highlights the fallacy of not
propagating down fine-grained security boundaries across abstraction levels and
ultimately requires carefully redesigning the hardware-software boundary with
a more explicit notion of security in mind.

The discussion below adopts some of Intel’s recently refined transient-execution
terminology [125] to reason about attack impact and mitigations. Particularly,
the specifier “domain bypass” is reserved to denote the leakage aspect of
prior Meltdown-type attacks and the “cross domain” specifier similarly refers
to gadget-oriented exploitation with Spectre or LVI. We overview mitigation
strategies according to the abstract phases in a transient-execution attack, as
illustrated in Fig. 1.4 on page 11. Neutralizing any of these phases would
in principle suffice to thwart practical attacks. A wide spectrum of possible
defense avenues hence arises, each however with their security limitations and
performance trade-offs.
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Flushing or partitioning microarchitectural structures (phases 1, 4)

Transient-execution attacks bypass architectural access restrictions by exploiting
shared microarchitectural elements between the attacker and the victim. They
can therefore be limited to some extend by flushing or partitioning said elements
when context switching between code of different security domains, similar
to the side-channel hardening techniques discussed in Section 8.3.1. In the
following, we consider three distinct ways in which microarchitectural isolation
can impede certain attack variants: clearing buffers on entry to prevent cross-
domain poisoning, on exit to prevent leakage, and when squashing the pipeline
to hinder covert-channel transmission.

While defenses in this category have been proven to be very useful in practice for
ruling out entire sub-classes of attacks, it is important to note that no amount
of flushing or partitioning can offer full protection against transient-execution
exploits. Indeed, some variants like Spectre-PHT [146] and LVI [251] proceed
entirely in the victim domain, without relying on mistraining or secret encoding
in the attacker domain. Ultimately, given suitable gadgets, NetSpectre [224]
showed that even a fully isolated microarchitecture can be exploited through
end-to-end timing differences for API calls.

Cross-domain poisoning. Flushing or partitioning global branch prediction
history buffers is the preferred way to mitigate cross-domain branch target
injection Spectre variants [146]. For this purpose, both Intel [128] and AMD [12]
released microcode updates that extend the x86 ISA with mechanisms to restrict
indirect branch speculation between applications, the kernel, and enclaves. This
serves as a clear example of how transient-execution defenses benefit from
extending the hardware-software contract with some notion of the underlying
microarchitecture, so as to allow system software to restrict speculation across
protection domains.

As a word of caution, however, clearing BTB and RSB structures on entry
cannot rule out more advanced exploitation techniques which mistrain the
indirect branch predictor entirely within the victim domain, e.g., speculative
type confusion attacks [36].

Domain-bypass data extraction. With Foreshadow, introduced in Chapter 6,
we were the first to show that address-space restrictions are fundamentally
insufficient to rule out Meltdown-type microarchitectural data leakage. Instead,
as discussed in Section 6.9, Foreshadow requires extensive mitigations that flush
the L1D cache when context switching between enclaves or untrusted virtual
machines. For this reason, Intel extended the ISA with a microcode mechanism
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that allows system software to flush the L1D cache on vulnerable processors [271,
107]. Likewise, in response to the more recent wave of MDS attacks [223, 216,
35], yet another microarchitectural primitive was added to the ISA, this time
to allow flushing the line-fill buffers, store buffer, and load ports [108]. We can
expect this tendency of flushing increasingly many microarchitectural buffers to
continue for the coming time, at least until more principled silicon mitigations
are in place to inhibit transient forwarding from faulting loads.

Our research on LVI, presented in Chapter 7, exposed the inherent limitations
of the above microcode flush defenses by showing that, under certain adversarial
conditions, Meltdown-type effects can also be inversely exploited in a gadget-
oriented way. Essentially, LVI highlights that flushing leaky microarchitectural
buffers on protection domain switches is a necessary, but not sufficient condition
on current processors which transiently forward incorrect data from faulting or
assisted load instructions.

Covert-channel transmission. Instead of clearing microarchitectural struc-
tures to restrict the attacker’s access to residual secrets or her control over
victim mispredictions, several recent studies [278, 138] have suggested to prevent
transient instructions from creating covert channels altogether. These proposals
have focused almost exclusively on preventing widespread cache-based covert
channels by extending the microarchitecture with a small shadow structure that
holds transient memory operations and is squashed after mispredictions.

While such approaches may indeed somewhat hinder exploitation with current
techniques, it is important to note that closing one specific covert channel
does not address the root cause of transient misbehavior. From the past
decades of side-channel research, we can conclude that modern processors offer
virtually endless possibilities to create covert channels. Several recent works
have indeed demonstrated Spectre-style exploitation through non-cache-based
covert channels, e.g., AVX units [224] or port contention [23].

Inhibiting the trigger for transient execution (phase 2)

The actual root cause for transient misbehavior is most evident in phase 2,
where a “trigger instruction” causes all subsequent dependent operations to
be eventually squashed. This trigger instruction can be either a faulting or
assisted load instruction, or a mispredicted branch or data dependency. Since
any transient operations following the trigger instruction reflect potentially
dangerous computations, out of the program’s intended code or data paths,
inhibiting them from occurring in the first place would be the most solid defense
to entirely eradicate transient-execution attacks.
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We argue below that, in the case of Meltdown-type threats, preventing transient
data flow from faulting loads indeed appears to be a reasonable requirement:
the fault condition can be detected before forwarding the data, and the load
and all of its dependent operations will have to be replayed anyway. In the case
of Spectre, on the other hand, disabling speculation entirely may come with an
unacceptable performance cost for commodity computers and servers. Current
Spectre mitigations therefore only selectively disable speculation, by inserting
explicit lfence serialization barriers after identifying vulnerable code patterns.

Blocking transient data flow. The root cause for Meltdown-type threats,
including Foreshadow and LVI discussed in Chapters 6 and 7, needs to be
ultimately addressed through silicon-level design changes in future processors.
Particularly, the hardware has to ensure that no illegal data flows from faulting
or assisted load micro-ops exist at the microarchitectural level. That is, no
transient computations depending on a faulting or assisted instruction are
allowed. We believe this is already the behavior in certain ARM and AMD
processors, where a faulting load does not forward any data [13]. As an important
contribution, the LVI-NULL attack variant in Chapter 7 showed that it does not
suffice to merely zero out the forwarded value, as is the case in some acclaimed
Meltdown-resistant recent Intel processors enumerating RDCL_NO [128]. We
expect that these findings will contribute to improved silicon-level mitigations
in future processors. In fact, Intel [110] explains that more recent processors
exhibit “zero-at-ret” behavior, where the zero dummy value is only forwarded
to dependent operations when the faulting load is the next instruction to retire.
Intel claims that, on these processors, LVI-NULL cannot be exploited in practice,
due to the extremely narrow size of the transient-execution window.

To date, the only known transient-execution attack that abuses illegal transient
data flow not originating from faulting or assisted load instructions is Spectre-
STL [102]. This variant abuses that the processor’s memory disambiguation
logic may optimistically predict that a load does not have a dependency on
a prior store, even before all prior store addresses are known. In case of a
misprediction, transient instructions may speculatively bypass a prior store and
compute on unsanitized stale values. Importantly, in contrast to Meltdown-type
threats, Spectre-STL exploits an important performance optimization that may
not be desirable to fully eliminate in future processors. Instead, Intel [128]
released a microcode update which allows the operating system to selectively
disable memory disambiguation prediction for critical applications. Furthermore,
the microcode update entirely disables memory disambiguation prediction, and
hence eliminates Spectre-STL threats, while in enclave mode.
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Serializing transient control flow. The recommended way to mitigate
pervasive Spectre-PHT [146] speculative out-of-bounds access vulnerabilities is
to insert a serializing instruction, like lfence, to stall the processor pipeline
after potentially mispredicted directional branches [128]. Since serializing
every branch may come with unacceptable performance overheads, current
solutions focus on manually or semi-automatically identifying vulnerable code
patterns, e.g., conditional array indices. Unfortunately, for sizable real-world
code bases, this rather ad-hoc mitigation approach represents a vast and error-
prone effort. Over the last two years, a steady and ongoing stream of Spectre-
PHT vulnerabilities has been manually identified and patched in, for instance,
the Intel SGX SDK [117] and the Linux kernel [36]. Similar to how programmers
have been trained over the past decades to insert explicit conditional branches to
properly shield array accesses, they are now expected to additionally serialize the
processor pipeline before performing potentially dangerous speculative out-of-
bounds computations. While compile-time static analysis techniques may assist
in automating this process, striking a suitable balance between performance
and protection appears to be particularly challenging, and initial static analysis
tools have been shown to miss many exploitable gadgets [144].

Constraining transient data accesses (phase 3)

Current short-term solutions to mitigate Spectre impose poor trade-offs between
performance and security. Namely, by flushing valuable branch prediction
history and stalling the CPU pipeline, they tend to disable some of the very
optimizations that have driven processor performance gains over the past decades.
A promising approach on the longer term therefore is to investigate solutions
that still allow processors to freely speculate, while constraining transient
computations to some safe limits. Ideally, these solutions would constrain the
processor pipeline in such a way that transient instructions never compute on
secrets which would not be referenced in a plausible architectural execution,
while still allowing useful computations that can be committed to the nominal
CPU state in case the prediction turns out to be correct.

The key discrepancy exploited by Spectre is that current CPU microarchitectures
are not sufficiently aware of the programmer’s intentions at the source code
level. This is especially apparent for the ubiquitous Spectre-PHT speculative
bounds check bypass variant. That is, programmers and compilers reason about
the security of programs at a fine-grained level, e.g., in terms of individual
array boundaries, whereas mainstream Instruction Set Architectures (ISAs) only
support coarse-grained expression of protection domains through virtual address
spaces. This leaves too much freedom to the transient execution, essentially
every accessible secret in the current process’s address space can be leaked
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via confused-deputy gadgets, and forces unfortunate compromises, like site
isolation [212] where every website executes in its own process. What we need,
therefore, is a more explicit notion of protection domains that cross-cuts the
system stack and allows to communicate fine-grained security constraints, like
array lengths, from the level of the programming language to the target processor
architecture. Such a richer architectural expression of security boundaries could
be propagated into the CPU pipeline and has the potential to enable true
hardware-software co-design, where microarchitects can constrain optimizations
according to the security requirements of the application. In the following, we
overview two concrete proposals in this respect.

Non-transient memory mappings. ConTExT [222], and concurrently also
related industry proposals [26, 239], recently outlined minimal changes to the
x86 architecture which would enable software to communicate access restrictions
to the microarchitectural transient-execution domain. Particularly, ConTExT-
enabled processors extend the hardware-software contract with a new “non-
transient” page-table attribute and the guarantee that non-transient memory
locations are never propagated to transient computations. To prevent leakage of
secret data that is already loaded in registers, the processor furthermore taints
CPU registers holding non-transient memory, and ConTExT-aware compilers
are expected to maintain a separate non-transient stack when spilling CPU
registers. Building upon this contract, a comprehensive hardware-software
co-design solution can provide protection across all layers of the system stack.
Application developers are expected to annotate high-value secrets, which
subsequently will be allocated in non-transient pages by the aid of the compiler,
linker, and operating system. ConTExT hence transforms the challenge of
defending against Spectre from the error-prone effort of locating and serializing
all possible gadgets to the appropriate annotation of critical secrets that should
never be exposed to the transient execution.

In contrast to today’s lfence software mitigations, a ConTExT-like approach
maintains the benefits of important speculative execution optimizations by still
allowing unrestricted transient access to non-critical data, without entirely
stalling the CPU pipeline for every critical branch decision. From an
implementation perspective, processors could likely leverage already existing
support for non-cacheable memory types, which also serves as an over-
approximation of the expected performance overhead [222]. While solutions
like ConTExT provide a promising avenue forward, they critically rely on the
correct annotation of relatively sparse secrets, and it remains to be investigated
to what extend application developers or automated compiler approaches can
accurately identify secrets in larger and general-purpose applications.
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Capability architectures. Capabilities are a long-standing primitive in
computer security and have more recently been revived in the CHERI [275]
research processor, which implements a hybrid memory capability scheme to
enforce fine-grained protection domains inside the virtual address space of a
conventional process. On a capability machine, pointers are represented at
runtime as unforgeable objects carrying associated permissions and length fields.
Applications are only allowed to access the memory regions described by their
current set of capability registers, and the CPU enforces that every memory
access remains within the bounds of the associated capability. While initially
designed to eradicate traditional memory-safety issues, like buffer overflows,
Watson et al. [264] argue that microarchitectures for CHERI-based processors
in principle hold all of the necessary information to ensure that speculative
loads remain within the architecturally defined limits. In the common case
of accessing successive array elements in a loop, for instance, the processor is
free to speculatively access memory locations for future loop iterations, as long
as the indices remain within the array bounds specified by the corresponding
memory capability register.

In contrast to today’s lfence software mitigations that unconditionally stall
the CPU pipeline after sensitive branches, this scheme elegantly allows the
processor to continue when the branch is correctly predicted, only stalling in
the very last loop iteration that attempts to access out-of-bounds memory. In
this regard, through their richer architectural expression of security boundaries,
capability processors like CHERI hold the promise of propagating a notion
of memory safety from the architectural level down to the microarchitectural
transient-execution domain. However, a number of important challenges for
this approach remain to be investigated, such as the security implications
of transiently computing on inadvertent in-bounds memory locations when
considering for instance an array of function pointers, the influence of capability
checks on the processor’s critical path, the general integration with out-of-order
execution and serialization of capability register operations, and the handling
of indirect branches.

8.4 Concluding thoughts

The start of this PhD trajectory happened to coincide approximately with
the public release of Intel SGX. The advent of SGX was broadly acclaimed
for bringing strong hardware-enforced trusted computing guarantees to mass
consumer devices and for protecting end-user data in an untrusted cloud
environment. Over the past years, however, a significant understanding of
the microarchitectural limitations of this technology has been built up by the
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research community, in synergy with the results presented in this dissertation.
This ongoing line of work nuances the security and privacy guarantees promised
by today’s TEEs and, more broadly, requires us to question our understanding
of system security in general.

The security community has traditionally assessed the trustworthiness of
applications at the software level by reasoning about source code as if it were
executed on an idealized, abstract computing platform. In this regard, TEEs
can be considered a real leap forward, as they allow to drastically reduce the
trusted computing base by abstracting away the underlying operating system
and supporting software. However, the recent wave of microarchitectural attacks
shows once again that abstraction levels are only relative in the eyes of attackers.
Perhaps the most important takeaway is that today’s processors can no longer
be considered opaque black boxes. It is, therefore, time to take TEE protection
to the next level by maintaining strict enclave isolation at all levels of the system
stack—not only at the architectural level but also in the CPU microarchitecture
itself. Building such next-generation security architectures for the post-Spectre
world will likely require rethinking the hardware-software interface and, thus,
poses a challenge for the decades to come.





Appendix A

Transient-execution
classification tree

This appendix provides a state-of-the-art classification tree for Meltdown-type
attacks that have been demonstrated to date. The tree in Fig. A.1 is based on
our original systematization of the transient-execution attack landscape [36],
which has since been extended and maintained at https://transient.fail/.

In this systematization, the Foreshadow [249] attack, presented in Chapter 6,
appears under the canonical name “Meltdown-P-L1”. Furthermore, LVI [251]
attacks, presented in Chapter 7, are considered to be of “inverse Meltdown” type
and hence principally cover the entire tree. Figure E.1 on page 295 provides an
orthogonal classification tree and canonical naming scheme which covers the
most important LVI attack variants.
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Meltdown-type

Meltdown-NM-REG

Meltdown-AC

Meltdown-DE

Meltdown-PF

Meltdown-UD

Meltdown-SS

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Meltdown-AC-LFB

Meltdown-AC-LP

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

Meltdown-CPL-REG

Meltdown-NC-SB

Meltdown-AVX

Meltdown-AD

Meltdown-TAA

Meltdown-PRM-LFB

Meltdown-UC-LFB

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-PK-L1

Meltdown-PK-SB

Meltdown-AVX-SB

Meltdown-AVX-LP

Meltdown-AD-LFB

Meltdown-AD-SB

Meltdown-TAA-LFB

Meltdown-TAA-LP

Meltdown-TAA-SB

Figure A.1: State-of-the-art classification tree for Meltdown-type attacks [36].



Appendix B

Enclave shielding runtime
vulnerable code samples

This appendix provides selected code snippets to demonstrate some of the
real-world interface sanitization vulnerabilities found in the various enclave
shielding runtime libraries studied in Chapter 2. For all of the vulnerabilities
which are marked to have a proof-of-concept exploit in Table 2.1 on page 40, a
reference to the vulnerable software version and full attack code can furthermore
be retrieved at https://github.com/jovanbulck/0xbadc0de.

B.1 OE legacy ecall dispatcher

The (legacy) ecall interface _handle_call_enclave() does not validate that
arg_in.args points outside the enclave. While this pointer is subsequently
checked by the oeedger8r-generated entry code, an error code is still written
to the in-enclave memory location on failure (cf. Listing 2.2). After our report,
the legacy handle_call_enclave() dispatcher has been removed completely.

1 static oe_result_t _handle_call_enclave(uint64_t arg_in) {
2 oe_call_enclave_args_t args, *args_ptr;
3 ...
4 if (!oe_is_outside_enclave((void*)arg_in,
5 sizeof(oe_call_enclave_args_t)))
6 OE_RAISE(OE_INVALID_PARAMETER);
7 args_ptr = (oe_call_enclave_args_t*) arg_in;
8 args = *args_ptr;
9 ...
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10 ⭑ func(args.args);
11 ...

Listing B.1: https://github.com/Microsoft/OpenEnclave/blob/93ac313a/
enclave/core/sgx/calls.c#L216

B.2 OE built-in attestation ecall

Evidently, a check that validates that arg_in points outside the enclave was
overlooked. We thus can overwrite in-enclave memory through the write to
host_arg->result. Note that the target buffer has to have a certain size
to avoid segfaults in the function _oe_get_local_report() that is called
within _handle_get_sgx_report() (this is because the parameter oe_get_-
sgx_report_args_t is a large struct). Because of that, _oe_get_local_-
report() will very likely fail with the return value OE_INVALID_PARAMETER
(0x3) and overwrite the first four bytes of the memory at host_arg with
0x03000000.

1 oe_result_t _handle_get_sgx_report(uint64_t arg_in) {
2 oe_result_t result = OE_UNEXPECTED;
3 oe_get_sgx_report_args_t* host_arg =
4 (oe_get_sgx_report_args_t*)arg_in;
5 oe_get_sgx_report_args_t enc_arg;
6 size_t report_buffer_size = sizeof(sgx_report_t);
7

8 if (host_arg == NULL)
9 OE_RAISE(OE_INVALID_PARAMETER);

10

11 // Validate and copy args to prevent TOCTOU issues.
12 ⭑ enc_arg = *host_arg;
13

14 OE_CHECK(_oe_get_local_report(NULL, 0,
15 (enc_arg.opt_params_size != 0) ? enc_arg.opt_params : NULL,
16 enc_arg.opt_params_size, (uint8_t*)&enc_arg.sgx_report,
17 &report_buffer_size));
18

19 ⭑ *host_arg = enc_arg;
20 result = OE_OK;
21 done:
22 if (host_arg)
23 ⭑ host_arg->result = result;
24 return result;
25 }

Listing B.2: https://github.com/microsoft/OpenEnclave/blob/93ac313a/
enclave/core/sgx/report.c#L388

https://github.com/Microsoft/OpenEnclave/blob/93ac313a/enclave/core/sgx/calls.c#L216
https://github.com/Microsoft/OpenEnclave/blob/93ac313a/enclave/core/sgx/calls.c#L216
https://github.com/microsoft/OpenEnclave/blob/93ac313a/enclave/core/sgx/report.c#L388
https://github.com/microsoft/OpenEnclave/blob/93ac313a/enclave/core/sgx/report.c#L388
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B.3 Asylo ecall entry point

Asylo’s trusted ecall dispatcher is declared in Intel SGX SDK EDL spec-
ification as follows: public int ecall_dispatch_trusted_call(uint64_t
selector, [user_check] void *buffer). However, in the code below, it
becomes apparent that the [user_check] argument buffer is never properly
validated before being unmarshalled. This issue can most easily be mitigated by
properly declaring the argument buffer using edger8r’s [in] pointer attribute
instead of the problematic [user_check] attribute. Further, the validation
logic at line 16 contains a logic mistake which incorrectly assumes that outside
== ¬inside (cf. Section 2.5.3).

1 int ecall_dispatch_trusted_call(uint64_t selector, void *buffer) {
2 return asylo::primitives::asylo_enclave_call(selector, buffer);
3 }
4

5 int asylo_enclave_call(uint64_t selector, void *buffer) {
6 SgxParams *const sgx_params = reinterpret_cast<SgxParams *>(buffer);
7

8 ⭑ const void *input = sgx_params->input;
9 ⭑ size_t input_size = sgx_params->input_size;

10 ⭑ sgx_params->input = nullptr;
11 ⭑ sgx_params->input_size = 0;
12 void *output = nullptr;
13 size_t output_size = 0;
14

15 if (input) {
16 ⭑ if (TrustedPrimitives::IsTrustedExtent(input, input_size)) {
17 PrimitiveStatus status{error::GoogleError::INVALID_ARGUMENT,
18 "input should lie within untrusted memory."};
19 return status.error_code();
20 }

Listing B.3: https://github.com/google/asylo/blob/e4810bdbac/asylo/
platform/primitives/sgx/trusted_sgx.cc#L98

B.4 SGX-LKL SIGILL signal handler exploit

SGX-LKL intercepts the SIGILL (undefined instruction) to handle instructions
like rdtsc inside the enclave. In this case, the host executes rdtsc and the
result is passed back into the enclave through the enclave’s signal handler
interface. In case of SIGILL, an adversary can change the untrusted siginfo
argument to point into the enclave, which will then yield the memory contents
at that location as the 64-bit result of rdtsc, as shown by our PoC. This specific
vulnerability can only be exploited if the target in-enclave memory starts with

https://github.com/google/asylo/blob/e4810bdbac/asylo/platform/primitives/sgx/trusted_sgx.cc#L98
https://github.com/google/asylo/blob/e4810bdbac/asylo/platform/primitives/sgx/trusted_sgx.cc#L98
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0x04000000 (i.e., siginfo->signum == SIGILL). In addition, the rdtsc result
needs to be outputted back to the untrusted side (e.g., our PoC simply prints
it to the terminal). Note that adversaries can also use the in-enclave signal
handler’s execution itself as a side-channel. Depending on the contents of
the memory pointed to by siginfo->signum different code paths are taken,
so established side-channel approaches may reconstruct the secret-dependent
control through differences in timing [180], page tables [277, 258], or other
microarchitectural elements [156, 256].

1 void __enclave_signal_handler(gprsgx_t *regs,
2 enclave_signal_info_t *siginfo) {
3 ...
4 int ret;
5 ⭑ switch (siginfo->signum) {
6 case SIGSEGV:
7 ⭑ ret = handle_sigsegv(regs, siginfo->arg);
8 break;
9 case SIGILL:

10 ⭑ ret = handle_sigill(regs, siginfo->arg);
11 break;
12 default:
13 ret = -1;
14 }
15 ...

Listing B.4: https://github.com/lsds/sgx-
lkl/blob/664eb25a/src/sgx/enclave_signal.c#L17

B.5 Sancus authentic execution stub

Passing a ciphertext pointer argument that points inside the enclave may
unintentionally decrypt enclave memory, potentially leading to information
disclosure. Interestingly, we observed that untrusted array index arguments
were properly sanitized to safeguard against well-understood buffer overflow
vulnerabilities.

1 void SM_ENTRY __sm_handle_input(uint16_t conn_id,
2 const void* payload, size_t len)
3 {
4 if (conn_id >= SM_NUM_INPUTS) return;
5

6 size_t data_len = len - AD_SIZE - SANCUS_TAG_SIZE;
7 ⭑ uint8_t* cipher = (uint8_t*)payload + AD_SIZE;
8 ⭑ uint8_t* tag = cipher + data_len;
9

10 uint8_t* input_buffer = alloca(data_len);
11

https://github.com/lsds/sgx-lkl/blob/664eb25a/src/sgx/enclave_signal.c#L17
https://github.com/lsds/sgx-lkl/blob/664eb25a/src/sgx/enclave_signal.c#L17
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12 ⭑ if (sancus_unwrap_with_key(__sm_io_keys[conn_id],
13 payload, AD_SIZE, cipher,
14 data_len, tag, input_buffer))
15 {
16 __sm_input_callbacks[conn_id](input_buffer, data_len);
17 }
18 }

Listing B.5: https://github.com/sancus-tee/sancus-compiler/blob/5d5cbff/
src/stubs/sm_input.c#L7

B.6 Sancus trusted loader enclave

Sancus may optionally safeguard code confidentiality in a two-stage ap-
proach [78]. In the first stage, a trusted infrastructural “loader enclave” is
deployed. Next, the loader enclave can be called by multiple mutually distrusting
clients to securely decrypt and load second-stage application enclaves. However,
the code for the loader enclave below lacks input pointer validation. This allows
untrusted software developers to build an arbitrary write primitive in the shared
infrastructural loader enclave. Specifically, after successful decryption, the
loader proceeds to copy the adversary-controlled plaintext application enclave
to its intended destination in the single-address-space. After a malicious software
provider has successfully hijacked the loader enclave, all code confidentiality
guarantees for future application enclaves from other providers are lost.

1 int sm_loader_load(struct SancusCryptModule *scm) {
2 ⭑ size_t pstart = (size_t)scm->public_start;
3 ⭑ size_t pend = (size_t)scm->public_end;
4 ⭑ size_t pcstart = (size_t)scm->public_start_crypt;
5 ⭑ size_t pcend = (size_t)scm->public_end_crypt;
6 size_t i;
7 int ret;
8

9 /* check boundaries */
10 if (pend < pstart || pcend < pcstart)
11 return 0;
12 /* check sizes */
13 if ((pend - pstart) != (pcend - pcstart))
14 return 0;
15 /* check if sizes are a multiple of AES block size */
16 if ((pend - pstart) % SM_LOADER_KEYLEN != 0)
17 return 0;
18 /* get scm->name length */
19 ⭑ for (i = 0; scm->name[i] != ’\0’; i++);
20 /* derive decryption key */
21 if (hmac_sign(key, scm->name, i) == 0)
22 return 0;
23 /* derive the IV for CCM mode */

https://github.com/sancus-tee/sancus-compiler/blob/5d5cbff/src/stubs/sm_input.c#L7
https://github.com/sancus-tee/sancus-compiler/blob/5d5cbff/src/stubs/sm_input.c#L7
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24 if (hmac_sign(iv, key, SM_LOADER_KEYLEN) == 0)
25 return 0;
26 /* decrypt module and check integrity in CCM mode */
27 ⭑ if (decrypt(key, iv, scm->public_start_crypt,
28 scm->public_start, pend - pstart) == 0)
29 return 0;
30 /* protect the module (should prevent read access) */
31 ret = protect_sm((struct SancusModule *)scm);
32

33 return ret;
34 }

Listing B.6: https://github.com/sancus-tee/soteria-test/blob/3551360/
crypttest_fpga/sm_loader.c#L49

B.7 OE string ecall edge wrapper

As part of OE’s “deep copy” marshalling scheme, the _handle_call_enclave_-
function() from the trusted runtime properly copies the entire marshalled
input buffer into the enclave (including the string argument and alleged length
which are put into the serialized input_buffer by the untrusted runtime). The
oeedger8r bridge then takes care to redirect all pointers to the marshalled
input buffer. However, when doing so the auto-generated oeedger8r entry code
below does not explicitly null-terminate the untrusted string argument. Hence,
the trusted user function will incorrectly assume that the string is properly
terminated and may perform out-of-bounds memory read/writes beyond the
end of the string.

1 void ecall_my_ecall(uint8_t* input_buf,
2 size_t input_buf_size, uint8_t* output_buf,
3 size_t output_buf_size, size_t* output_bytes_written)
4 {
5 oe_result_t _result = OE_FAILURE;
6 /* NOTE: output buf code removed for sake of space */
7 my_ecall_args_t* pargs_in =(my_ecall_args_t*) input_buf;
8 size_t input_buf_offset = 0;
9

10 /* Make sure buffers lie within the enclave */
11 OE_ADD_SIZE(input_buf_offset, sizeof(*pargs_in));
12 if (!input_buf || !oe_is_within_enclave(input_buf, input_buf_size))
13 goto done;
14 /* OE_SET_IN_POINTER(s, s_len * sizeof(char)) */
15 if (pargs_in->s) {
16 ⭑ *(uint8_t**)&pargs_in->s = input_buf + input_buf_offset;
17 OE_ADD_SIZE(input_buf_offset, (size_t)(s_len*sizeof(char)));
18 if (input_buf_offset > input_buf_size) {
19 _result = OE_BUFFER_TOO_SMALL;
20 goto done;

https://github.com/sancus-tee/soteria-test/blob/3551360/crypttest_fpga/sm_loader.c#L49
https://github.com/sancus-tee/soteria-test/blob/3551360/crypttest_fpga/sm_loader.c#L49
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21 }
22 }
23 oe_lfence(); /* lfence after checks */
24 ⭑ my_ecall(pargs_in->s); /* Call user function */
25 ...
26 }

Listing B.7: Proxy function generated by oeedger8r for the EDL specification:
public void my_ecall([in,string] char *s).

B.8 Keystone integer overflow

We discovered a potential vulnerability that originates from an integer overflow
in the detect_region_overlap() function which is used during the process of
creating an enclave. Evidently, there is no check to guarantee that the integer
additions do not overflow. Suppose that epm_base = 0x82800000 and epm_-
size = 100000. If one passes addr=0x1 and size = 0xffffffffffffffff,
there is an overlap between both regions. However, when these values are put
into the above condition, this evaluates to “no overlap” (zero). The above issue
was not exploitable at the time of discovery: various constraints imposed on the
size prevented the exploitation of this issue, but it might have been problematic
in the future if the overlap check was used in different parts of the code.

1 static int detect_region_overlap(uintptr_t addr, uintptr_t size)
2 {
3 ...
4 ⭑ region_overlap |= ((uintptr_t) epm_base < addr + size)
5 && ((uintptr_t) epm_base + epm_size > addr);
6 ...

Listing B.8: https://github.com/keystone-enclave/riscv-pk/blob/e24d47c/
sm/pmp.c#L71

https://github.com/keystone-enclave/riscv-pk/blob/e24d47c/sm/pmp.c#L71
https://github.com/keystone-enclave/riscv-pk/blob/e24d47c/sm/pmp.c#L71
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Additional resources for
Nemesis attacks

This appendix provides the full instruction timing tables for the MSP430
microprocessor, plus source code and compiled assembly for the Nemesis
interrupt latency timing attacks presented in Chapter 5. All of the attack
code and case study applications for both Intel SGX and Sancus were made
open-source available at https://github.com/jovanbulck/nemesis. For
the Sancus attacks, continuous integration has furthermore been setup in
a cycle-accurate simulator which can be viewed at https://travis-ci.org/
jovanbulck/nemesis.

C.1 MSP430 instruction cycles

This appendix provides the full instruction timings for the MSP430 architecture,
as published by Texas Instruments [243]. All jump instructions require two
clock cycles to execute, regardless of whether the jump is taken or not. The
number of CPU cycles required for other instructions depends on the addressing
modes of the source and destination operands, not the instruction type itself.
Tables C.1 and C.2 list the number of cycles for respectively single and double
operand instructions. Note that a number of MSP430 assembly operations
(including nop, incd, rla, ret, and tst) are emulated by means of the listed
machine instructions.
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Table C.1: MSP430 single operand instruction cycles.

No. of Cycles
Addressing RRA, RRC, PUSH CALL Example
Mode SWPB, SXT

Rn 1 3 4 SWPB R5
@Rn 3 4 4 RRC @R9
@Rn+ 3 5 5 SWPB @R10+
#N – 4 5 CALL #0F000H
x(Rn) 4 5 5 CALL 2(R7)
EDE 4 5 5 PUSH EDE
&EDE 4 5 5 SXT &EDE

C.2 Secure keypad implementation

The enclaved keypad program below was derived from a recently published
open-source1 automotive Sancus application scenario [252], which we had to
minimally modify in order to run without function callbacks in a stand-alone
enclave.

The start-to-end timing of the poll_keypad function only reveals the number
of times the if statement was executed, i.e., the number of keys that were down
(cf. return value). By carefully interrupting the function each loop iteration, an
untrusted ISR can learn the value of the secret PIN code.

1 int SM_DATA(secure) init = 0x0;
2 int SM_DATA(secure) pin_idx = 0x0;
3 uint16_t SM_DATA(secure) key_state = 0x0;
4 char SM_DATA(secure) pin[PIN_LEN];
5 const char SM_DATA(secure) keymap[NB_KEYS] =
6 {
7 ’1’, ’4’, ’7’, ’0’, ’2’, ’5’, ’8’, ’F’,
8 ’3’, ’6’, ’9’, ’E’, ’A’, ’B’, ’C’, ’D’
9 };

10

11 int SM_ENTRY(secure) poll_keypad( void )
12 {
13 int is_pressed, was_pressed, mask = 0x1;
14

15 /* Securely initialize SM on first call. */
16 if (!init) return do_init();
17

18 /* Fetch key state from MMIO driver SM. */

1 https://github.com/sancus-tee/vulcan/blob/master/demo/ecu-tcs/sm_tcs_kypd.c

https://github.com/sancus-tee/vulcan/blob/master/demo/ecu-tcs/sm_tcs_kypd.c
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Table C.2: MSP430 double operand instruction cycles.

Addressing Mode No. of
Src Dst Cycles Example

Rn Rm 1 MOV R5,R8
PC 2 BR R9
x(Rm) 4 ADD R5,4(R6)
EDE 4 XOR R8,EDE
&EDE 4 MOV R5,&EDE

@Rn Rm 2 AND @R4,R5
PC 2 BR @R8
x(Rm) 5 XOR @R5,8(R6)
EDE 5 MOV @R5,EDE
&EDE 5 XOR @R5,&EDE

@Rn+ Rm 2 ADD @R5+,R6
PC 3 BR @R9+
x(Rm) 5 XOR @R5+,8(R6)
EDE 5 MOV @R9+,EDE
&EDE 5 MOV @R9+,&EDE

#N Rm 2 MOV #20, R9
PC 3 BR #2AEH
x(Rm) 5 MOV #0300H,0(SP)
EDE 5 ADD #33,EDE
&EDE 5 ADD #33,&EDE

x(Rn) Rm 3 MOV 2(R5),R7
PC 3 BR 2(R6)
x(Rm) 6 ADD 2(R4),6(R9)
EDE 6 MOV 4(R7),EDE
&EDE 6 MOV 2(R4),&EDE

EDE Rm 3 AND EDE,R6
PC 3 BR EDE
x(Rm) 6 MOV EDE,0(SP)
EDE 6 CMP EDE,EDE
&EDE 6 MOV EDE,&EDE

&EDE Rm 3 MOV &EDE,R8
PC 3 BR &EDE
x(Rm) 6 MOV &EDE,0(SP)
EDE 6 MOV &EDE,EDE
&EDE 6 MOV &EDE,&EDE
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19 uint16_t new_key_state = read_key_state();
20

21 /* Store down keys in private PIN array. */
22 for (int key = 0; key < NB_KEYS; key++)
23 {
24 is_pressed = (new_key_state & mask);
25 was_pressed = (key_state & mask);
26 if (is_pressed
27 /* INTERRUPT SHOULD ARRIVE HERE */
28 && !was_pressed && (pin_idx < PIN_LEN))
29 {
30 pin[pin_idx++] = keymap[key];
31 }
32 /* .. OR HERE. When configuring the timer
33 for the key comparison in the next loop
34 iteration, ISR should take into account
35 key presses from previous runs to be able
36 to detect key releases. */
37 mask = mask << 1;
38 }
39 key_state = new_key_state;
40

41 /* Return the number of characters still
42 to be entered by the user. */
43 return (PIN_LEN - pin_idx);
44 }

Listing C.1: Secure keypad Sancus enclave.

For completeness, we also provide a disassembled version of this function, as
compiled with LLVM/Clang v3.7.0.

1 poll_keypad:
2 push r4
3 mov r1, r4
4 push r11
5 push r10
6 push r9
7 tst &init
8 jz 3f
9 call #read_key_state

10 mov #1, r12
11 clr r13
12 mov &key_state, r14
13 1: mov &pin_idx, r11
14 cmp #4, r11
15 jge 2f
16 mov r12, r10
17 and r15, r10
18 tst r10 ; test key state
19 jz 2f ; V no. of cycles
20 mov r14, r10 ; 1
21 and r12, r10 ; 1
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22 tst r10 ; 1
23 jnz 2f
24 mov.b 518(r13), r10
25 mov r11, r9
26 inc r9
27 mov r9, &pin_idx
28 mov.b r10, 550(r11) ; V no. of cycles
29 2: rla r12 ; 1
30 incd r13 ; 1
31 cmp #32, r13 ; 2
32 jnz 1b
33 mov r15, &key_state
34 mov #4, r15
35 sub &pin_idx, r15
36 jmp 4f
37 3: call #do_init
38 4: pop r9
39 pop r10
40 pop r11
41 pop r4
42 ret

Listing C.2: Secure keypad Sancus enclave (compiled assembly).

C.3 Intel SGX SDK binary search implementation

In this appendix, we provide the full C source code of the bsearch function
from the trusted in-enclave libc in the official Intel SGX Linux SDK v2.1.2
(linux-sgx/sdk/tlibc/stdlib/bsearch.c).

1 /*
2 * Copyright (c) 1990 Regents of the University
3 * of California. All rights reserved.
4 */
5

6 #include <stdlib.h>
7

8 /*
9 * Perform a binary search.

10 *
11 * The code below is a bit sneaky. After a
12 * comparison fails, we divide the work in half
13 * by moving either left or right. If lim is
14 * odd, moving left simply involves halving
15 * lim: e.g., when lim is 5 we look at item 2,
16 * so we change lim to 2 so that we will look
17 * at items 0 & 1. If lim is even, the same
18 * applies. If lim is odd, moving right again
19 * involves halving lim, this time moving the
20 * base up one item past p: e.g., when lim is 5
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21 * we change base to item 3 and make lim 2 so
22 * that we will look at items 3 and 4. If lim
23 * is even, however, we have to shrink it by
24 * one before halving: e.g., when lim is 4, we
25 * still looked at item 2, so we have to make
26 * lim 3, then halve, obtaining 1, so that we
27 * will only look at item 3.
28 */
29

30 void *
31 bsearch(const void *key, const void *base0,
32 size_t nmemb, size_t size,
33 int (*compar)(const void *, const void *))
34 {
35 const char *base = (const char *)base0;
36 size_t lim; int cmp; const void *p;
37

38 for (lim = nmemb; lim != 0; lim >>= 1) {
39 p = base + (lim >> 1) * size;
40 cmp = (*compar)(key, p);
41 if (cmp == 0)
42 return ((void *)p);
43 if (cmp > 0) { /* key > p: move right */
44 base = (char *)p + size;
45 lim--;
46 } /* else move left */
47 }
48 return (NULL);
49 }

Listing C.3: Binary search routine.

Since Nemesis-type IRQ latency attacks exploit information leakage at an
instruction-level granularity, we also provide a disassembled version of this
function, as compiled with gcc v5.4.0.

1 bsearch:
2 push %r15
3 push %r14
4 push %r13
5 push %r12
6 push %rbp
7 push %rbx
8 sub $0x18,%rsp
9 test %rdx,%rdx

10 mov %rdi,0x8(%rsp)
11 je 3f
12 mov %rsi,%r12
13 mov %rdx,%rbx
14 mov %rcx,%rbp
15 mov %r8,%r13
16 jmp 2f
17
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18 ; base = (char *)p + size; lim--;
19 1: sub $0x1,%rbx
20 lea (%r14,%rbp,1),%r12
21 shr %rbx
22 test %rbx,%rbx
23 je 3f
24

25 ; for (lim = nmemb; lim != 0; lim >>= 1)
26 2: mov %rbx,%r15
27 mov 0x8(%rsp),%rdi
28 shr %r15
29 mov %r15,%rdx
30 imul %rbp,%rdx
31 lea (%r12,%rdx,1),%r14
32 mov %r14,%rsi
33 callq *%r13
34 cmp $0x0,%eax
35 je 4f ; cmp == 0
36 jg 1b ; cmp > 0
37 mov %r15,%rbx ; else move left
38 test %rbx,%rbx
39 jne 2b
40

41 ; return (NULL);
42 3: add $0x18,%rsp
43 xor %eax,%eax
44 pop %rbx
45 pop %rbp
46 pop %r12
47 pop %r13
48 pop %r14
49 pop %r15
50 ret
51

52 ; return ((void *)p);
53 4: add $0x18,%rsp
54 mov %r14,%rax
55 pop %rbx
56 pop %rbp
57 pop %r12
58 pop %r13
59 pop %r14
60 pop %r15
61 ret

Listing C.4: Binary search routine (compiled assembly).

For completeness, we finally list the source code and dissassemly of the integer
comparison function we used in the macrobenchmark evaluation of Section 5.5.3.

1 int int_comp(const void *p1, const void *p2)
2 {
3 int a = *((int*) p1), b = *((int*) p2);
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4

5 if (a == b)
6 return 0;
7 else if (a > b)
8 return 1;
9 else

10 return -1;
11 }

Listing C.5: Integer comparison routine.

1 int_comp:
2 xor %eax, %eax
3 mov (%rsi), %edx
4 cmp %edx, (%rdi)
5 je 1f
6 setg %al
7 movzbl %al,%eax
8 lea -0x1(%rax,%rax,1),%eax
9 1: ret

Listing C.6: Integer comparison routine (compiled assembly).



Appendix D

Foreshadow’s cache
requirements

In this appendix, we provide experimental evidence that Foreshadow requires
enclaved data to be present in the L1D CPU cache. We attribute this
condition to SGX’s microarchitectural implementation, for previous Meltdown-
type exploits targeting hierarchical kernel memory, do not have such strict
caching requirements.1

Placing secrets at specific cache levels. We rely on Intel’s Transactional
Synchronization Extensions (TSX) to ensure that secrets only reside in the
L2 and L3 cache levels, but not in L1. Particularly, we abuse that after a
TSX transaction has started writes are cached in the L1 cache, without being
propagated down to L2 and L3. When a transaction aborts and needs to be
rolled back, all cache lines in the write set are simply marked invalid in the L1

1Note that more recent insights [226], developed after our original publication, indicate that
both Foreshadow and Meltdown are equally restricted to leak data from the L1D cache. In
the case of Meltdown, however, misspeculated execution paths in the kernel may inadvertently
dereference user-space registers when handling system calls or interrupts. These Spectre
gadgets in the kernel essentially act as a confused deputy that prefetches uncached secrets into
L1D, at which point they can later be leaked from user space using Meltdown. Importantly,
such prefetching does not apply to Foreshadow-SGX, as any attempt to speculatively access
enclave memory from the kernel will be supressed by the processor. In the context of virtual
machine isolation, however, similar speculative register dereference gadgets in hypervisors
have been successfully combined with Foreshadow-VMM to leak host memory not initially
present in the L1D cache [226].
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1 void load_in_L2( uint64_t *secret ) {
2 asm volatile ( "mfence\n" );
3 if ( rtm_begin() == 0 ) {
4 *(secret) += 1;
5 rtm_abort();
6 }
7 asm volatile ( "mfence\n" );
8 }

Listing D.1: We evict secrets from the L1D cache by including them in the write
set of an aborted TSX transaction.

cache. Future references to these addresses only hit the L2 cache, which still
holds their original value.

Listing D.1 displays how we leverage this mechanism to ensure that the secret
is only present in the L2 and L3 caches. At Line 3 we start a new transaction.
Next the secret is modified to ensure its updated value is located in the L1
cache. When finally the transaction is aborted, the L1 cache line holding the
secret is marked as invalid, but the corresponding L2/L3 cache lines remain
unaffected. Execution is rolled back to Line 3 where from a programmer’s
perspective rtm_begin() returned −1 immediately. The mfence instructions
ensure that memory accesses cannot be reordered.

Verifying cache levels. As enclave memory is exclusively accessible to the
enclave, we rely on a carefully crafted benchmark enclave that places a secret
at the intended cache level. Unfortunately returning execution control from
the enclave (eexit), may inadvertently evict enclave secrets to secondary cache
levels or even to main memory. To detect such events, we confirm their current
cache level after every attack iteration.

Verifying at which level enclave data is currently cached is challenging. SGX’s
abort page semantics prevent us from directly measuring the access times
of enclave data: we did not observe any timing difference between accessing
cached and non-cached secrets from outside the enclave. Moving such cache
verification code into the enclave, on the other hand, is infeasible as rdtsc
instructions cannot be executed in enclave mode on SGXv1 machines [114]. We
therefore resort to creating a debug benchmark enclave and measure access
times of reading enclave data through the edbgrd instruction. As edbgrd may
inadvertently move enclave data to caches closer to the processor, we only
perform this additional verification step after the actual Foreshadow attack
attempt.

We carefully benchmarked the access times for enclave secrets residing in L1,
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Table D.1: Access times for enclave and non-enclave memory at various cache levels
(median over 100,000 runs).

Cache event Unprotected (cycles) edbgrd (cycles)

L1 cache hit 40 1,400
L2 cache hit 46 1,406
Cache miss 238 1,734

L2, and main memory. Table D.1 displays the median timing results for 100,000
runs. As expected, accessing enclave secrets in the L1 cache is only slightly
faster than when they need to be fetched from the second-level L2 cache. This
timing difference (6 cycles) is furthermore identical to L1/L2 cache hits of non-
enclave memory. When SGX memory needs to be fetched from main memory,
however, it needs to be decrypted by the memory encryption engine which adds
significant additional latency.

Experimental setup. As we are only interested in whether the attack variations
succeed, not their bandwidth, we made some changes to our attack setting.
Each attack operates in a guess/verify fashion; for every 256 possible values of
the secret byte, we performed 100,000 Foreshadow rounds. Each round starts by
first entering the benchmark enclave to explicitly place the secret at the desired
cache level. After Foreshadow’s transient-execution phase, a single oracle slot
(the current guess) is reloaded to receive the output of the transient instruction
sequence. Finally we verify whether the enclave secret is still located at its
intended cache level by measuring edbgrd timing. Any attack results from
inadvertently evicted enclave secrets are discarded.

Success rates. We first execute the Foreshadow-L1 attack 100,000 times
against an enclave secret residing in the L1 cache. When we observe edbgrd
timings larger than 1,405 cycles after the attack attempt, we assume the secret
must have been evicted from the L1 cache and discard the result. For every of
the remaining 96,594 attack rounds, we successfully received the secret.

We repeated the same test for enclave secrets residing in the L2 cache. This time,
we discarded results with edbgrd timings exceeding 1,408 ticks after the attack.
Out of the 98,610 remaining attack attempts, none succeeded in speculatively
loading a secret-dependent oracle buffer slot in the transient-execution phase.

To rule out the possibility that the transient instructions may need more
attempts to elevate the enclave secret from the L2 to the L1 cache, we ran
the same benchmark with 1,000 repeated transient executions before actually
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reloading the oracle buffer. This severely reduced the number of accepted attack
attempt down to 10,205. Still, all Foreshadow-L2 attack attempts failed.

Conclusions. As long as enclave secrets reside in the L1 cache, we observe
100% success rates. Even though L2 cache accesses only take a mere 6 cycles
longer, the success rates sharply drop to zero. The Meltdown [162] attack to
extract supervisor data does not suffer from such a hard limit, and has even
been successfully applied to read kernel secrets directly from main memory.
When applying Foreshadow against kernel data, we could indeed trivially extract
kernel secrets from the L2 cache without noticing a significant success rate drop.

We conclude that both Meltdown and Foreshadow exploit a similar race condition
vulnerability in the CPU’s out-of-order pipeline behavior, but Intel SGX’s abort
page semantics apparently have a profound microarchitectural impact. Attack
conditions are much more stringent to breach enclave than kernel isolation.



Appendix E

Additional resources for LVI
attacks

This appendix first presents a universal classification tree for Load Value
Injection (LVI) attacks discussed in Chapter 7. Next, we provide details on the
Intel SGX quote layout, which is relevant for the case-study gadget discussed
in Section 7.7.1. Finally, to provide a baseline for comparing future defenses,
we report on the lfence counts observed for the tested prototype compiler
mitigations.

E.1 LVI classification tree

In this appendix, we propose an unambiguous naming scheme to reason about
and distinguish LVI variants, following the (extended) transient-execution
attack classification tree by Canella et al. [36]. Particularly, in a first level,
we distinguish the fault or assist type triggering the transient execution, and
at a second level we specify the microarchitectural buffer which is used as the
injection source. Figure E.1 shows the resulting two-level LVI classification tree.
Note that, much like in the perpendicular Spectre class of attacks [36], not all
CPUs from all vendors might be susceptible to all of these variants.

Applicability to Intel SGX. We remark that some of the fault types that
may trigger LVI in Fig. E.1 are specific to Intel SGX’s root attacker model.
Particularly, LVI-US generates supervisor-mode page faults by clearing the
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LVI-type

LVI-NM-FPU

LVI-PF

LVI-MCA

LVI-US

LVI-PPN

LVI-P

LVI-AD

LVI-US-NULL

LVI-US-LFB

LVI-US-SB

LVI-US-LP

LVI-PPN-NULL

LVI-PPN-L1D

LVI-P-NULL

LVI-P-L1D

LVI-P-LFB

LVI-P-SB

LVI-P-LP

LVI-AD-LFB

LVI-AD-SB

LVI-AD-LP

Figure E.1: Extensible LVI classification tree (generated using https://transient.
fail/) with possible attack variants (red, bold), and neutralized variants that are
already prevented by current software and microcode mitigations (green, dashed).

user-accessible bit in the untrusted page-table entry mapping a trusted enclave
memory location. The user-accessible bit can only be modified by root attackers
that control the untrusted OS, and hence does not apply in a user-to-kernel
or user-to-user LVI scenario. Furthermore, LVI-PPN generates SGX-specific
EPCM page faults by supplying a rogue physical page number in a page-table
entry mapping trusted enclave memory (cf. Section 7.6.1). This variant is
specific to Intel SGX’s EPCM memory access control model.

Finally, as explored in Section 7.8, LVI-P and LVI-AD are not specific to Intel
SGX, and might apply to traditional kernel and process isolation as well.

Neutralized variants. Interestingly, as part of our analysis, we found that some
LVI variants are in principle feasible on unpatched systems, but are already
properly prevented as an unintended side effect of software mitigations that
have been widely deployed in response to Meltdown-type cross-domain leakage
attacks.

We considered whether virtual machine or OS process Foreshadow variants [271]
may also be reversely exploited through an injection-based LVI methodology,
but we concluded that no additional mitigations are required. In the case of

https://transient.fail/
https://transient.fail/
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virtual machines, the untrusted kernel can only provoke non-present page faults
(and hence LVI-P-L1D injection) for less-privileged applications, and never for
more privileged hypervisor software. Alternatively, we find that cross-process
LVI-P-L1D is possible in demand-paging scenarios when the kernel does not
properly invalidate the PPN field when unmapping a victim page and assigning
the underlying physical memory to another process. The next page dereference
in the victim process provokes a page fault leading to the L1TF condition and
causing the L1D cache to inject potentially poisoned data from the attacker
process into the victim’s transient data stream. However, while this attack
is indeed feasible on unpatched systems, we found that it is already properly
prevented by the recommended PTE inversion [46] countermeasure which has
been widely deployed in all major operating systems in response to Foreshadow.

Secondly, we considered that some processors transiently compute on
unauthorized values from the FPU register file before delivering a device-
not-available exception (#NM) [234]. This may be abused in a “reverse LazyFP”
LVI-NM-FPU attack to inject attacker-controlled FPU register contents into
a victim application’s transient data stream. However, we concluded that
no additional mitigations are required for this variant as all major operating
systems inhibit the #NM trigger completely by unconditionally applying the
recommended eager FPU switching mitigation. Likewise, Intel confirmed that
for every enclave (re-)entry SGX catches and signals the #NM exception before
any enclave code can run.

Finally, we concluded that the original Meltdown [162] attack to read (cached)
kernel memory from user space cannot be inverted into an LVI-L1D equivalent.
The reasoning here is that the user-accessible page-table entry attribute is only
enforced in privilege ring 3, and a benign victim process would never dereference
kernel memory.

E.2 Intel SGX quote layout

We first provide the C data structure layout representing a quote in Listing E.1.
Note that the report_data field in the sgx_report_body_t; is part of the
(untrusted) input provided as part of the QE invocation. The only requirement
on this data is that it needs to have a valid SGX report checksum, and hence
needs to be filled in by a genuine enclave running on the target system (but
this can also be for instance an attacker-controlled debug enclave).

Furthermore, Listing E.3 provides the get_quote entry point in Intel SGX SDK
Enclave Definition Language (EDL) specification. Note that the quote data
structure holding the asymmetric cryptographic signature is relatively big, and
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1 typedef struct _sgx_report_data_t {
2 uint8_t d[64];
3 } sgx_report_data_t;
4

5 typedef struct _report_body_t {
6 ...
7 /* (320) Data provided by the user */
8 sgx_report_data_t report_data;
9 } sgx_report_body_t;

10

11 typedef struct _quote_t {
12 uint16_t version; /* 0 */
13 uint16_t sign_type; /* 2 */
14 sgx_epid_group_id_t epid_group_id; /* 4 */
15 sgx_isv_svn_t qe_svn; /* 8 */
16 sgx_isv_svn_t pce_svn; /* 10 */
17 uint32_t xeid; /* 12 */
18 sgx_basename_t basename; /* 16 */
19 sgx_report_body_t report_body; /* 48 */
20 uint32_t signature_len; /* 432 */
21 uint8_t signature[]; /* 436 */
22 } sgx_quote_t;

Listing E.1: https://github.com/intel/linux-sgx/blob/master/common/inc/
sgx_quote.h#L87

Table E.1: Number of lfences inserted by different compiler and assembler
mitigations for the OpenSSL and SPEC benchmarks (cf. Figs. 7.8 to 7.10).

Benchmark Unoptimized Optimized compiler (Intel) Unoptimized
assembler (Intel) LLVM-IR (ours)

gcc-plain

gcc-lfence

clang-plain

clang-full

clang-ret

load+ret

ret-only

libcrypto.a 0 73 998 0 24 710 5608 39 368 5119
libssl.a 0 15 034 0 5248 1615 10 228 1415
600.perlbench 0 104 475 0 32 764 2584 - -
602.gcc 10 458 799 1 148 069 17 198 - -
605.mcf 0 1191 0 266 44 - -
620.omnetpp 0 78 968 0 36 940 5578 - -
623.xalancbmk 2 252 080 0 110 353 10 750 - -
625.x264 0 31 748 0 5582 528 - -
631.deepsjeng 0 4315 0 545 118 - -
641.leela 0 8997 0 1669 340 - -
657.xz 0 7820 0 1534 419 - -

hence is not transparently cloned into enclave memory. Instead this pointer is
declared as user_check and explicitly verified to lie outside the enclave in the
QE implementation, allowing to directly read from and write to this pointer

https://github.com/intel/linux-sgx/blob/master/common/inc/sgx_quote.h#L87
https://github.com/intel/linux-sgx/blob/master/common/inc/sgx_quote.h#L87
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1 /* emp_quote: Untrusted pointer to quote output
2 * buffer outside enclave.
3 * quote_body: sgx_quote_t holding quote metadata
4 * (without the actual signature).
5 */
6 ret = qe_epid_sign(...
7 emp_quote, /* fill in signature */
8 &quote_body, /* fill in metadata */
9 (uint32_t)sign_size);

10 ...
11

12 /* now copy sgx_quote_t metadata (including user-
13 provided report_data) into untrusted output buffer*/
14 memcpy(emp_quote, &quote_body, sizeof(sgx_quote_t));
15

16 /* now erase enclave secrets (EPID private key) */
17 CLEANUP:
18 if(p_epid_context)
19 epid_member_delete(&p_epid_context);
20 return ret;
21 }

Listing E.2: https://github.com/intel/linux-sgx/blob/master/psw/ae/qe/
quoting_enclave.cpp#L1139

1 public uint32_t get_quote(
2 [size = blob_size, in, out] uint8_t *p_blob,
3 uint32_t blob_size,
4 [in] const sgx_report_t *p_report,
5 sgx_quote_sign_type_t quote_type,
6 [in] const sgx_spid_t *p_spid,
7 [in] const sgx_quote_nonce_t *p_nonce,
8 // SigRL is big, so we cannot copy it into EPC
9 [user_check] const uint8_t *p_sig_rl,

10 uint32_t sig_rl_size,
11 [out] sgx_report_t *qe_report,
12 // Quote is big, we should output it in piece meal.
13 [user_check] uint8_t *p_quote,
14 uint32_t quote_size, sgx_isv_svn_t pce_isvnsvn);

Listing E.3: https://github.com/intel/linux-sgx/blob/master/psw/ae/qe/
quoting_enclave.edl#L43

from the trusted enclave code.

Listing E.2 finally provides the C code fragment including the memcpy invocation
discussed in Section 7.7.1.

https://github.com/intel/linux-sgx/blob/master/psw/ae/qe/quoting_enclave.cpp#L1139
https://github.com/intel/linux-sgx/blob/master/psw/ae/qe/quoting_enclave.cpp#L1139
https://github.com/intel/linux-sgx/blob/master/psw/ae/qe/quoting_enclave.edl#L43
https://github.com/intel/linux-sgx/blob/master/psw/ae/qe/quoting_enclave.edl#L43
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E.3 lfence counts for compiler mitigations

Table E.1 additionally provides the number of lfence instructions inserted by
the various compiler and assembler mitigations introduced in Section 7.9.2 for
the OpenSSL and SPEC2017 benchmarks.
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