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● Marton Bognar: PhD candidate @ KU Leuven, Belgium

○ PhD thesis: “Security Arms Race at the Hardware-Software Boundary”

○       https://mici.hu/

● Jo Van Bulck: Professor @ KU Leuven, Belgium

○ Microarchitectural Side-Channel Attacks and Defenses

○ Trusted Execution Environments

○       https://vanbulck.net/
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About us

https://mici.hu/
https://vanbulck.net/


● Trust across the system stack: App > compiler > OS > CPU > µ-arch

● Integrated attack-defense perspective and open-source prototypes
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Side-channel analysis
(SGX-Step, AEX-Notify)

Transient-execution attacks
(Intel x86 SGX)

Embedded trust
(MSP430, Sancus)

About DistriNet systems security research

https://distrinet.cs.kuleuven.be/

https://distrinet.cs.kuleuven.be/


Part I: Why should we care?
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Context: Growth of the Internet of Things (IoT)



Computing spectrum: “Low-end” vs. “high-end”
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Computing spectrum: “Low-end” vs. “high-end”
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Heterogenous & 
underexplored!
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Memory isolation: Conventional “high-end” systems
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● Software protection domains: Processes, VMs, enclaves
● CPU support memory isolation: Virtual memory + privilege rings



Memory isolation: “Low-end” microcontrollers

● Often: None 🤷
○ 8/16-bit single address space
○ No virtual memory
○ No operating system

● Memory protection unit (MPU):
○ Goal: bug detection ≠ security
○ Misconfiguration
○ Attacker can often reconfigure it
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Emerging solutions: Embedded trusted computing
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Embedded enclaved execution:

○ Isolation & attestation
○ Save + clear CPU state on interrupt

Small CPU (openMSP430):

○ Area: ≤ 2 kLUTs
○ Deterministic execution: no pipeline/cache/MMU/…
○ Research vehicle for rapid prototyping of attacks & 

mitigations

Noorman et al. Sancus 2.0: A Low-Cost Security 
Architecture for IoT devices. TOPS, 2017.

https://github.com/sancus-tee
https://downloads.distrinet-research.be/software/sancus

https://github.com/sancus-tee
https://downloads.distrinet-research.be/software/sancus


Synergy: Attacks on low-end and high-end TEEs

20Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018.



Part II: Security analysis 
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Texas Instruments MSP430 microcontroller

● Low-power microcontrollers
● FRAM edition (2014) with security features:

○ Physical tamper protection
○ Hardware AES cryptographic unit
○ Memory protection unit (MPU)
○ Intellectual Property Encapsulation (IPE)
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“The IPE module protects a programmed portion of memory 
from read or write access from anywhere outside of the IP 
Encapsulated area, even by JTAG. This IPE module minimizes 
risk of exposure of critical or proprietary software from the 
rest of the application [...]”



Intellectual Property Encapsulation
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+ protection from JTAG debug port, direct memory access (DMA)
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Intellectual Property Encapsulation

0x0 0xFFFF

bottom: 
0x0400

top:
0x0600

IPE
code

IPE 
data

other 
code

✘

✔

+ protection from JTAG debug port, direct memory access (DMA)

→ Program-counter-based access control

→ Looks like a trusted execution environment (TEE)!
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Controlled call corruption

int factorial(int n) {
  int sub = n - 1;
  return (n * factorial(sub));
}

int main() {
  int result = factorial(5);
  result += 4;
}
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Controlled call corruption

main:
4020: mov #5, r12
4022: call #factorial
4024: add #4, r12
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factorial:
6080: mov r12, r13
6082: sub #1, r12
6084: ...

stack:
2054: 0
2056: 0
2058: 0xBEEF

stack ptr: 
0x2056



Controlled call corruption

main:
4020: mov #5, r12
4022: call #factorial
4024: add #4, r12
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factorial:
6080: mov r12, r13
6082: sub #1, r12
6084: ...

stack:
2054: 0
2056: 0
2058: 0xBEEF

stack ptr: 
0x2056



Controlled call corruption

main:
4020: mov #5, r12
4022: call #factorial
4024: add #4, r12

34

factorial:
6080: mov r12, r13
6082: sub #1, r12
6084: ...

stack:
2054: 0
2056: 0x4024
2058: 0xBEEF

stack ptr: 
0x2054



Controlled call corruption

main:
4020: mov #5, r12
4022: call #factorial
4024: add #4, r12
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factorial:
6080: mov r12, r13
6082: sub #1, r12
6084: ...

stack:
2054: 0
2056: 0x4024
2058: 0xBEEF

stack ptr: 
0x2054



Controlled call corruption

main:
4020: mov #5, r12
4022: call #factorial
4024: add #4, r12

36

factorial:
6080: mov r12, r13
6082: sub #1, r12
6084: ...

ipe_data:
5050: AES_KEY
5052: 0
5054: 0x42

stack ptr: 
0x5050



Controlled call corruption

main:
4020: mov #5, r12
4022: call #factorial
4024: add #4, r12
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factorial:
6080: mov r12, r13
6082: sub #1, r12
6084: ...

ipe_data:
5050: AES_KEY
5052: 0
5054: 0x42

stack ptr: 
0x5050
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Controlled call corruption

main:
4020: mov #5, r12
4022: call #factorial
4024: add #4, r12
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factorial:
6080: mov r12, r13
6082: sub #1, r12
6084: ...

ipe_data:
5050: AES_KEY
5052: 0
5054: 0x42

stack ptr: 
0x5050
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Controlled call corruption

main:
4020: mov #5, r12
4022: call #factorial
4024: add #4, r12
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factorial_ipe:
5000: mov r12, r13
5002: sub #1, r12
5004: ...

ipe_data:
5050: 0
5052: 0
5054: 0x42

stack ptr: 
0x5050



Controlled call corruption

main:
4020: mov #5, r12
4022: call #factorial
4024: add #4, r12

40

factorial_ipe:
5000: mov r12, r13
5002: sub #1, r12
5004: ...

ipe_data:
5050: 0x4024
5052: 0
5054: 0x42

stack ptr: 
0x504E

✔



Controlled call corruption
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Corrupt code in IPE to crash the application



Controlled call corruption
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Corrupt code in IPE to crash the application

Overwrite secret data with known values



Controlled call corruption
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Corrupt code in IPE to crash the application

Overwrite secret data with known values

Insert a universal read gadget



Controlled call corruption
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Controlled call corruption
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Corrupt code in IPE to crash the application

Overwrite secret data with known values

Insert a universal read gadget



Controlled call corruption
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Corrupt code in IPE to crash the application

Overwrite secret data with known values

Insert a universal read gadget

Overwrite the stored IPE configuration to 
remove the protection



Live demo!

I’m going to ask Daniel Gruss for his favorite number
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Systematization: IPE attack primitives

Breaking confidentiality (C✘) and integrity (I✘) of code or data indirectly (◐) or directly (●).
Tested on multiple different MSP430 CPUs.

51Bognar et al. “Intellectual Property Exposure: Subverting and Securing Intellectual Property Encapsulation in Texas Instruments Microcontrollers”, USENIX 2024.
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Bognar et al. “Intellectual Property Exposure: Subverting and Securing Intellectual Property Encapsulation in Texas Instruments Microcontrollers”, USENIX 2024.



Systematization: IPE attack primitives

Breaking confidentiality (C✘) and integrity (I✘) of code or data indirectly (◐) or directly (●).
Tested on multiple different MSP430 CPUs.
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Generalizing “controlled-channel” attacks

55Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015.



Generalizing “controlled-channel” attacks
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Software mitigation: MPU to the rescue
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● Re-purpose MPU to prevent architectural leakage
● Weaker attacker model → trust reset handler + JTAG



Part III: Extensible memory isolation
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Research trends

● TI MSP430 difficult to do research on:
○ Closed-source hardware and firmware
○ No white-box simulator
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Research trends

● TI MSP430 difficult to do research on:
○ Closed-source hardware and firmware
○ No white-box simulator

● openMSP430: popular in research
○ Many systems (re-)implement isolation features
○ No compatibility with each other or industry standards
○ Limited applicability to real-world devices
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Overlapping vulnerabilities
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Our proposal: openIPE

● Flexible isolation primitive
○ Based on the IPE specification
○ With protected firmware
○ But freely configurable!

● Includes proposed hardware fixes for IPE
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Our proposal: openIPE

● Flexible isolation primitive
○ Based on the IPE specification
○ With protected firmware
○ But freely configurable!

● Includes proposed hardware fixes for IPE
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openIPE



Our proposal: openIPE
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Case study: Secure interrupt handling
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The proof validation is in the pudding
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Hardware security validation: Unit tests

● Functional and security tests
● Backwards compatibility for (future) extensions
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Software security validation: Symbolic execution
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Principled symbolic Intel SGX TI IPE enclave validation
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● Confused deputy pointer 
poisoning

● ABI register sanitization

Firmware + IPE 
software

MSP430 angr 
backend fixes

Alder et al. “Pandora: Principled Symbolic Validation of Intel SGX Enclave Runtimes”, S&P 2024.
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Example: Insufficient pointer validation

IPE_ENTRY 
int secure_func(int *attacker_pt){
     return *attacker_pt;
}
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https://github.com/martonbognar/ipe-exposure                  https://github.com/martonbognar/openipe

Conclusions and outlook

● IPE Exposure: First security analysis of Texas Instruments IPE

○ Novel vulnerability: controlled call corruption
○ Reproduction of other known primitives, including side channels
○ Complete leakage of protected code and data
○ Software-only mitigation via MPU

● openIPE: Open-source extensible memory isolation

○ Hardware + firmware + software co-design
○ Paper to appear at EuroS&P ‘25
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openIPE


