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Processor security: Hardware isolation mechanisms
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• Different software protection domains: user processes, virtual machines, enclaves

• CPU builds “walls” for memory isolation between applications and privilege levels

↔ Architectural protection walls permeate microarchitectural side-channels!
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A primer on software security

Secure program: convert all input to expected output

INPUT OUTPUT
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A primer on software security

Buffer overflow vulnerabilities: trigger unexpected behavior

INPUT OUTPUT
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A primer on software security

Safe languages & formal verification: preserve expected behavior

INPUT OUTPUT
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A primer on software security

Side-channels: observe side-effects of the computation

INPUT OUTPUT
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A primer on software security

Constant-time code: eliminate secret-dependent side-effects

INPUT OUTPUT
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A vulnerable example program and its constant-time equivalent

1 vo i d check pwd ( cha r ∗ i n pu t )

2 {
3 f o r ( i n t i =0; i < PWD LEN; i++)

4 i f ( i n pu t [ i ] != pwd [ i ] )

5 r e t u r n 0 ;

6

7 r e t u r n 1 ;

8 }

Overall execution time reveals correctness of individual password bytes!

→ reduce brute-force attack from an exponential to a linear effort. . .
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A vulnerable example program and its constant-time equivalent

1 vo i d check pwd ( cha r ∗ i n pu t )

2 {
3 f o r ( i n t i =0; i < PWD LEN; i++)

4 i f ( i n pu t [ i ] != pwd [ i ] )

5 r e t u r n 0 ;

6

7 r e t u r n 1 ;

8 }

1 vo i d check pwd ( char ∗ i n pu t )

2 {
3 i n t r v = 0x0 ;

4 f o r ( i n t i =0; i < PWD LEN; i++)

5 r v |= inpu t [ i ] ˆ pwd [ i ] ;

6

7 r e t u r n ( r e s u l t == 0) ;

8 }

Rewrite program such that execution time does not depend on secrets

→ manual, error-prone solution; side-channels are likely here to stay. . .
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What’s inside the black box?
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Enclaved execution: Reducing attack surface

Mem HDD

OS kernel
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Traditional layered designs: large trusted computing base
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Enclaved execution: Reducing attack surface

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Intel SGX promise: hardware-level isolation and attestation
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Enclaved execution: Privileged side-channel attacks
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Game-changer: Untrusted OS → new class of powerful side-channels
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Game-changer: Untrusted OS → new class of powerful side-channels

5 Xu et al. “Controlled-channel attacks: Deterministic side-channels for untrusted operating systems”, IEEE S&P 2015



Enclaved execution: Privileged side-channel attacks
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Game-changer: Untrusted OS → new class of powerful side-channels

5 Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018
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We can communicate across protection walls

using microarchitectural side-channels!



Leaky processors: Jumping over protection walls with side-channels
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Can we do better? Can we demolish architectural

protection walls instead of just peaking over?



Enclaved execution: Side-channel attacks

Mem HDD
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Untrusted OS → new class of powerful side-channels

7 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018



Enclaved execution: Transient-execution attacks
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Trusted CPU → exploit microarchitectural bugs/design flaws

7 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018



Leaky processors: Breaking isolation mechanisms

VM OS

AppApp

Hypervisor (VMM)

VM OS

EnclaveApp  
 

• Meltdown breaks user/kernel isolation

• Foreshadow breaks SGX enclave and virtual machine isolation

• Spectre breaks software-defined isolation on various levels

• . . . many more – but all exploit the same underlying insights!
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Out-of-order and speculative execution

Key discrepancy:

• Programmers write sequential instructions

• Modern CPUs are inherently parallel

⇒ Execute instructions ahead of time

Best-effort: What if triangle fails?

→ Commit in-order, roll-back square

. . . But side-channels may leave traces (!)
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Out-of-order and speculative execution

Overflow
exceptionRoll-back

Key discrepancy:

• Programmers write sequential instructions

• Modern CPUs are inherently parallel

⇒ Execute instructions ahead of time

Best-effort: What if triangle fails?

→ Commit in-order, roll-back square

. . . But side-channels may leave traces (!)
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Transient-execution attacks: Welcome to the world of fun!

CPU executes ahead of time in transient world

• Success → commit results to normal world ,
• Fail → discard results, compute again in normal world /

Transient world (microarchitecture) may temp bypass architectural software intentions:

10
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Key finding of 2018
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Transient-execution attacks: Welcome to the world of fun!

Key finding of 2018

⇒ Transmit secrets from transient to normal world

Transient world (microarchitecture) may temp bypass architectural software intentions:

Delayed exception handling Control flow prediction
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Transient-execution attacks: Welcome to the world of fun!

Key finding of 2018

⇒ Transmit secrets from transient to normal world

Transient world (microarchitecture) may temp bypass architectural software intentions:

CPU access control bypass
Speculative buffer overflow/ROP
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The transient-execution zoo https://transient.fail

Transient cause

Spectre-type

Meltdown-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Meltdown-NM-REG

Meltdown-PF

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK-L1

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

Meltdown-CPL-REG

Meltdown-NC-SB

Meltdown-AD

Meltdown-AVX-LP

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-AD-LFB

Meltdown-AD-SB

11 Canella et al. “A systematic evaluation of transient execution attacks and defenses”, USENIX Security 2019

https://transient.fail




Meltdown: Transiently encoding unauthorized memory

Unauthorized access
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Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array
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Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window Exception

(discard architectural state)
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Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

cache hit

Exception handler

 

12









Building Foreshadow: Evade the abort page

Straw man: (Speculative) accesses in non-enclave mode are dropped

15 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018



Building Foreshadow: Evade the abort page

Stone man: Bypass abort page via untrusted page table

15 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018



Building Foreshadow: Evade the abort page

Stone man: Bypass abort page via untrusted page table

Unprivileged system call

mprotect( secret_ptr & 0xFFF, 0x1000, PROT_NONE );

15 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018



Foreshadow-NG: Breaking the virtual memory abstraction

L1-Terminal Fault: match unmapped physical address (!)

PT
walk?

L1D

vadrs

CPU micro-architecture

 

Tag? Pass to out-of-order

SGX?
EPT

walk?

host
padrs

guest
padrs

15 Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018



Conclusions and take-away https://foreshadowattack.eu/

⇒ New emerging and powerful class of transient-execution attacks

⇒ Importance of fundamental side-channel research; no silver-bullet defenses

⇒ Security cross-cuts the system stack: hardware, OS, VMM, compiler, application

16

https://foreshadowattack.eu/
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SGX-Step: Executing enclaves one instruction at a time

SGX-Step

user space

4 ERESUME
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SGX-Step: Executing enclaves one instruction at a time

https://github.com/jovanbulck/sgx-step
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Mitigating Foreshadow



Mitigating Foreshadow

Future CPUs

(silicon-based changes)

https://newsroom.intel.com/editorials/advancing-security-silicon-level/

https://newsroom.intel.com/editorials/advancing-security-silicon-level/


Mitigating Foreshadow

OS kernel updates

(sanitize page frame bits)



Mitigating Foreshadow

Intel microcode updates
 

⇒ Flush L1 cache on enclave/VMM exit + disable HyperThreading

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault


Spectre v1: Speculative buffer over-read

secretuser buffer

• Programmer intention: never access out-of-bounds

memory

• Branch can be mistrained to speculatively (i.e., ahead

of time) execute with idx ≥ LEN in the transient world

• Insert explicit speculation barriers to tell the CPU to

halt the transient world...

• Huge manual, error-prone effort. . .
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