lllIlI
Secrets Beneath the Silicon:
How Microarchitectural Attacks Break CPU Isolation
Jo Van Bulck
A DistriNet, KU Leuven, Belgium (& jowvanbulck@cs.kuleuven.be @ vanbulck.net
KU Leuven Semiconductor School, February 13
DistriN=t

~50 Years of Systems Security in One Picture...

N

A primer on Software Security

INPUT —>

» OUTPUT

‘@ ~ Secure program: Convert all input to expected output

A primer on Software Security (traditional attacks)

» OUTPUT

‘@ ~ Buffer overflow vulnerabilities: trigger unexpected behavior

A primer on Software Security (traditional attacks)

. » OUTPUT
‘\\ ll,
‘@ . Safe languages & formal verification: Preserve expected behavior
5

A primer on Software Security (this lecture)

» OUTPUT

N
\ ¢

‘@ ~ Side-channel attacks: Observe side-effects of the computation

A primer on Software Security (this lecture)

» OUTPUT

‘@ ~ Microarchitectural leaks: HW optimizations do not respect SW abstractions(!)
7

A primer on Software Security (this lecture)
) ‘

INPUT —>

‘@ ~ Constant-time code: Eliminate secret-dependent side-effects

» OUTPUT

Introduction: The Setting of this Lecture

* System model:

* A shared platform executing code from different stakeholders

* Attacker model:
* Attacker can execute code on the same shared platform as the victim

* Attacker knows the implementation details of the platform and the victim code

* Objectives of the lecture are to understand:

* How software could be attacked in this setting
* What the vulnerabilities are that enable these attacks

* What defenses can help remove these vulnerabilities or mitigate these attacks

Overview

1. System model
— Architectural isolation mechanisms for shared platforms
— Architecture vs. Microarchitecture

2. Microarchitectural side-channel attacks

3. Transient-execution attacks

4. Conclusions

10

Classic Hierarchical OS Protection

Process Process Process
1 2 3

Operating System

Hardware

11

Protecting the Kernel: CPU Privilege Levels

Process Process Process

1 2

OS is protected
from applications Operating System

by privilege level

12

Protecting Processes: Virtual Memory

Processes are protected from each other through virtual memory isolation (page tables)

Process Process Process

1] mmm 2 :-:-_-_ - 3

OS is protected -
from applications Operating System

by privilege level

13

Fine-grained Protection: Software-Defined Sandboxes

Processes are protected from each other through virtual memory isolation (page tables)

Process Process
1 I . 2

Software can additionally enforce

OSis prot§ct§d : - more fine-grained protection:
from applications Operating System * Safe languages

by privilege level ¢ JVM
* WebAssembly

Hardware

and can implement security
checks such as bounds checks

14

Summary: Architectural CPU Support for Software Security

/ LAAPP :ﬁ::[:?: App App FJ:,_I[IEncIave nﬂj

VM OS VM OS A

v v
\ W Hypervisor (VMM)

» Different software protection domains: Processes, virtual machines, (enclaves)

* CPU builds “walls” for memory isolation between apps and privilege levels

15

Summary: Architectural CPU Support for Software Security

o

Ova
\/{ App Eoon App App ,J,_[Enclave J

B wios wios [y
Lo
llllll v v
\ ﬂ) Hypervisor (VMM)

» Different software protection domains: Processes, virtual machines, (enclaves)

* CPU builds “walls” for memory isolation between apps and privilege levels

* & But architectural protection walls permeate microarchitectural side channels! 16

Microarchitectural Timing Leaks in Practice

A
4-
> 01]00000000000000
g
5
o
«
14 >
Instruction (interrupt number) I
A ‘UTEXAS
INSTRUMENTS
w
2
7]
g
c % —mrn | |
Q l:.:n:l.
et =an jm— uns]
© = ~umm | | ==
-
o [— =1 = | | ==
& M\W o —=m | | ==

Y
S-
o
D

Instruction (interrupt number)

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018

-

9

Architecture versus Microarchitecture

* The Instruction Set Architecture (ISA) defines behavior of the machine code:
* Examples: x86, RISC-V, ARM, ...

* The ISA defines: [l@

* Architectural state: memory, registers, ...

* |nstruction semantics AM D a

* The microarchitecture is the way the ISA is implemented in a particular processor:
* Examples: single-cycle versus pipelined, in-order versus out-of-order, ...
* This can introduce additional state and behavior:

* State: e.g., for performance improvements (caches, branch predictor state, various CPU buffers, ...)

* Behavior: speculative execution, out-of-order execution, ...

20

From Architecture...

VOLUME 1: BASIC ARCHIT ECTURE

Phog.. |

.......
Wi
........

21

From Architecture... to Microarchitecture

--E; Skymant & i
Co';,i“ s

Lion Cove
P-core
BT

Aside: Security across the System Stack

High

Application

Programming Language }ftware Memory safety attacks
Assembly Language

Abstraction

: Instruction Set Architecture . .
Comprexity Microarchitectural attacks

Logic Gates , Registers
IC's And Transistors

Hardware

Electronics And Physics

High

23

Overview

1. System model
2. Microarchitectural side-channel attacks
— Cache timing attacks

— “Constant-time” software mitigations

3. Transient-execution attacks

4. Conclusions

24

Idea: Microarchitectural Contention

* Isolation mechanisms guarantee architectural isolation

* Microarchitectural attacks aim to break isolation by exploiting the fact that the
microarchitecture shares resources across isolation domains

Attacker Victim
Program Program

Y 4

Shared microarchitectural resources:
caches, branch predictors, ...

processor
25

Idea: Microarchitectural Contention

* Isolation mechanisms guarantee architectural isolation

* Microarchitectural attacks aim to break isolation by exploiting the fact that the
microarchitecture shares resources across isolation domains

* E.g., memory of different stakeholders can compete for the same cache entry

Attacker Victim

Memory:

Cache:

26

Example: CPU Cache Timing Side Channel

@ Cache principle: CPU speed > DRAM — cache code/data

r N
while true do /—\\ m
maccess(&a); m

endwh
. J CPU + cache DRAM memory

27

Example: CPU Cache Timing Side Channel

L J

.?' Cache miss: Request data from (slow) DRAM upon first use

y

.

while true do
maccess(&a) ;
endwh

cache miss

CPU + cache DRAM memory

28

Example: CPU Cache Timing Side Channel

.d Cache hit: No DRAM access required for subsequent uses

cache hit

8 B
while true do /—\\ m
maccess(&a) ; v m

endwh
. J CPU + cache DRAM memory

29

if secret do @

maccess(&a) ;

Cache Timing Attacks in Practice: Flush+Reload

'a’ is accessible
to attacker

]

i IHI

else
maccess (&b) ;
endif
4
7
~
flush(&a);
start timer
maccess (&a) ;
end timer
_/

CPU cache

ILLLAILIY
LY

DRAM memory

30

Cache Timing Attacks in Practice: Flush+Reload

1f secret do @

maccess (&a) ;
else flush 'a" to memory

maccess(&ab) ,

enair

i IHI

v/ HIINIILX

-
flush(&a);
(.) CPU cache DRAM memory
start timer
maccess(&a) ;
end timer
& _ 4

31

Cache Timing Attacks in Practice: Flush+Reload

//
if secret do @

maccess(&a);

else secret=1, load 'a’ from memory
maccess (&b) ;

cache miss

L Shear =
Ca VR g """ i
— LR
ush {(\'cﬁ“)
. CPU cache DRAM memory
alft T1Me
naccess(&ad) ,
end timer
& 4

32

Cache Timing Attacks in Practice: Flush+Reload

1f secret do @

maccess(&a) ;

-

elLse

maccess (&b) ;

endif

\ _/ cache hit

A

ILLLAILIY
LY

i IHI

flush(&a) ;
start tir:1er CPU cache DRAM memory
maccess(&a) ;
end timer fast access(&a) — secret=1
\ _ P

33

: Spylng on Keystrokes with Flush+Reload

: cycles a
25336620297955: Cache Hlt (216 cycles) after a
25336620341217: Cache Hit (216 cycles) after a
25336620363985: Cache Hit (212 cycles) after a
25336620483903: Cache Hit (218 cycles) after a
25336620499835: Cache Hit (216 cycles) after a
25336620552419: Cache Hit (216 cycles) after a
25336621476911: Cache Hit (218 cycles) after a
25336974127733: Cache Hit (220 cycles) after a
25337739302241: Cache Hit (214 cycles) after a
25337739686069: Cache Hit (218 cycles) after a
25337739773947: Cache Hit (218 cycles) after a pause of 27 cycles
25337739997613: Cache Hit (228 cycles) after a pause of 84 cycles
25338346337023: Cache Hit (228 cycles) after a pause of 211810 cycles
a
a
a
a
a
a
a
a
a
a
a
a
a

super secret keystroke timings

pause of 43 cycles
pause of 15 cycles
pause of 4 cycles
pause of 42 cycles
pause of 3 cycles
pause of 19 cycles
pause of 300 cycles
pause of 104704 cycles
pause of 263629 cycles
pause of 116 cycles

A

25338346617849: Cache Hit (224 cycles) after a pause of 81 cycles
25338346627851: Cache Hit (228 cycles) after a pause of 2 cycles
25338346634917: Cache Hit (228 cycles) after a pause of 1 cycles
25338346653587: Cache Hit (222 cycles) after a pause of 5 cycles
25338346811743: Cache Hit (220 cycles) after a pause of 58 cycles
25338346899541: Cache Hit (222 cycles) after a pause of 35 cycles
25338346911083: Cache Hit (222 cycles) after a pause of 3 cycles
25339081895869: Cache Hit (204 cycles) after a pause of 268339 cycles
25339081934737: Cache Hit (228 cycles) after a pause of 3 cycles
25339082052305: Cache Hit (226 cycles) after a pause of 34 cycles
25339082092569: Cache Hit (228 cycles) after a pause of 8 cycles
25339082116253: Cache Hit (224 cycles) after a pause of 3 cycles
25339082273651: Cache Hit (202 cycles) after pause of 53 cycles
25339815487639: Cache Hit (226 cycles) after a pause of 232157 cycles

[]https://github.com/isec—tugraz/cache_template_attacks

5,Col2 INS

https://github.com/isec-tugraz/cache_template_attacks

| ‘A.b_ ;.E

3y "o f . :
L “ o
- I \
i':'w e -

. L‘\ -

We can communicate across protection walls
using microarchitectural side channels!

"" Lﬁ *\-4-:1‘

Vulnerable Patterns: Secret-Dependent Code/Data Accesses

1void secret_vote(char candidate) 1int secret_lookup(int s)

2 { 24

3 If (Candidate — la!) 3 |f (S > 0 && s < ARRAY-LEN)
vote_candidate_a () ; 4 return array[s];

5 else 5 return -1;
vote_candidate_b () ; €

What are the ways for adversaries to create an “oracle” for all
victim code+data memory access sequences?

\
\
~ @ Leak only metadatZI

36

Software Mitigation: “Constant-Time” Programming

1void check_pwd(char xinput) 1z°id check_pwd(char *input)

2 { £ _

3 for (int i=0; i < PWDLLEN; i++) int rv. = 0x0; -

if (input[i] '= pwd[i]) 4 for (int i=0; i < PWDLLEN; i++)
5 return O; 5 rv |= input[i] ~ pwd[i];

} return 1; return (result = 0);

8 }

Rewrite program such that execution time does not depend on secrets

— manual, error-prone solution; side-channels are likely here to stay. ..

37

Software Mitigation: “Constant-Time” Programming

* “Constant-time” leakage model: Programmer makes sure that:

— Control flow of the program does not depend on secrets

— Memory addresses that are accessed do not depend on secrets

* State-of-the-art crypto libraries are (manually) implemented to be
secure under this model [1,2]

* (But such programs still leak secrets on speculative processors)

(1) Almeida et al., Verifying Constant-Time Implementations, USENIX Security 2016.
(2) Jancar et al., “They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks, S&P 2022. 38

Example: Constant-Time Mitigations in OpenSSL

® -
= O Q, repo:openssl/openssl "side channel” OR "side-channel" OR "constant time" OR "constant-time' 8 -~ + - O I B2 "
Y
Filter by S(1s) Sort by: Best match - [] save
{> Code)
enssi
© Issues e constant time modular inversion

:-2025-9231 Issue and a proposed fix reported by Stanislav Fort (Aisle Research). Reviewed-by: Neil Horman
in@openssl.org> ...

{1 Pull requests

) Discussions
mmitted on Sep 11 - dffoddb

I -0~ Commits

@ Packages
openssl/openssl
00 Wikis 1 ' '
Prepare to detect side-channels in compiled ML-KEM code *-*
Advanced o)))) o
Loosely based on similar code in BoringSSL. Added the valgrind macros necessary to mark secret inputs as uninitialised on
(® Organization entry to the ML...
@ Author Viktor Dukhovni authored and (a t8m committed on Dec 26, 2024 - 95d764a

® Committer

® Author email

l‘u:{:r-r*-‘..-’\l /openssl

(¥ Committer email Fix DSA, preserve BN_FLG_CONSTTIME
Operations in the DSA signing algorithm should run in constant time in order to avoid side channel attacks. A flaw in the
OpenSSL DSA imp...

(® Merge commits

HAT IF I\'! OLD YOU

‘ ﬂ 7 o

YOU CAN GHANGE IIIIIES MID-GAME

'LW

Overview

1. System model
2. Microarchitectural side-channel attacks
3. Transient-execution attacks

— Spectre, Meltdown, Foreshadow

— Hardware-Software Defenses

4. Conclusions

41

Background: Out-of-Order and Speculative Execution

* Modern CPUs have deep out-of-order (0Oo00) pipelines:

* Rather than executing one instruction at a time, fetch many instructions into
a reorder buffer (ROB) of in-flight instructions

* Execute instructions from this buffer, possibly out-of-order

— This avoids having to wait while, for instance a slow memory load is happening

* Commit the effect of the instructions to the architectural state in order

* Prediction and speculation are used to speed things up

* For instance, fetching instructions beyond a branch requires prediction

int a = *uncached mem; // L1 0 @

int b c + d; // L2
if (a) { b++;) // L3 @
42

General Transient-Execution Attack Structure

time

43

General Transient-Execution Attack Structure

trigger instruction .1 fixup
——
. [transient instructions] ",

time

44

General Transient-Execution Attack Structure

@ preface @ trigger instruction .1

[@ transient instructions]

»

[] (5) reconstruct

transient execution ! architectural
time

architectural

>

-

\ : : : : :
\\@ Idea: Transiently executed instructions can also leak information to the attacker

— On rollback, architectural effects are discarded, but microarchitectural effects remain...

45

Transient Execution: Welcome to the Word of Fun!

The Transient-Execution Zoo

https://transient.fail/

PHT-CA-IP
T et
=y PHT-CA.OP
Spectre-PHT
PHT-5A-IP
Same-address-space -4
. PHT-5A-0P

+(BTB.CAT
. Erecaor)

BTB-5A-IP
BTB-5A-0P

Cross-address-space

Spectre-BTE

Spectre-type

RSB-CA-IP

e 'ﬂ
RSB-CA-OP
Spectre-RSB

Spectre-STL RSB-SA-1P
> — ¢
RSB-SA-OP
= Meltdown-US-L1
(ransiont canse)
Meltdown-US Meltdown—US-LFB
Meltdown-US-58
AMeltdown-NM-REG Meltdown-P-L1
Bicltriown PE S I Meltdown-P-LFB
Meltdown-P
- *(_ Meltdown-P-5B
Meltdown-RW
Meltdown-P-LP
Meltdown-PK-L1
Meltdown-SM-5B
Meltdown-type Meitdown-MPX

Meltdown-BR
*_ Meltdown-BND

Meltdown-CPL-REG
MEdown-GP e

Meltdown-NC-5B
Meltdown-AD-LFB
Meltdown-AD --*
Meltdown-MCA e - * Meltdown-AD-SB
Meltdown-AVE-LP

Idea: Transient instructions can access
information expected to be inaccessible:
* Because the information is protected by software
— “Spectre”-style attacks
* Because it is in another hardware protection domain
— “Meltdown”-style attacks

47

Inside” Inside” Inside”

Breaking Architectural Isolation with Transient Execution

T / APP (= J APP é\H

—

VMOS [*V

Meltdown breaks user/kernel isolation

Foreshadow breaks SGX enclave and virtual machine isolation

Spectre breaks software-defined isolation on various levels

e ... many more - but all exploit the same underlying insights! 49

Breaking Architectural Isolation with Transient Execution

T / APP [z J APP é\H

—

VMOS [*V

Meltdown breaks user/kernel isolation HW fixes
Foreshadow breaks SGX enclave and virtual machine isolation

Spectre breaks software-defined isolation on various levels — HW-SW fixes

e ... many more - but all exploit the same underlying insights! 50

Meltdown: Transiently Encoding Unauthorized Memory

Unauthorized access

Listing 1: x86 assembly.

Transient out-of-order window

Listing 2: C code.

meltdown :
; f..;'(jl L’fl I. . oracile

0 s &5 e R i g T
oFsi . Secretrt_ptLl1

movb (%rsi), %al

shl $0xc, %rax

movq (%rdi, %rax), %rdi
retqg

¥

void meltdown (
uint8_t *xoracle,
uint8_t xsecret_ptr)

uint8_t v = xsecret_ptr;

v = v % 0x1000;

uinté4_t o = oracle[v];
}

—_— —_—
= = ;‘

Exception handler

oracle array

B,

O,

cache hit

51

Inside” Inside” Inside”

Meltdown Variants: Escaping Virtual Memory (~2018)

L1 Instruction Cache

ITLB }'~—

l

Frontend

Reorder buffer

1||‘

i e

l Hop

l B,

CDB

Memor

Scheduler Esll
Branch Instruction Fetch & PreDecode _E -
Pred|ct0r gﬂ frie] o aF pOF e o} 1OF pOP frie gl OF
Instruction Queue Ll] = o
| & - : | =| |8 |&] [z
e} : " : g I} o] =
i, & ; = s |
‘ 4OP Cache ‘ 4-Way Decode £ v < " g E : ; -
(] = @ s} g @ 5 <
10 l 0P 1u| 1.-_-0|= l 0P % = L = = i g & i
L = s, — | |
e 2| |2] [3] |F —
Allocation Queue Execution Units
wOoP 0P el nOE
E
[i3]
e
g,‘ Load Buffer | Store Buffer
in
+ 4
DTLB j&=—> STLB }—
L1 Data Cache - 3 =
LFB [
L2 Cache L3 Cache DRAM

Meltdown Variants: Microarchitectural Buffers (~2019)

] —
— | CDB
L1 Instruction Cache | Reorder buffer 7
ITLB |"-— L
l l,-.-uu l 0P l_..{:u 1 nOP l_..r_'JF l 0P l] J’ pOP
oy Scheduler aul
Branch Instruction Fetch & PreDecode = | munl
- Predictor gﬂ' nOR 1OP pOF LOP sl pOP 0P pOP
% Instruction Queue Ll I]
IS l 5 - : | (&l (8] [&] |=
o St = ¥ 4 "L_‘] [] [} m -
|_t ‘ 1OP Cache ‘ 4-Way Decode ‘5" e < ﬂ & = - 'z =
o W = @ M k] = = <
”] Q :d T = ! =] -] S
l..:r_\u._ l pOP lJ.Ur: l,—:Ol? l.—:l’_‘l' > = - = = -1 = &0 R
LUl =2 = = —
-‘.‘.rx '\:J‘E é &' &‘ ="
[Allocation Queue Execution Units
LOP wOP HOP
\ -)
@
L L]
; l Load Buffer | Store Buffer
in
. b v
= I DTLB pe=—>
L1 Data Cache
5 | LFB /
= L3 Cache > DRAM
(7]
=

jo@gropius:/sys/devices/system/cpu/vulnerabilities$ find . -type f -exec sh -c 'for file; do if grep -q |
"Not affected" "$file"; then echo -n "\033[32m\033[1m$(basename "$file"): \033[Om"; else echo -n "\033[3
Im\033[1m$(basename "$file"): \033[Om"; fi; cat "$file"; done' sh {} +

spectre_v2: Mitigation: Enhanced / Automatic IBRS; IBPB: conditional; RSB filling; PBRSB-eIBRS: SW seque
nce; BHI: BHI DIS S

itlb_multihit: Not affected

vmscape: Mitigation: IBPB before exit to userspace

mmio_stale data: Not affected

mds: Not affected

reg_file data_sampling: Mitigation: Clear Register File

11tf: Not affected

spec_store_bypass: Mitigation: Speculative Store Bypass disabled via prctl

tsx_async_abort: Not affected

spectre_vl: Mitigation: usercopy/swapgs barriers and _ user pointer sanitization

gather_data_sampling: Not affected

retbleed: Not affected

spec_rstack overflow: Not affected

srbds: Not affected

meltdown: Not affected

) e “Meltdown-type” attacks (mostly) mitigated in modern hardware...

\

e “Spectre-type” attacks (v1/PHT and v4/STL) need patches in software...

Inside’ Inside’

Spectre v1: Speculative Buffer Over-Read

* Programmer intention: no out-of-bounds accesses

LEN
< >

user buffer secret

if (idx < LEN)
{

= buffer[idx];
t = lookupl(s];

0

57

Spectre v1: Speculative Buffer Over-Read

* Programmer intention: no out-of-bounds accesses
LEN
< > * Mistrain gadget to speculatively “ahead of time”

user buffer execute with idx = LEN in the transient world

if (idx < LEN)
{

= buffer[idx];
t = lookupl[s];

0
|

58

Spectre v1: Speculative Buffer Over-Read

* Programmer intention: no out-of-bounds accesses

LEN
< > * Mistrain gadget to speculatively “ahead of time”

user buffer execute with idx = LEN in the transient world

e Side channels may leave traces after roll-back!

if (idx < LEN)

{
= buffer[idx];

t = lookup[s];

n

59

Spectre v1: Speculative Buffer Over-Read

* Programmer intention: no out-of-bounds accesses

LE
= . = * Mistrain gadget to speculatively “ahead of time”
b t
ER L execute with idx = LEN in the transient world
if (idx < LEN) e Side channels may leave traces after roll-back!
{
asm("1fence\n\t") ; * Insert explicit speculation barriers to tell the CPU
s = buffer[idx]; to halt the transient world...
t = lookupl[s];

60

Spectre v1: Speculative Buffer Over-Read

LEN
< >»
user buffer
if (idx < LEN)

{

asm("lfence\n\t") ;

S
E

buffer[idx];
lookup[s];

Programmer intention: no out-of-bounds accesses

Mistrain gadget to speculatively “ahead of time”
execute with 1idx = LEN in the transient world

Side channels may leave traces after roll-back!

Insert explicit speculation barriers to tell the CPU
to halt the transient world...

\ 7
- @ ~ Manual, error-prone effort(!)
\

61

Overview

1. System model

2. Microarchitectural side-channel attacks

3. Transient-execution attacks

4. Conclusions

62

Conclusions and Take-Away

* Microarchitectural attacks break architectural isolation “walls”

lll ll . .
| — New dangerous class of transient-execution attacks

$ * Short-term defenses include patches across the system stack:

— Hardware / operating system / compiler

— Fundamentally new hardware-software co-design may be required...

ﬁ j * Long-term defenses are the subject of current research
Lol

[|m| Thank you! Questions?]

63

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Classic hierarchical OS protection
	Protecting the kernel: privilege levels
	Protecting processes: virtual memory
	Fine-grained protection: software
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Out-of-order and speculative execution
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

@

LEN

< >
[user buffer I secret]

if (idx < LEN)

{

= buffer[idx];
lookup([s];

t »
([

1\

jo@gropius:/sys/devices/system/cpu/vulnerabilities$ find . -type f -exec sh -c 'for file; do if grep -q
"Not affected" "$file"; then echo -n "\033[32m\033[1m$(basename "$file"): \033[Om"; else echo -n "\033[3
Im\033[1m$ (basename "$file"): \033[Om"; fi; cat "$file"; done' sh {} +

spectre_v2: Mitigation: Enhanced / Automatic IBRS; IBPB: conditional; RSB filling; PBRSB-eIBRS: SW seque
nce; BHI: BHI DIS_ S

itlb_multihit: Not affected

vmscape: Mitigation: IBPB before exit to userspace

mmio_stale_data: Not affected

mds: Not affected

reg_file_data_sampling: Mitigation: Clear Register File

L1tf: Not affected

spec_store_bypass: Mitigation: Speculative Store Bypass disabled via prctl

tsx_async_abort: Not affected

spectre_vl: Mitigation: usercopy/swapgs barriers and _ user pointer sanitization

gather_data_sampling: Not affected

retbleed: Not affected

spec_rstack_overflow: Not affected

srbds: Not affected

meltdown: Not affected

B

L1 Instruction Cache G =
ITLB
woe Jwor [uop [sor Juor sor Juor |sor
@ Scheduler H
Branch Instruction Fetch & PreDecode 2
- Predictor & wor uoe |uor fuor [uor [uop [uor [uor
5 Instruction Queue w
I S & g g 2
S ES : 5] 3 3 u
£ o Cae 4-Way Decode = . - " g 3 3 £ -
3 i = g @ 3 H § <
3 < Z 2 5 3 g 2
sor [o wor | uor £ = - + S 3 3 B
w E] S = =
ZE 2 = 2 =
Allocation Queue Execution Units
P T L
\‘
£
3
2
2 Load Buffer | Store Buffer
, S T T 4
- DTLB STLI
L1 Data Cache
LFB
L3 Cache o DRAM

Memor

DB
L1 Instruction Cache lecnieg bufier
ITLB
wor uor [uor [uor [uop Juoe Juor Juer
o Scheduler
Branch Instruction Fetch & PreDecode 2
- Predictor =) wop 0P uoP. op. Hop. wop wop oP.
H Instruction Queue o]
1 S 5 g £ 2
2 T 4-Way Decode = = 2 I g 3 2 S 3
= : 3 g0 |2 |8 |8] |3] |3 AR
sops wor [wor [uor Juor £ X = A ; & 3 &
=
i s S El =
o = E 2 <
Allocation Queue Execution Units
P e
£
3
2
0 Load Buffer | Store Buffer
, 3 T 7 1
- DTLB STLB
L1 Data Cache
5 LFB [
g L2 Cache — L3 Cache = DRAM
b5}
=

LEN

< >
[user buffer I secret]

if (idx < LEN)

{

= buffer[idx];
lookup([s];

t »
I

-
&) @& @

inside” inside” inside”

A\

o

Spectre RSB
SpectreSTL

i
NSTRUMENTS

T

G m!“ IEE¢ RS

4

. i e
Skymont: Skymont §
Co
"y r
- - - ’Llon Cove :
i ? P-cpre]
i c: g3 |
Skymont Skymont = EaEE = 1
re e = F
Fey # SEEES s S o= i e
E | ‘ i’ -
2x L5MB . 2x15MB - | 2x LSMB ex1smMB. -t | 2x15MB
’l' 'Level 3 Cache: .|| Leve 3 Cache: "l Level 3 Cache: "l Level3Cache! | = | Levél3 Cache
] : - i
i —
i e b = =
: e o e T Rm r\ﬁtﬁ che: gizd g
kS : L B S = B
) 2x1isMe 2x1.5M8 h} ExLSMB J . exisMB 2x15MB L. (il il et e
Levei3Cache [B2 Level 3 Cachie: Level 3/Cache: [Level 3 Cache, Level 3 Cache. SN saee i
-} = | ™ ™ ’
3 = 3| Jeal "l Ty
fiitas E : ! : : g
5t 1= : | 1
ERRRS 5 : -
T.iopc
i P-core ~CO|
y
3 | 5 ol #as s il
A * o i
b= (=) i 1 g _ -

1

A\

=

Unauthorized access

Listing 1: x86 assembly.

Transient out-of-order window

Listing 2: C code.

meltdown :
%rdi

%rsi

oracle

secret_ptr

movb (%rsi), %al

shl $0xc, %rax

movq (%rdi, %rax), %rdi
retq

void meltdown (
uint8_t *oracle ,
uint8._t xsecret_ptr)

{
uint8_t v = kxsecret_ptr
v = v % 0x1000;
uint64_t o = oracle[v];

}

-t
—_— —_—
¥ j..

Exception handler

oracle array

a

e

cache hit

0O 1/ 00 00O0OO0OOOOOOOODO

~ IRQ latency »

>
Instruction (interrupt number)
A

w
2
v
>
<
>
v
<
]
]
L
[~
«

>

Instruction (interrupt number)

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018

LEN

»
>

<
[user buffer I secret]

if (idx < LEN)

{
asm("lfence\n\t") ;
s = buffer[idx];
e lookupl[s];

@ Cache principle: CPU speed > DRAM — cache code/data

maccess(&a);
endwh

CPU + cache DRAM memory

i

M

App

e

T App

VM OS

App

x;u Enclave

VM OS A

05{ Hypervisor (VMM)

DistriN=t

KU LEUVEN

arm

@
a

o

4
INPUT —%&—) OUTPUT

Q Q

KU LEUVEN

if secret do
maccess(&a);

2 secret=1, load 'a’ from memory
maccess (&b) ;

endif

cache miss

/Y
=

flush(&a);
start timer

maccess(&a) ;
end timer

CPU cache DRAM memory

DistriN=t

o [legulepeleg— (T e
TTTT VMOS A
T T T

—» OUTPUT

"
INPUT —P.’

o

/!

A
YOU CAN CHANGE RULES MID-GAME

'wnnr |ﬁ]{pm You

<3
INPUT —— ‘y —» OUTPUT

M\

&) @

inside” inside” inside”

8
=

jo,

INPUT — —— 3 OUTPUT

o T o

AMD Xt

VOLUME 1: BASIC ARCHITECTURE

.‘?' Cache miss: Request data from (slow) DRAM upon first use

cache miss

while true do /_\ m
- #\/ L

CPU + cache DRAM memory

maccess(&a);
endwh

1void secret_vote(char candidate) 1int secret_lookup(int s)
2{ 2{
T e 3 if (s> 0 &% s < ARRAY_LEN)
vote_candidate_a(); r]
else

vote_candidate_b () ;

N~ o o s w

What are the ways for adversaries to create an “oracle” for all
victim code+data memory access sequences?

.q Cache hit: No DRAM access required for subsequent uses

cache hit

while true do Q # LLLLNLLLY

CPU + cache DRAM memory

maccess(&a);
endwh

if secret do
maccess (&a) ;

ELas flush ‘a’ to memory
maccess (&b) ;
endif
L — 4
o
flush(&a);

CPU cache DRAM memory

start timer
maccess (&a) ;
end timer

if secret do

maccess (&a) ; ‘a' is accessible

to attacker

else
maccess (&b) ;
endif

(AENENUNES)
LLLLOIICE

CPU cache DRAM memory

/Y
=

flush(&a);
start_timer

maccess (&a);
end_timer

time”

High

Application

Programming Language Software
Assembly Language
Abstraction g eais
Complexity Instruction Set Architecture $

Logic Gates , Registers

IC’s And Transistors

Hardware

Electronics And Physics

High

@ preface [@ trigger instruction ‘1 @ fixup

a” N
L — : — '

[@ transient instructions]

@ reconstruct

architectural
time”

architectural transient execution

if secret do
maccess(&a) ;
else
maccess (&b) ;

endif
cache hit

(AENENUNES)
LLLLOIICE

Y
W,
flush(&a); @ d

start_timer

maccess (&a) ;
end timer fast access(&a) — secret=1

CPU cache DRAM memory

\/,

£25500bzUl1loZoz1: Lach
25336620297955:
25336620341217:
25336620363985:
25336620483903:
25336620499835:
25336620552419:
25336621476911:
25336974127733:
25337739302241:
25337739686069:
25337739773947:
25337739997613:
25338346337023:
25338346617849:
25338346627851:
25338346634917:
25338346653587:
25338346811743:
25338346899541:
25338346911083:
25339081895869:
25339081934737:
25339082052305:
25339082092569:
25339082116253:
25339082273651:
25339815487639:

€
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache
Cache

fAlt
Hit
Hi
Hit
Hi
Hit
Hit
Hi
Hit
Hi
Hit
Hi
Hit
Hi
Hi
Hit
Hi
Hit
Hi
Hit
Hi
Hit
Hit
Hi
Hit
Hi
Hit
Hi

¢<lo
216
216
212
218
216
216
218
220
214
218
218
228
228
224
228
228
222
220
222
222
204
228
226
228
224
202
226

CyCLes
cycles)
cycles
cycles)
cycles
cycles)
cycles
cycles
cycles)
cycles
cycles
cycles
cycles
cycles
cycles
cycles
cycles
cycles
cycles
cycles
cycles
cycles
cycles
cycles
cycles
cycles
cycles
cycles

ﬁ
D000 D
o

pause
pause
pause
pause
pause
pause
pause
pause
pause
pause
pause
pause
pause
pause
pause
pause
pause
pause
pause
pause
pause
pause
pause
pause
pause
pause
pause

2 CycLles

43 cycles

15 cycles

4 cycles

42 cycles

3 cycles

19 cycles

300 cycles
104704 cycles
263629 cycles
116 cycles

27 cycles

84 cycles
211810 cycles
81 cycles

2 cyc
1 cyc
5 cyc

es
es
es

58 cycles
35 cycles

3 eyc

es

268339 cycles
3 cycles
34 cycles
8 cycles

3 cyc

€s

53 cycles
232157 cycles

3super secret keystroke timings

g

1void check_pwd(char xinput)

2{

3

0 N o v

for (int i=0;
if (input[i]

return

return

1y

i < PWDL_LEN;

8

I= pwd[i])

i++)

1void check_pwd(char xinput)

2{

3 int rv = 0x0;

4 for (int i=0; i < PWDLEN; i++)
© v = inputli] " pwdlils

6

7 return (result = 0);

8}

Rewrite program such that execution time does not depend on secrets

— manual, error-prone solution; side-channels are likely here to stay. ..

°
= O Q repo:openssl/openss| "side channel" OR "side-channel" OR "constant time" OR "constant-time" S8 ~ + O e ?\:9

Filter by 126 results (1) Sortby: Bestmatch v [] save -e-
<> Code 5.4M
openssl/openss|
© Issues 170 SM2: Use constant time modular inversion
1% Pull requests 263 Fixes CVE-2025-9231 Issue and a proposed fix reported by Stanislav Fort (Aisle Research). Reviewed-by: Neil Horman
<nhorman@openssl.org> ...
) Discussions 19
@ t8m committed on Sep 11 - dffoadb
| < commits 126
@ Packages 0
[0 Wikis . openssl/openss|
Prepare to detect side-channels in compiled ML-KEM code ***
Advanced
Loosely based on similar code in BoringSSL. Added the valgrind macros necessary to mark secret inputs as uninitialised on
@ Organization entry to the ML...
@ Author Viktor Dukhovni authored and () t8m committed on Dec 26,2024 - 95d764a
@ Committer

@ Author email openssl/openss|

@ Committer email Fix DSA, preserve BN_FLG_CONSTTIME

@ Merge commits Operations in the DSA signing algorithm should run in constant time in order to avoid side channel attacks. A flaw in the
OpenSSL DSA imp...

ANE-

S

LEN

< >
[user buffer I secret]

if (idx < LEN)

{

= buffer[idx];
lookup([s];

+ »
11N

trigger instruction ‘X

transient instructions]

fixup

N
time”

Secrets Beneath the Silicon:

How Microarchitectural Attacks Break CPU Isolation
Jo Van Bulck

4 Oisrivet, KU Leuven, Belgiom 2 oxanbulekesulewvenbe @ anbulnet

KU Leuven Semiconductor School, February 13
DistriN=t

Secrets Beneath the Silicon:

How Microarchitectural Attacks Break CPU Isolation

Jo Van Bulck

 DistriNet, KU Leuven, Belgium  jo.vanbulck@cs.kuleuven.be  vanbulck.net

KU Leuven Semiconductor School, February 13

~50 Years of Systems Security in One Picture...

A primer on Software Security

Secure program: Convert all input to expected output

A primer on Software Security (traditional attacks)

Buffer overflow vulnerabilities: trigger unexpected behavior

A primer on Software Security (traditional attacks)

Safe languages & formal verification: Preserve expected behavior

A primer on Software Security (this lecture)

Side-channel attacks: Observe side-effects of the computation

A primer on Software Security (this lecture)

Microarchitectural leaks: HW optimizations do not respect SW abstractions(!)

A primer on Software Security (this lecture)

Constant-time code: Eliminate secret-dependent side-effects

Introduction: The Setting of this Lecture

		System model:

				A shared platform executing code from different stakeholders

		Attacker model:

		Attacker can execute code on the same shared platform as the victim

		Attacker knows the implementation details of the platform and the victim code

		Objectives of the lecture are to understand:

		How software could be attacked in this setting

		What the vulnerabilities are that enable these attacks

		What defenses can help remove these vulnerabilities or mitigate these attacks

Overview

		 System model

				Architectural isolation mechanisms for shared platforms

		Architecture vs. Microarchitecture

		 Microarchitectural side-channel attacks

		 Transient-execution attacks

		 Conclusions

Hardware

Operating System

Process 1

Process 2

Process 3

…

Classic Hierarchical OS Protection

Hardware

Operating System

Process 1

Process 2

Process 3

…

OS is protected

from applications

by privilege level

Protecting the Kernel: CPU Privilege Levels

Hardware

Operating System

Process 1

Process 2

Process 3

…

OS is protected

from applications

by privilege level

Processes are protected from each other through virtual memory isolation (page tables)

Protecting Processes: Virtual Memory

Hardware

Operating System

Process 1

Process 2

Process 3

…

OS is protected

from applications

by privilege level

sandbox

Software can additionally enforce

more fine-grained protection:

		Safe languages

		JVM

		WebAssembly

		…

and can implement security

checks such as bounds checks

Fine-grained Protection: Software-Defined Sandboxes

Processes are protected from each other through virtual memory isolation (page tables)

Summary: Architectural CPU Support for Software Security

		Different software protection domains: Processes, virtual machines, (enclaves)

		CPU builds “walls” for memory isolation between apps and privilege levels

Summary: Architectural CPU Support for Software Security

		Different software protection domains: Processes, virtual machines, (enclaves)

		CPU builds “walls” for memory isolation between apps and privilege levels

		↔ But architectural protection walls permeate microarchitectural side channels!

Microarchitectural Timing Leaks in Practice

Architecture versus Microarchitecture

		The Instruction Set Architecture (ISA) defines behavior of the machine code:

				Examples: x86, RISC-V, ARM, …

		The ISA defines:

						Architectural state: memory, registers, …

		Instruction semantics

		The microarchitecture is the way the ISA is implemented in a particular processor:

		Examples: single-cycle versus pipelined, in-order versus out-of-order, …

		This can introduce additional state and behavior:

		State: e.g., for performance improvements (caches, branch predictor state, various CPU buffers, …)

		Behavior: speculative execution, out-of-order execution, …

From Architecture...

From Architecture… to Microarchitecture

Aside: Security across the System Stack

Memory safety attacks

Microarchitectural attacks

Overview

		 System model

		 Microarchitectural side-channel attacks

				Cache timing attacks

		“Constant-time” software mitigations

		 Transient-execution attacks

		 Conclusions

Idea: Microarchitectural Contention

		Isolation mechanisms guarantee architectural isolation

		Microarchitectural attacks aim to break isolation by exploiting the fact that the microarchitecture shares resources across isolation domains

processor

Victim

Program

Attacker

Program

Shared microarchitectural resources:

caches, branch predictors, …

Idea: Microarchitectural Contention

		Isolation mechanisms guarantee architectural isolation

		Microarchitectural attacks aim to break isolation by exploiting the fact that the microarchitecture shares resources across isolation domains

		E.g., memory of different stakeholders can compete for the same cache entry

Shared microarchitectural resources:

caches, branch predictors, …

																

Memory:

				

Cache:

Attacker

Victim

Example: CPU Cache Timing Side Channel

Example: CPU Cache Timing Side Channel

Example: CPU Cache Timing Side Channel

Cache Timing Attacks in Practice: Flush+Reload

Cache Timing Attacks in Practice: Flush+Reload

Cache Timing Attacks in Practice: Flush+Reload

Cache Timing Attacks in Practice: Flush+Reload

Demo: Spying on Keystrokes with Flush+Reload

https://github.com/isec-tugraz/cache_template_attacks

Vulnerable Patterns: Secret-Dependent Code/Data Accesses

Leak only metadata

Software Mitigation: “Constant-Time” Programming

		“Constant-time” leakage model: Programmer makes sure that:

				Control flow of the program does not depend on secrets

		Memory addresses that are accessed do not depend on secrets

		State-of-the-art crypto libraries are (manually) implemented to be secure under this model [1,2]

		(But such programs still leak secrets on speculative processors)

Software Mitigation: “Constant-Time” Programming

		 Almeida et al., Verifying Constant-Time Implementations, USENIX Security 2016.

		 Jancar et al., “They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks, S&P 2022.

Example: Constant-Time Mitigations in OpenSSL

Overview

		 System model

		 Microarchitectural side-channel attacks

		 Transient-execution attacks

				Spectre, Meltdown, Foreshadow

		Hardware-Software Defenses

		 Conclusions

		Modern CPUs have deep out-of-order (OoO) pipelines:

				Rather than executing one instruction at a time, fetch many instructions into a reorder buffer (ROB) of in-flight instructions

		Execute instructions from this buffer, possibly out-of-order

				→ This avoids having to wait while, for instance a slow memory load is happening

		Commit the effect of the instructions to the architectural state in order

		Prediction and speculation are used to speed things up

		For instance, fetching instructions beyond a branch requires prediction

Background: Out-of-Order and Speculative Execution

int a = *uncached_mem; // L1

int b = c + d;		 // L2

if (a) { b++; } // L3

General Transient-Execution Attack Structure

General Transient-Execution Attack Structure

General Transient-Execution Attack Structure

Idea: Transiently executed instructions can also leak information to the attacker

 → On rollback, architectural effects are discarded, but microarchitectural effects remain...

Transient Execution: Welcome to the Word of Fun!

The Transient-Execution Zoo

https://transient.fail/

Idea: Transient instructions can access information expected to be inaccessible:

		Because the information is protected by software

→ “Spectre”-style attacks

		Because it is in another hardware protection domain

→ “Meltdown”-style attacks

Breaking Architectural Isolation with Transient Execution

		Meltdown breaks user/kernel isolation

		Foreshadow breaks SGX enclave and virtual machine isolation

		Spectre breaks software-defined isolation on various levels

		... many more – but all exploit the same underlying insights!

Breaking Architectural Isolation with Transient Execution

		Meltdown breaks user/kernel isolation

		Foreshadow breaks SGX enclave and virtual machine isolation

		Spectre breaks software-defined isolation on various levels → HW-SW fixes

		... many more – but all exploit the same underlying insights!

HW fixes

Meltdown: Transiently Encoding Unauthorized Memory

Meltdown Variants: Escaping Virtual Memory (~2018)

Meltdown Variants: Microarchitectural Buffers (~2019)

		“Meltdown-type” attacks (mostly) mitigated in modern hardware...

		“Spectre-type” attacks (v1/PHT and v4/STL) need patches in software...

Spectre v1: Speculative Buffer Over-Read

		Programmer intention: no out-of-bounds accesses

Spectre v1: Speculative Buffer Over-Read

		Programmer intention: no out-of-bounds accesses

		Mistrain gadget to speculatively “ahead of time” execute with idx ≥ LEN in the transient world

Spectre v1: Speculative Buffer Over-Read

		Programmer intention: no out-of-bounds accesses

		Mistrain gadget to speculatively “ahead of time” execute with idx ≥ LEN in the transient world

		Side channels may leave traces after roll-back!

Spectre v1: Speculative Buffer Over-Read

		Programmer intention: no out-of-bounds accesses

		Mistrain gadget to speculatively “ahead of time” execute with idx ≥ LEN in the transient world

		Side channels may leave traces after roll-back!

		Insert explicit speculation barriers to tell the CPU to halt the transient world...

Spectre v1: Speculative Buffer Over-Read

		Programmer intention: no out-of-bounds accesses

		Mistrain gadget to speculatively “ahead of time” execute with idx ≥ LEN in the transient world

		Side channels may leave traces after roll-back!

		Insert explicit speculation barriers to tell the CPU to halt the transient world...

Manual, error-prone effort(!)

Overview

		 System model

		 Microarchitectural side-channel attacks

		 Transient-execution attacks

		 Conclusions

Conclusions and Take-Away

Thank you! Questions?

		Microarchitectural attacks break architectural isolation “walls”

→ New dangerous class of transient-execution attacks

		Short-term defenses include patches across the system stack:

→ Hardware / operating system / compiler

		Long-term defenses are the subject of current research

→ Fundamentally new hardware-software co-design may be required...

Click to edit the title text format

		Click to edit the outline text format

		Second Outline Level

		Third Outline Level

		Fourth Outline Level

		Fifth Outline Level

		Sixth Outline Level

		Seventh Outline Level

DistriNet-rgb-transparant.png

Project Title

DistriNet-rgb-transparant.png

Click to edit Master title style

		Click to edit Master text styles

		Second level

		Third level

		Fourth level

		Fifth level

