
:

Microarchitectural Inception

Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp
rC3 — Remote Chaos Experience, December 2020

1 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

check in obs that picture looks pretty much the same

check in obs that picture looks pretty much the same

. . .Oh, we already started. My name is JVB and I welcome you to our talk: Load Value Injection. Before we start there’s something you should know about me. I specialize

in a very speci�c type of security. Microarchitectural Security

…Oh, we already started. My name is JVB and I welcome you to our talk: Load Value Injection. Before we start there's something you should know about me. I specialize in a very specific type of security. Microarchitectural Security

Processor security: Hardware isolation mechanisms

VM OS

AppApp

Hypervisor (VMM)

VM OS

EnclaveApp

2 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Jo: Yes, also meltdown, but before we talk about Meltdown and related attacks, let’s first take a look at how modern processors work. nice engineering, allows multiple programs on the same hardware, metaphorical walls in between, basis for security

Daniel/Michael: well, have you thought about the uarch foundation under your nice arch walls?

Daniel/Michael: well, have you thought about the uarch foundation under your nice arch walls?

Microarchitectural timing attacks: CPU cache

printf("%d", i);

printf("%d", i);

3 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Microarchitectural timing attacks: CPU cache

printf("%d", i);
Cache

miss

printf("%d", i);

3 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Microarchitectural timing attacks: CPU cache

printf("%d", i);
Cache

miss Reque
st

printf("%d", i);

3 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Microarchitectural timing attacks: CPU cache

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

3 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Microarchitectural timing attacks: CPU cache

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

Cache
hit

3 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Microarchitectural timing attacks: CPU cache

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

Cache
hit

No DRAM acces
s,

much faster

DRAM access,
slow

3 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Flush+Reload

Shared Memory

ATTACKER VICTIM

flush
access

access

4 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Flush+Reload

Shared Memory

ATTACKER

Shared Memory

cac
hed

cached

VICTIM

flush
access

access

4 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Flush+Reload

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

4 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Flush+Reload

Shared Memory

ATTACKER VICTIM

flush
access

access

4 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Flush+Reload

Shared Memory

ATTACKER VICTIM

flush
access

access

4 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Flush+Reload

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

4 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Flush+Reload

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

4 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Flush+Reload

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

fast if victim accessed data,
slow otherwise

4 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Memory Access Latency

50 100 150 200 250 300 350 400

101

104

107

Latency [Cycles]

Nu
m
be
ro
fA
cc
es
se
s

Cache Hits

5 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Memory Access Latency

50 100 150 200 250 300 350 400

101

104

107

Latency [Cycles]

Nu
m
be
ro
fA
cc
es
se
s

Cache Hits Cache Misses

5 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

We can communicate across protection walls
using microarchitectural side channels!

JO: wait a minute, did you just jump over those walls...

Leaky processors: Jumping over protection walls with side-channels

VM OS

AppApp

Hypervisor (VMM)

VM OS

EnclaveApp

6 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

JO: so protection is relative as the processor itself is leaky; jo becomes a believer

check in obs that picture looks pretty much the same

check in obs that picture looks pretty much the same

Jo: “I have a test for you” Michael: “You’re not gonna tell me anything about this �rst?” Jo: “Before I describe the project, I have to know you can do it” Michael: “Why?”

Jo: “Well it’s not, strictly speaking, leaking. . . You have two minutes to explain Foreshadow to me” Michael start o� with a simple explanation of Meltdown. Jo: “You’ll

have to be better” Michael continues with a full microarchitectural picture of where Foreshadow picks up the wrong value (that is close to the picture we use to explain

LVI) Jo: “More like it.”

 Jo: “I have a test for you” Michael: “You're not gonna tell me anything about this first?” Jo: “Before I describe the project, I have to know you can do it” Michael: “Why?” Jo: “Well it's not, strictly speaking, leaking… You have two minutes to explain Foreshadow to me” Michael start off with a simple explanation of Meltdown. Jo: “You’ll have to be better” Michael continues with a full microarchitectural picture of where Foreshadow picks up the wrong value (that is close to the picture we use to explain LVI) Jo: “More like it.”

check in obs that picture looks pretty much the same

check in obs that picture looks pretty much the same

Meltdown: Transiently encoding unauthorized memory

User Memory
A B

C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

char value = kernel[0]

7 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

JO: high-level overview

Meltdown: Transiently encoding unauthorized memory

User Memory
A B

C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

char value = kernel[0]
Page fault (Exception)

7 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

JO: high-level overview

Meltdown: Transiently encoding unauthorized memory

Out of order

User Memory
A B

C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K

char value = kernel[0]

mem[value]
Page fault (Exception)

7 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

JO: high-level overview

Meltdown: Transiently encoding unauthorized memory

Out of order

User Memory
A B

C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K K

char value = kernel[0]

mem[value]

K

Page fault (Exception)

7 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

JO: high-level overview

Meltdown variants: The transient-execution zoo https://transient.fail

Meltdown-type

Meltdown-NM-REG
Meltdown-AC

Meltdown-DE

Meltdown-PF

Meltdown-UD

Meltdown-SS

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Meltdown-AC-LFB
Meltdown-AC-LP

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK
Meltdown-SM-SB

Meltdown-MPX
Meltdown-BND

Meltdown-CPL-REG
Meltdown-NC-SB
Meltdown-AVX

Meltdown-AD

Meltdown-TAA
Meltdown-PRM-LFB
Meltdown-UC-LFB

Meltdown-US-L1
Meltdown-US-LFB
Meltdown-US-SB

Meltdown-P-L1
Meltdown-P-LFB
Meltdown-P-SB
Meltdown-P-LP

Meltdown-PK-L1
Meltdown-PK-SB

Meltdown-AVX-SB
Meltdown-AVX-LP

Meltdown-AD-LFB
Meltdown-AD-SB

Meltdown-TAA-LFB
Meltdown-TAA-LP
Meltdown-TAA-SB

8 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

https://transient.fail

Meltdown variants: Address dependencies

12Physical
12Virtual

ZombieLoad/
RIDL

51
47 11 6 5 0

12Physical
12VirtualFallout 51

47 11 0

12Physical
12VirtualForeshadow 51

47 11 0

12Physical
12VirtualMeltdown 51

47 11 0

Page Number Page O�set

9 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Meltdown variants: Address dependencies

12Physical
12Virtual

ZombieLoad/
RIDL

51
47 11 6 5 0

12Physical
12VirtualFallout 51

47 11 0

12Physical
12VirtualForeshadow 51

47 11 0

12Physical
12VirtualMeltdown 51

47 11 0

Page Number Page O�set

9 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Meltdown variants: Address dependencies

12Physical
12Virtual

ZombieLoad/
RIDL

51
47 11 6 5 0

12Physical
12VirtualFallout 51

47 11 0

12Physical
12VirtualForeshadow 51

47 11 0

12Physical
12VirtualMeltdown 51

47 11 0

Page Number Page O�set

9 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Meltdown variants: Microarchitectural bu�ers

Ex
ec
ut
io
n
En
gi
ne

Reorder bu�er

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

AL
U,
AE
S,
..
.

AL
U,
FM
A,
..
.

AL
U,
Ve
ct
,.
..

AL
U,
Br
an
ch

Lo
ad

da
ta

Lo
ad

da
ta

St
or
e
da
ta

AG
U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y
Su
bs
ys
te
m

Load Bu�er Store Bu�er

L1 Data Cache
DTLB

LFB

STLB

L2 Cache L3 Cache DRAM

Fr
on
te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

µOP µOP µOP µOPµOPs

4-Way Decode

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

Branch
Predictor

L1 Instruction Cache
ITLB

10 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Meltdown variants: Microarchitectural bu�ers

Ex
ec
ut
io
n
En
gi
ne

Reorder bu�er

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

AL
U,
AE
S,
..
.

AL
U,
FM
A,
..
.

AL
U,
Ve
ct
,.
..

AL
U,
Br
an
ch

Lo
ad

da
ta

Lo
ad

da
ta

St
or
e
da
ta

AG
U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y
Su
bs
ys
te
m

Load Bu�er Store Bu�er

L1 Data Cache
DTLB

LFB

STLB

L2 Cache L3 Cache DRAM

Fr
on
te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

µOP µOP µOP µOPµOPs

4-Way Decode

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

Branch
Predictor

L1 Instruction Cache
ITLB

10 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Meltdown take-away

Faulting (or assisted) loads transiently forward unrelated data
from various microarchitectural bu�ers

If we take a look at these transient execution attacks we have basically a �gure like this (show 4 empty squares - explain and build up the �gure except the LVI square).

I think we overlooked one square, and this last square, that’s LVI.

If we take a look at these transient execution attacks we have basically a figure like this (show 4 empty squares - explain and build up the figure except the LVI square). I think we overlooked one square, and this last square, that's LVI.

Load Value Injection (LVI): Turning Meltdown around

CPU

s = *secret;

L1D$ LFB/LP

direct data
leakage!

...

12 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

The idea of LVI is quite simple: We turn Meltdown around. You bring the subject into a fault and then they fill it with their secrets.

Load Value Injection (LVI): Turning Meltdown around

CPU

	
CALL	*pt

or
array[*pt]

L1D$ LFB/LP ...

inject data!

12 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

The idea of LVI is quite simple: We turn Meltdown around. You bring the subject into a fault and then they fill it with their secrets.

Then you break in a leak it. Well it’s not, strictly speaking, leaking. A�er all: it’s called load value *injection*. (exactly as in the trailer XD)

Then you break in a leak it. Well it's not, strictly speaking, leaking. After all: it’s called load value *injection*. (exactly as in the trailer XD)

check in obs that picture looks pretty much the same

check in obs that picture looks pretty much the same

check in obs that picture looks pretty much the same

check in obs that picture looks pretty much the same

LVI: Microarchitectural inception

13 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Daniel: Ok, let me plant a value in a microarchitectural buffer, with a simple operation like mov A to 1000. What is in the store buffer now? Jo: “A to be stored at address 1000”

LVI: Microarchitectural inception

13 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Daniel: “Right. But the processor wouldn’t let you pick up this value because the processor knows I wrote it there. For functional correctness, the processor always has to keep track of which context data comes from or invalidate data upon a context switch. Thus, it’s impossible to inject values.”

LVI: Microarchitectural inception

13 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Jo smiles because he knows it’s possible. Jo: “That’s not true”.

LVI: Microarchitectural inception

13 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

LVI: Microarchitectural inception

13 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

LVI: Microarchitectural inception

13 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

LVI: Microarchitectural inception

Replay load

13 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

check in obs that picture looks pretty much the same

check in obs that picture looks pretty much the same

Jo: “Load Value Injection” Michael’s glass stops halfway to his mouth. Jo: “Don’t bother telling me it’s impossible.” Michael: “It’s perfectly possible. Just bloody di�cult.”

Jo: “That’s what I keep saying to Daniel.” Michael: “Daniel is skeptical of every idea.” Jo: “Well, have you done it before?” Michael: “We tried it. Got the processes and the

transient execution in place, but it didn’t take the injected value.” Jo: “Was the transient window not long enough?” Michael: “It’s not just about the length of the

transient window. You need a fault where it can also pick up the value. It’s a very subtle art.”

Jo: “Load Value Injection” Michael’s glass stops halfway to his mouth. Jo: “Don’t bother telling me it’s impossible.” Michael: “It’s perfectly possible. Just bloody difficult.” Jo: “That’s what I keep saying to Daniel.” Michael: “Daniel is skeptical of every idea.” Jo: “Well, have you done it before?” Michael: “We tried it. Got the processes and the transient execution in place, but it didn’t take the injected value.” Jo: “Was the transient window not long enough?” Michael: “It’s not just about the length of the transient window. You need a fault where it can also pick up the value. It’s a very subtle art.”

check in obs that picture looks pretty much the same

check in obs that picture looks pretty much the same

Jo records himself on this slide

Jo records himself on this slide

check in obs that picture looks pretty much the same

check in obs that picture looks pretty much the same

Michael on this slide

Michael on this slide

LVI: Bringing the victim into the dream

Vulnerable platforms: Intel So�ware Guard
Extensions (SGX)

Enarx (Red Hat) Asylo (Google)

Enclaves to the rescue!

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Intel SGX promise: hardware-level isolation and attestation

14 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Intel SGX: A look under the hood

paging unit SGX checkslogical address physical address

• SGX machinery protects against direct address remapping attacks

• . . . but untrusted address translation may fault during enclaved execution (!)

15 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Intel SGX: A look under the hood

paging unit SGX checks

page fault (#PF)

logical address physical address

• SGX machinery protects against direct address remapping attacks
• . . . but untrusted address translation may fault during enclaved execution (!)

15 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Intel SGX: A look under the hood

paging unit SGX checks

page fault (#PF)

logical address physical address

We can arbitrarily provoke page faults for trusted enclave loads!

15 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

LVI toy example: Hijacking transient data �ow

1 void c a l l v i c t im (s i z e t
untrusted arg)

2 {
3 * arg copy = untrusted arg ;
4 array [**trusted ptr * 4096] ;
5 }

16 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

LVI toy example: Recovering arbitrary secrets

0 20 40 60 80 100 120 140 160 180 200 220 240
0

200
400
600

Array

Ac
ce
ss
tim

e
[c
yc
le
s]

Intended transmission ‘D’ Secret transmission ‘S’

17 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Taxonomy of LVI variants: Many bu�ers, many faults. . .

LVI-type

LVI-NM-FPU
LVI-PF

LVI-MCA

LVI-US

LVI-PPN

LVI-P

LVI-AD

LVI-US-NULL
LVI-US-LFB
LVI-US-SB
LVI-US-LP

LVI-PPN-NULL
LVI-PPN-L1D

LVI-P-NULL
LVI-P-L1D
LVI-P-LFB
LVI-P-SB
LVI-P-LP

LVI-AD-LFB
LVI-AD-SB
LVI-AD-LP

18 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

LVI-based transient control-�ow hijacking

P3 address

uarch buffer
P1_gadget:

*user_pt; 1. Victim �lls µ-arch bu�er with
attacker-controlled data

2. Victim executes indirect branch
(JMP/CALL/RET)

3. Faulting load→ inject incorrect
attacker values(!)

4. Redirect transient control �ow

19 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

LVI-based transient control-�ow hijacking

P2_gadget:

return;

P3 address

uarch buffer
P1_gadget:

*user_pt;RAX 1. Victim �lls µ-arch bu�er with
attacker-controlled data

2. Victim executes indirect branch
(JMP/CALL/RET)

3. Faulting load→ inject incorrect
attacker values(!)

4. Redirect transient control �ow

19 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

LVI-based transient control-�ow hijacking

P2_gadget:

return;

P3 address

uarch buffer

LVI

P1_gadget:

*user_pt;RAX 1. Victim �lls µ-arch bu�er with
attacker-controlled data

2. Victim executes indirect branch
(JMP/CALL/RET)

3. Faulting load→ inject incorrect
attacker values(!)

4. Redirect transient control �ow

19 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

LVI-based transient control-�ow hijacking

P2_gadget:

return;

P3 address

uarch buffer

P3_gadget:
oracle[*secret_pt];

LVI

P1_gadget:

*user_pt;RAX 1. Victim �lls µ-arch bu�er with
attacker-controlled data

2. Victim executes indirect branch
(JMP/CALL/RET)

3. Faulting load→ inject incorrect
attacker values(!)

4. Redirect transient control �ow

19 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Real-world LVI-ROP gadget in Intel SGX SDK

1 ; %rbx : user−contro l led argument ptr (outside enclave)
2 sgx my sum bridge :
3 . . .
4 c a l l my sum ; compute 0x10(%rbx) + 0x8(%rbx)
5 mov %rax,(%rbx) ; P1 : s tore sum to user address
6 xor %eax ,%eax
7 pop %rbx
8 ret ; P2 : load from trusted stack
9

We can setup a fake transient stack in the store bu�er or L1D!

21 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Real-world LVI-ROP gadget in Intel SGX SDK

1 ; %rbx : user−contro l led argument ptr (outside enclave)
2 sgx my sum bridge :
3 . . .
4 c a l l my sum ; compute 0x10(%rbx) + 0x8(%rbx)
5 mov %rax,(%rbx) ; P1 : s tore sum to user address
6 xor %eax ,%eax
7 pop %rbx
8 ret ; P2 : load from trusted stack
9

We can setup a fake transient stack in the store bu�er or L1D!

21 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Real-world LVI-ROP gadget in Quoting Enclave

1 intel avx rep memcpy : ; l i b i r c 2 . 4 / e f i 2 / l i b i r c . a
2 . . . ; P1 : s tore to user address
3 vmovups %xmm0,−0x10(%rdi ,%rcx , 1)
4 . . .
5 pop %r12 ; P2 : load from trusted stack
6 ret
7

22 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

check in obs that picture looks pretty much the same

check in obs that picture looks pretty much the same

Daniel: “Instead of actual data values, it should be safe to just return 0 values, right?” Jo: “I wouldn’t do that if I were a CPU manufacturer. I believe an attacker could

still use the injection of 0 values and if you run into transient execution, you may again pick up the wrong values.”

Daniel: “Instead of actual data values, it should be safe to just return 0 values, right?” Jo: “I wouldn’t do that if I were a CPU manufacturer. I believe an attacker could still use the injection of 0 values and if you run into transient execution, you may again pick up the wrong values.”

check in obs that picture looks pretty much the same

check in obs that picture looks pretty much the same

LVI-NULL: Why 0x00 is not a safe value

• Recent Intel CPUs forward 0x00 dummy values for faulting loads

• . . . but NULL is a valid virtual memory address, under attacker control
• . . . hijack pointer values (e.g., function pointer-to-pointer)

23 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

LVI-NULL: Why 0x00 is not a safe value

NULL

2

1

 trusted enclave load

attacker-controlled page

• Recent Intel CPUs forward 0x00 dummy values for faulting loads
• . . . but NULL is a valid virtual memory address, under attacker control

• . . . hijack pointer values (e.g., function pointer-to-pointer)

23 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

LVI-NULL: Why 0x00 is not a safe value

&trusted_func_pt

&trusted_func

%rax

&P3_gadgetNULL %rbx=NULL

P2_gadget:
mov	(%rax),	%rbx
call	(%rbx)

2

1

• Recent Intel CPUs forward 0x00 dummy values for faulting loads
• . . . but NULL is a valid virtual memory address, under attacker control
• . . . hijack pointer values (e.g., function pointer-to-pointer)

23 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Real-world LVI-NULL stack hijacking gadget

1 asm oret : ; (l inux−sgx/sdk/ t r t s / l inux / t r t s p i c . S #L454)
2 . . .
3 mov 0x58(%rsp) ,%rbp ; %rbp <− NULL
4 . . .
5 mov %rbp ,%rsp ; %rsp <− NULL
6 pop %rbp ; %rbp <− * (NULL)
7 ret ; %r ip <− * (NULL+8)
8

24 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

check in obs that picture looks pretty much the same

check in obs that picture looks pretty much the same

Michael on this slide! Michael: “What’s the mitigation against LVI?” Jo: “Vendors might say that’s none of our concern” Michael: “Yeah, but this isn’t the usual side

channel leakage. We must understand the gravity of this attack. The value we plant in the microarchitecture can be picked up by any load in principle. It may come to

change, it may come to change every program binary and have dramatic impact on their performance.” Jo “You basically would have to change binaries so that you

ensure that the injected load value is never picked up by any subsequent instruction.” Jo: “Rumor is lfences would basically stop transient execution.” Michael: “We

can’t work based solely on rumor can we? And even worse, adding lfences everywhere will have extremely negative impact on the performance.” Moritz: “But if it’s

about security, we mustn’t be afraid to add a few more lfences Darling!”

Michael on this slide! Michael: “What’s the mitigation against LVI?” Jo: “Vendors might say that’s none of our concern” Michael: “Yeah, but this isn’t the usual side channel leakage. We must understand the gravity of this attack. The value we plant in the microarchitecture can be picked up by any load in principle. It may come to change, it may come to change every program binary and have dramatic impact on their performance.” Jo “You basically would have to change binaries so that you ensure that the injected load value is never picked up by any subsequent instruction.” Jo: “Rumor is lfences would basically stop transient execution.” Michael: “We can’t work based solely on rumor can we? And even worse, adding lfences everywhere will have extremely negative impact on the performance.” Moritz: “But if it’s about security, we mustn’t be afraid to add a few more lfences Darling!”

check in obs that picture looks pretty much the same

check in obs that picture looks pretty much the same

Jo on this slide

Jo on this slide

check in obs that picture looks pretty much the same

check in obs that picture looks pretty much the same

Moritz on this slide

Moritz on this slide

Mitigation idea: Fencing vulnerable load instructions

25 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Mitigation idea: Fencing vulnerable load instructions

lfence

25 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Mitigating LVI: Compiler and assembler support

-mlfence-after-load

-mlvi-hardening

-Qspectre-load

26 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Serializing indirect branches

LVI↔ Spectre: no control-�ow prediction; every load can be hijacked

Instruction Possible emulation Clobber-free

ret pop %reg; lfence; jmp *%reg 7

ret not (%rsp); not (%rsp); lfence; ret 3

jmp (mem) mov (mem),%reg; lfence; jmp *%reg 7

call (mem) mov (mem),%reg; lfence; call *%reg 7

27 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Intel architectural enclaves: lfence counts libsgx qe.signed.so

23 fences
October 2019—“surgical

precision”

:
49,315 fences

March 2020—“big hammer”

28 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Intel architectural enclaves: lfence counts libsgx qe.signed.so

23 fences
October 2019—“surgical

precision”

:
49,315 fences

March 2020—“big hammer”

28 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Performance overheads: OpenSSL (our prototype mitigation)

aes-1
28 cb

c
rsa 4

096

(sign
) rsa 4

096

(verif
y) ecdh

nistp
256 ecdsa

nistp
256

(sign
)

ecdsa

nistp
256

(verif
y)

ghash sha25
6

sha51
2

0
500

1,000
1,500

97
8.
13

78
2.
29

70
3.
36

56
8.
87

49
2.
88

54
3.
81

65
0.
53

24
7.
1

43
0.
15

15
.3
9

1.6
2

0.
91

12
.4
2

2.
74 85
.2

5.
59

5.
02

Ov
er
he
ad

[%
]

own-full own-ret

30 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Performance overheads: OpenSSL (Intel’s mitigation)

aes-1
28 cb

c
rsa 4

096

(sign
) rsa 4

096

(verif
y) ecdh

nistp
256 ecdsa

nistp
256

(sign
)

ecdsa

nistp
256

(verif
y)

ghash sha25
6

sha51
2

0
500

1,000
1,500
2,000
2,500

18
68

.15

13
72
.2
7

12
87
.0
5

75
8.
61

71
5.
22

75
7.
21

82
0.
94

37
9.
25

35
2.
51

98
.9
4

13
65

.4
8

12
14
.7
3

71
2.
75

63
8.
22

69
9.
04

43
9.
01

32
6.
5

29
8.
89

15
.4
5

0.
6

2.
8

0.
76

16
.4
8

3.
91 82
.5
6

8.
25

5.
44Ov
er
he
ad

[%
] gcc-lfence clang-full clang-ret

31 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Performance overheads: SPEC (Intel’s mitigation)

600.p
erlbe

nch
602.g

cc
605.m

cf
620.o

mnet
pp

623.x
alanc

bmk
625.x

264
631.d

eeps
jeng

641.le
ela 657.xz

0

500

1,000

1,500
10
81
.2
6

28
1.6

83
0.
13

36
7.
15 59
2 66
1.3

67
3.
83

50
2.
24

38
0.
4

40
4.
58

26
4.
31

26
1.0
5

21
5.
82

18
8.
78

67
.0
9

18
9.
71

23
0.
39

84
.11

80
.16 20
7.
55

86
.2
3

75
.0
6

23
.9
9

30
.8
1

82
.6
6

76
.9

2.
52Ov
er
he
ad

[%
] gcc-lfence clang-full clang-ret

32 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

Independent performance evaluations https://www.phoronix.com

33 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

https://www.phoronix.com

Conclusions https://lviattack.eu/

⇒ LVI gadgets reversely exploit Meltdown-type e�ects

⇒ Short-term: extensive lfence compiler mitigations for Intel SGX enclaves

⇒ Long-term: improved silicon patches in new CPUs

34 Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp

https://lviattack.eu/

:

Microarchitectural Inception

Jo Van Bulck, Michael Schwarz, Daniel Gruss, Moritz Lipp
rC3 — Remote Chaos Experience, December 2020

P3 gadget address
virtual page offset

RAX

Page table entry stack

U
ser page

1

Enclave code
P2_gadget:
pop		%rax
retq

P3 address

L1
D

 c
ac

he

P3_gadget:
movb	(%rax),	%al
mov		(%rdi,%al),	%rcx

%rdi

LVI

3

4

P1_gadget:
mov		(%rdi),	%r12	
mov		-8(%rdi),	%r13

2
RAX

