
Breaking and Securing Memory
Isolation in Texas Instruments
Microcontrollers

Marton Bognar, Jo Van Bulck

(based on work with Cas Magnus and Frank Piessens)

DistriNet, KU Leuven, Belgium

1

2

Texas Instruments

3

Texas Instruments

4

Texas Instruments

5

Texas Instruments

6

Texas Instruments

7

Texas Instruments

8

Texas Instruments

9

● Marton Bognar: PhD candidate @ KU Leuven, Belgium

○ PhD thesis: “Security Arms Race at the Hardware-Software Boundary”

○ https://mici.hu/

● Jo Van Bulck: Professor @ KU Leuven, Belgium

○ Microarchitectural Side-Channel Attacks and Defenses

○ Trusted Execution Environments

○ https://vanbulck.net/

10

About us

https://mici.hu/
https://vanbulck.net/

● Trust across the system stack: App > compiler > OS > CPU > µ-arch

● Integrated attack-defense perspective and open-source prototypes

11

Side-channel analysis
(SGX-Step, AEX-Notify)

Transient-execution attacks
(Intel x86 SGX)

Embedded trust
(MSP430, Sancus)

About DistriNet systems security research

https://distrinet.cs.kuleuven.be/

https://distrinet.cs.kuleuven.be/

Part I: Why should we care?

12

13

Context: Growth of the Internet of Things (IoT)

Computing spectrum: “Low-end” vs. “high-end”

14

Computing spectrum: “Low-end” vs. “high-end”

15

Heterogenous &
underexplored!

16

Memory isolation: Conventional “high-end” systems

17

● Software protection domains: Processes, VMs, enclaves
● CPU support memory isolation: Virtual memory + privilege rings

Memory isolation: “Low-end” microcontrollers

● Often: None 🤷
○ 8/16-bit single address space
○ No virtual memory
○ No operating system

● Memory protection unit (MPU):
○ Goal: bug detection ≠ security
○ Misconfiguration
○ Attacker can often reconfigure it

18

Emerging solutions: Embedded trusted computing

19

Embedded enclaved execution:

○ Isolation & attestation
○ Save + clear CPU state on interrupt

Small CPU (openMSP430):

○ Area: ≤ 2 kLUTs
○ Deterministic execution: no pipeline/cache/MMU/…
○ Research vehicle for rapid prototyping of attacks &

mitigations

Noorman et al. Sancus 2.0: A Low-Cost Security
Architecture for IoT devices. TOPS, 2017.

https://github.com/sancus-tee
https://downloads.distrinet-research.be/software/sancus

https://github.com/sancus-tee
https://downloads.distrinet-research.be/software/sancus

Synergy: Attacks on low-end and high-end TEEs

20Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018.

Part II: Security analysis

21

Texas Instruments MSP430 microcontroller

● Low-power microcontrollers
● FRAM edition (2014) with security features:

○ Physical tamper protection
○ Hardware AES cryptographic unit
○ Memory protection unit (MPU)
○ Intellectual Property Encapsulation (IPE)

22

“The IPE module protects a programmed portion of memory
from read or write access from anywhere outside of the IP
Encapsulated area, even by JTAG. This IPE module minimizes
risk of exposure of critical or proprietary software from the
rest of the application [...]”

Intellectual Property Encapsulation

0x0

23

0xFFFF

Intellectual Property Encapsulation

0x0

bottom:
0x0400

top:
0x0600

24

0xFFFF

Intellectual Property Encapsulation

0x0 0xFFFF

bottom:
0x0400

top:
0x0600

IPE
code

IPE
data

25

Intellectual Property Encapsulation

0x0 0xFFFF

bottom:
0x0400

top:
0x0600

IPE
code

IPE
data

✔

26

Intellectual Property Encapsulation

0x0 0xFFFF

bottom:
0x0400

top:
0x0600

IPE
code

IPE
data

other
code

✘

✔

27

Intellectual Property Encapsulation

0x0 0xFFFF

bottom:
0x0400

top:
0x0600

IPE
code

IPE
data

other
code

✘

✔

+ protection from JTAG debug port, direct memory access (DMA)

28

Intellectual Property Encapsulation

0x0 0xFFFF

bottom:
0x0400

top:
0x0600

IPE
code

IPE
data

other
code

✘

✔

+ protection from JTAG debug port, direct memory access (DMA)

→ Program-counter-based access control

29

Intellectual Property Encapsulation

0x0 0xFFFF

bottom:
0x0400

top:
0x0600

IPE
code

IPE
data

other
code

✘

✔

+ protection from JTAG debug port, direct memory access (DMA)

→ Program-counter-based access control

→ Looks like a trusted execution environment (TEE)!

30

Controlled call corruption

int factorial(int n) {
 int sub = n - 1;
 return (n * factorial(sub));
}

int main() {
 int result = factorial(5);
 result += 4;
}

31

Controlled call corruption

main:
4020: mov #5, r12
4022: call #factorial
4024: add #4, r12

32

factorial:
6080: mov r12, r13
6082: sub #1, r12
6084: ...

stack:
2054: 0
2056: 0
2058: 0xBEEF

stack ptr:
0x2056

Controlled call corruption

main:
4020: mov #5, r12
4022: call #factorial
4024: add #4, r12

33

factorial:
6080: mov r12, r13
6082: sub #1, r12
6084: ...

stack:
2054: 0
2056: 0
2058: 0xBEEF

stack ptr:
0x2056

Controlled call corruption

main:
4020: mov #5, r12
4022: call #factorial
4024: add #4, r12

34

factorial:
6080: mov r12, r13
6082: sub #1, r12
6084: ...

stack:
2054: 0
2056: 0x4024
2058: 0xBEEF

stack ptr:
0x2054

Controlled call corruption

main:
4020: mov #5, r12
4022: call #factorial
4024: add #4, r12

35

factorial:
6080: mov r12, r13
6082: sub #1, r12
6084: ...

stack:
2054: 0
2056: 0x4024
2058: 0xBEEF

stack ptr:
0x2054

Controlled call corruption

main:
4020: mov #5, r12
4022: call #factorial
4024: add #4, r12

36

factorial:
6080: mov r12, r13
6082: sub #1, r12
6084: ...

ipe_data:
5050: AES_KEY
5052: 0
5054: 0x42

stack ptr:
0x5050

Controlled call corruption

main:
4020: mov #5, r12
4022: call #factorial
4024: add #4, r12

37

factorial:
6080: mov r12, r13
6082: sub #1, r12
6084: ...

ipe_data:
5050: AES_KEY
5052: 0
5054: 0x42

stack ptr:
0x5050

✘

Controlled call corruption

main:
4020: mov #5, r12
4022: call #factorial
4024: add #4, r12

38

factorial:
6080: mov r12, r13
6082: sub #1, r12
6084: ...

ipe_data:
5050: AES_KEY
5052: 0
5054: 0x42

stack ptr:
0x5050

✘

Controlled call corruption

main:
4020: mov #5, r12
4022: call #factorial
4024: add #4, r12

39

factorial_ipe:
5000: mov r12, r13
5002: sub #1, r12
5004: ...

ipe_data:
5050: 0
5052: 0
5054: 0x42

stack ptr:
0x5050

Controlled call corruption

main:
4020: mov #5, r12
4022: call #factorial
4024: add #4, r12

40

factorial_ipe:
5000: mov r12, r13
5002: sub #1, r12
5004: ...

ipe_data:
5050: 0x4024
5052: 0
5054: 0x42

stack ptr:
0x504E

✔

Controlled call corruption

41

Corrupt code in IPE to crash the application

Controlled call corruption

42

Corrupt code in IPE to crash the application

Overwrite secret data with known values

Controlled call corruption

43

Corrupt code in IPE to crash the application

Overwrite secret data with known values

Insert a universal read gadget

Controlled call corruption

44

Controlled call corruption

45

Corrupt code in IPE to crash the application

Overwrite secret data with known values

Insert a universal read gadget

Controlled call corruption

46

Corrupt code in IPE to crash the application

Overwrite secret data with known values

Insert a universal read gadget

Overwrite the stored IPE configuration to
remove the protection

Live demo!

I’m going to ask Daniel Gruss for his favorite number

47

48

49

50

Systematization: IPE attack primitives

Breaking confidentiality (C✘) and integrity (I✘) of code or data indirectly (◐) or directly (●).
Tested on multiple different MSP430 CPUs.

51Bognar et al. “Intellectual Property Exposure: Subverting and Securing Intellectual Property Encapsulation in Texas Instruments Microcontrollers”, USENIX 2024.

Systematization: IPE attack primitives

Breaking confidentiality (C✘) and integrity (I✘) of code or data indirectly (◐) or directly (●).
Tested on multiple different MSP430 CPUs.

52

So
ftw

ar
e-

ba
se

d

{
Bognar et al. “Intellectual Property Exposure: Subverting and Securing Intellectual Property Encapsulation in Texas Instruments Microcontrollers”, USENIX 2024.

Systematization: IPE attack primitives

Breaking confidentiality (C✘) and integrity (I✘) of code or data indirectly (◐) or directly (●).
Tested on multiple different MSP430 CPUs.

53

So
ftw

ar
e-

ba
se

d

{
Bognar et al. “Intellectual Property Exposure: Subverting and Securing Intellectual Property Encapsulation in Texas Instruments Microcontrollers”, USENIX 2024.

54

Generalizing “controlled-channel” attacks

55Xu et al.: “Controlled-channel attacks: Deterministic side channels for untrusted operating systems”, Oakland 2015.

Generalizing “controlled-channel” attacks

56

Software mitigation: MPU to the rescue

57

● Re-purpose MPU to prevent architectural leakage
● Weaker attacker model → trust reset handler + JTAG

Part III: Extensible memory isolation

58

Research trends

● TI MSP430 difficult to do research on:
○ Closed-source hardware and firmware
○ No white-box simulator

59

Research trends

● TI MSP430 difficult to do research on:
○ Closed-source hardware and firmware
○ No white-box simulator

● openMSP430: popular in research
○ Many systems (re-)implement isolation features
○ No compatibility with each other or industry standards
○ Limited applicability to real-world devices

60

Overlapping vulnerabilities

61

Our proposal: openIPE

● Flexible isolation primitive
○ Based on the IPE specification
○ With protected firmware
○ But freely configurable!

● Includes proposed hardware fixes for IPE

62

Our proposal: openIPE

● Flexible isolation primitive
○ Based on the IPE specification
○ With protected firmware
○ But freely configurable!

● Includes proposed hardware fixes for IPE

63
openIPE

Our proposal: openIPE

64

Case study: Secure interrupt handling

65

The proof validation is in the pudding

66

Hardware security validation: Unit tests

● Functional and security tests
● Backwards compatibility for (future) extensions

67

Software security validation: Symbolic execution

68

Principled symbolic Intel SGX TI IPE enclave validation

69

● Confused deputy pointer
poisoning

● ABI register sanitization

Firmware + IPE
software

MSP430 angr
backend fixes

Alder et al. “Pandora: Principled Symbolic Validation of Intel SGX Enclave Runtimes”, S&P 2024.

70

Example: Insufficient pointer validation

IPE_ENTRY
int secure_func(int *attacker_pt){
 return *attacker_pt;
}

71

73

https://github.com/martonbognar/ipe-exposure https://github.com/martonbognar/openipe

Conclusions and outlook

● IPE Exposure: First security analysis of Texas Instruments IPE

○ Novel vulnerability: controlled call corruption
○ Reproduction of other known primitives, including side channels
○ Complete leakage of protected code and data
○ Software-only mitigation via MPU

● openIPE: Open-source extensible memory isolation

○ Hardware + firmware + software co-design
○ Paper to appear at EuroS&P ‘25

74

openIPE

