
Microarchitectural Side-Channel Attacks

for Privileged Software Adversaries

Jo Van Bulck

DistriNet reunion, February 5, 2020

� imec-DistriNet, KU Leuven Q jo.vanbulck@cs.kuleuven.be 7 jovanbulck

https://distrinet.cs.kuleuven.be/people/jo
mailto:jo.vanbulck@cs.kuleuven.be
https://twitter.com/jovanbulck

Processor security: Hardware isolation mechanisms

VM OS

AppApp

Hypervisor (VMM)

VM OS

EnclaveApp

• Different software protection domains: user processes, virtual machines, enclaves

• CPU builds “walls” for memory isolation between applications and privilege levels

↔ Architectural protection walls permeate microarchitectural side-channels!

1

Processor security: Hardware isolation mechanisms

VM OS

AppApp

Hypervisor (VMM)

VM OS

EnclaveApp

• Different software protection domains: user processes, virtual machines, enclaves

• CPU builds “walls” for memory isolation between applications and privilege levels

↔ Architectural protection walls permeate microarchitectural side-channels!

1

Processor security: Hardware isolation mechanisms

VM OS

AppApp

Hypervisor (VMM)

VM OS

EnclaveApp

• Different software protection domains: user processes, virtual machines, enclaves

• CPU builds “walls” for memory isolation between applications and privilege levels

↔ Architectural protection walls permeate microarchitectural side-channels!

1

A primer on software security

Secure program: convert all input to expected output

INPUT OUTPUT

2

A primer on software security

Buffer overflow vulnerabilities: trigger unexpected behavior

INPUT OUTPUT

2

A primer on software security

Safe languages & formal verification: preserve expected behavior

INPUT OUTPUT

2

A primer on software security

Side-channels: observe side-effects of the computation

INPUT OUTPUT

2

A primer on software security

Constant-time code: eliminate secret-dependent side-effects

INPUT OUTPUT

2

A vulnerable example program and its constant-time equivalent

1 vo i d check pwd (cha r ∗ i n pu t)

2 {
3 f o r (i n t i =0; i < PWD LEN; i++)

4 i f (i n pu t [i] != pwd [i])

5 r e t u r n 0 ;

6

7 r e t u r n 1 ;

8 }

Overall execution time reveals correctness of individual password bytes!

→ reduce brute-force attack from an exponential to a linear effort. . .

3

A vulnerable example program and its constant-time equivalent

1 vo i d check pwd (cha r ∗ i n pu t)

2 {
3 f o r (i n t i =0; i < PWD LEN; i++)

4 i f (i n pu t [i] != pwd [i])

5 r e t u r n 0 ;

6

7 r e t u r n 1 ;

8 }

1 vo i d check pwd (char ∗ i n pu t)

2 {
3 i n t r v = 0x0 ;

4 f o r (i n t i =0; i < PWD LEN; i++)

5 r v |= inpu t [i] ˆ pwd [i] ;

6

7 r e t u r n (r e s u l t == 0) ;

8 }

Rewrite program such that execution time does not depend on secrets

→ manual, error-prone solution; side-channels are likely here to stay. . .

3

What’s inside the black box?

4

Enclaved execution: Reducing attack surface

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 AppApp

Traditional layered designs: large trusted computing base

5

Enclaved execution: Reducing attack surface

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Intel SGX promise: hardware-level isolation and attestation

5

Enclaved execution: Privileged side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Game-changer: Untrusted OS → new class of powerful side-channels

5

Enclaved execution: Privileged side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Game-changer: Untrusted OS → new class of powerful side-channels

5 Xu et al. “Controlled-channel attacks: Deterministic side-channels for untrusted operating systems”, IEEE S&P 2015

Enclaved execution: Privileged side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app
IR

Q
 l
a
te

n
c
y 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Instruction (interrupt number)

Game-changer: Untrusted OS → new class of powerful side-channels

5 Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018

Enclaved execution: Privileged side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app
IR

Q
 l
a
te

n
c
y 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Instruction (interrupt number)

Game-changer: Untrusted OS → new class of powerful side-channels

5 Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018

We can communicate across protection walls

using microarchitectural side-channels!

Leaky processors: Jumping over protection walls with side-channels

VM OS

AppApp

Hypervisor (VMM)

VM OS

EnclaveApp

6

Can we do better? Can we demolish architectural

protection walls instead of just peaking over?

Enclaved execution: Side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Untrusted OS → new class of powerful side-channels

7 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018

Enclaved execution: Transient-execution attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Trusted CPU → exploit microarchitectural bugs/design flaws

7 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018

Leaky processors: Breaking isolation mechanisms

VM OS

AppApp

Hypervisor (VMM)

VM OS

EnclaveApp

• Meltdown breaks user/kernel isolation

• Foreshadow breaks SGX enclave and virtual machine isolation

• Spectre breaks software-defined isolation on various levels

• . . . many more – but all exploit the same underlying insights!

8

Leaky processors: Breaking isolation mechanisms

VM OS

AppApp

Hypervisor (VMM)

VM OS

EnclaveApp

• Meltdown breaks user/kernel isolation

• Foreshadow breaks SGX enclave and virtual machine isolation

• Spectre breaks software-defined isolation on various levels

• . . . many more – but all exploit the same underlying insights!

8

Leaky processors: Breaking isolation mechanisms

VM OS

AppApp

Hypervisor (VMM)

VM OS

EnclaveApp

• Meltdown breaks user/kernel isolation

• Foreshadow breaks SGX enclave and virtual machine isolation

• Spectre breaks software-defined isolation on various levels

• . . . many more – but all exploit the same underlying insights!

8

Leaky processors: Breaking isolation mechanisms

VM OS

AppApp

Hypervisor (VMM)

VM OS

EnclaveApp

• Meltdown breaks user/kernel isolation

• Foreshadow breaks SGX enclave and virtual machine isolation

• Spectre breaks software-defined isolation on various levels

• . . . many more – but all exploit the same underlying insights!

8

Leaky processors: Breaking isolation mechanisms

VM OS

AppApp

Hypervisor (VMM)

VM OS

EnclaveApp

• Meltdown breaks user/kernel isolation

• Foreshadow breaks SGX enclave and virtual machine isolation

• Spectre breaks software-defined isolation on various levels

• . . . many more – but all exploit the same underlying insights!

8

Out-of-order and speculative execution

Key discrepancy:

• Programmers write sequential instructions

• Modern CPUs are inherently parallel

⇒ Execute instructions ahead of time

Best-effort: What if triangle fails?

→ Commit in-order, roll-back square

. . . But side-channels may leave traces (!)

9

Out-of-order and speculative execution

Key discrepancy:

• Programmers write sequential instructions

• Modern CPUs are inherently parallel

⇒ Execute instructions ahead of time

Best-effort: What if triangle fails?

→ Commit in-order, roll-back square

. . . But side-channels may leave traces (!)

9

Out-of-order and speculative execution

Overflow
exceptionRoll-back

Key discrepancy:

• Programmers write sequential instructions

• Modern CPUs are inherently parallel

⇒ Execute instructions ahead of time

Best-effort: What if triangle fails?

→ Commit in-order, roll-back square

. . . But side-channels may leave traces (!)

9

Transient-execution attacks: Welcome to the world of fun!

CPU executes ahead of time in transient world

• Success → commit results to normal world ,
• Fail → discard results, compute again in normal world /

Transient world (microarchitecture) may temp bypass architectural software intentions:

10

Transient-execution attacks: Welcome to the world of fun!

Key finding of 2018

⇒ Transmit secrets from transient to normal world

Transient world (microarchitecture) may temp bypass architectural software intentions:

10

Transient-execution attacks: Welcome to the world of fun!

Key finding of 2018

⇒ Transmit secrets from transient to normal world

Transient world (microarchitecture) may temp bypass architectural software intentions:

Delayed exception handling Control flow prediction

10

Transient-execution attacks: Welcome to the world of fun!

Key finding of 2018

⇒ Transmit secrets from transient to normal world

Transient world (microarchitecture) may temp bypass architectural software intentions:

CPU access control bypass
Speculative buffer overflow/ROP

10

The transient-execution zoo https://transient.fail

Transient cause

Spectre-type

Meltdown-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Meltdown-NM-REG

Meltdown-PF

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK-L1

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

Meltdown-CPL-REG

Meltdown-NC-SB

Meltdown-AD

Meltdown-AVX-LP

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-AD-LFB

Meltdown-AD-SB

11 Canella et al. “A systematic evaluation of transient execution attacks and defenses”, USENIX Security 2019

https://transient.fail

Meltdown: Transiently encoding unauthorized memory

Unauthorized access

12

Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

s
e
c
re

t
id

x

12

Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window Exception

(discard architectural state)

12

Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

cache hit

Exception handler

12

Building Foreshadow: Evade the abort page

Straw man: (Speculative) accesses in non-enclave mode are dropped

15 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018

Building Foreshadow: Evade the abort page

Stone man: Bypass abort page via untrusted page table

15 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018

Building Foreshadow: Evade the abort page

Stone man: Bypass abort page via untrusted page table

Unprivileged system call

mprotect(secret_ptr & 0xFFF, 0x1000, PROT_NONE);

15 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018

Foreshadow-NG: Breaking the virtual memory abstraction

L1-Terminal Fault: match unmapped physical address (!)

PT
walk?

L1D

vadrs

CPU micro-architecture

Tag? Pass to out-of-order

SGX?
EPT

walk?

host
padrs

guest
padrs

15 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018

Conclusions and take-away https://foreshadowattack.eu/

⇒ New emerging and powerful class of transient-execution attacks

⇒ Importance of fundamental side-channel research; no silver-bullet defenses

⇒ Security cross-cuts the system stack: hardware, OS, VMM, compiler, application

16

https://foreshadowattack.eu/

Appendix

References i

C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,

F. Piessens, D. Evtyushkin, and D. Gruss.

A Systematic Evaluation of Transient Execution Attacks and Defenses.

In Proceedings of the 28th USENIX Security Symposium, 2019.

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,

M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx.

Foreshadow: Extracting the keys to the Intel SGX kingdom with transient

out-of-order execution.

In Proceedings of the 27th USENIX Security Symposium. USENIX Association,

August 2018.

References ii

J. Van Bulck, F. Piessens, and R. Strackx.

SGX-Step: A practical attack framework for precise enclave execution

control.

In Proceedings of the 2nd Workshop on System Software for Trusted Execution,

SysTEX’17, pp. 4:1–4:6. ACM, 2017.

J. Van Bulck, F. Piessens, and R. Strackx.

Nemesis: Studying microarchitectural timing leaks in rudimentary CPU

interrupt logic.

In Proceedings of the 25th ACM Conference on Computer and Communications

Security (CCS’18). ACM, October 2018.

References iii

J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx.

Telling your secrets without page faults: Stealthy page table-based attacks

on enclaved execution.

In Proceedings of the 26th USENIX Security Symposium. USENIX Association,

August 2017.

SGX-Step: Executing enclaves one instruction at a time

SGX-Step

user space

4 ERESUME

Van Bulck et al. “SGX-Step: A practical attack framework for precise enclave execution control”, SysTEX 2017

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018

https://github.com/jovanbulck/sgx-step

https://github.com/jovanbulck/sgx-step

SGX-Step: Executing enclaves one instruction at a time

https://github.com/jovanbulck/sgx-step

https://github.com/jovanbulck/sgx-step

Mitigating Foreshadow

Mitigating Foreshadow

Future CPUs

(silicon-based changes)

https://newsroom.intel.com/editorials/advancing-security-silicon-level/

https://newsroom.intel.com/editorials/advancing-security-silicon-level/

Mitigating Foreshadow

OS kernel updates

(sanitize page frame bits)

Mitigating Foreshadow

Intel microcode updates

⇒ Flush L1 cache on enclave/VMM exit + disable HyperThreading

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault

Spectre v1: Speculative buffer over-read

secretuser buffer

• Programmer intention: never access out-of-bounds

memory

• Branch can be mistrained to speculatively (i.e., ahead

of time) execute with idx ≥ LEN in the transient world

• Insert explicit speculation barriers to tell the CPU to

halt the transient world...

• Huge manual, error-prone effort. . .

Spectre v1: Speculative buffer over-read

secretuser buffer

• Programmer intention: never access out-of-bounds

memory

• Branch can be mistrained to speculatively (i.e., ahead

of time) execute with idx ≥ LEN in the transient world

• Insert explicit speculation barriers to tell the CPU to

halt the transient world...

• Huge manual, error-prone effort. . .

Spectre v1: Speculative buffer over-read

secretuser buffer

• Programmer intention: never access out-of-bounds

memory

• Branch can be mistrained to speculatively (i.e., ahead

of time) execute with idx ≥ LEN in the transient world

• Insert explicit speculation barriers to tell the CPU to

halt the transient world...

• Huge manual, error-prone effort. . .

Spectre v1: Speculative buffer over-read

secretuser buffer

• Programmer intention: never access out-of-bounds

memory

• Branch can be mistrained to speculatively (i.e., ahead

of time) execute with idx ≥ LEN in the transient world

• Insert explicit speculation barriers to tell the CPU to

halt the transient world...

• Huge manual, error-prone effort. . .

	Appendix
	Appendix

