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~50 Years of Systems Security in One Picture...
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A primer on Software Security

Secure program: Convert all input to expected output
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A primer on Software Security (traditional attacks)

Buffer overflow vulnerabilities: trigger unexpected behavior
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A primer on Software Security (traditional attacks)

Safe languages & formal verification: Preserve expected behavior
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A primer on Software Security (this lecture)

Side-channel attacks: Observe side-effects of the computation
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A primer on Software Security (this lecture)

Microarchitectural leaks: HW optimizations do not respect SW abstractions(!)
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A primer on Software Security (this lecture)

Constant-time code: Eliminate secret-dependent side-effects
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Introduction: The Setting of this Lecture

• System model:  
• A shared platform executing code from different stakeholders

• Attacker model: 
• Attacker can execute code on the same shared platform as the victim

• Attacker knows the implementation details of the platform and the victim code

• Objectives of the lecture are to understand:
• How software could be attacked in this setting

• What the vulnerabilities are that enable these attacks

• What defenses can help remove these vulnerabilities or mitigate these attacks
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Overview

1. System model

– Architectural isolation mechanisms for shared platforms

– Architecture vs. Microarchitecture

2. Microarchitectural side-channel attacks
3. Transient-execution attacks

4. Conclusions
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Hardware

Operating System

Process 
1

Process 
2

Process 
3 …

Classic Hierarchical OS Protection
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Hardware

Operating System

Process 
1

Process 
2

Process 
3 …

OS is protected
from applications
by privilege level

Protecting the Kernel: CPU Privilege Levels
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Hardware

Operating System

Process 
1

Process 
2

Process 
3 …

OS is protected
from applications
by privilege level

Processes are protected from each other through virtual memory isolation (page tables) 

Protecting Processes: Virtual Memory
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Hardware

Operating System

Process 
1

Process 
2

Process 
3 …

OS is protected
from applications
by privilege level

sandbox

Software can additionally enforce
more fine-grained protection:
• Safe languages
• JVM
• WebAssembly
• …
and can implement security
checks such as bounds checks

Fine-grained Protection: Software-Defined Sandboxes

Processes are protected from each other through virtual memory isolation (page tables) 
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Summary: Architectural CPU Support for Software Security

● Different software protection domains: Processes, virtual machines, (enclaves)
● CPU builds “walls” for memory isolation between apps and privilege levels
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Summary: Architectural CPU Support for Software Security

● Different software protection domains: Processes, virtual machines, (enclaves)
● CPU builds “walls” for memory isolation between apps and privilege levels
● ↔ But architectural protection walls permeate microarchitectural side channels!
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Microarchitectural Timing Leaks in Practice
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Architecture versus Microarchitecture

• The Instruction Set Architecture (ISA) defines behavior of the machine code:
• Examples: x86, RISC-V, ARM, …
• The ISA defines:

• Architectural state: memory, registers, …

• Instruction semantics

• The microarchitecture is the way the ISA is implemented in a particular processor:
• Examples: single-cycle versus pipelined, in-order versus out-of-order, …
• This can introduce additional state and behavior:

• State: e.g., for performance improvements (caches, branch predictor state, various CPU buffers, …)

• Behavior: speculative execution, out-of-order execution, …
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From Architecture...
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From Architecture… to Microarchitecture
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Aside: Security across the System Stack

Memory safety attacks

Microarchitectural attacks
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Overview

1. System model 

2. Microarchitectural side-channel attacks

– Cache timing attacks

– “Constant-time” software mitigations

3. Transient-execution attacks

4. Conclusions
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Idea: Microarchitectural Contention

• Isolation mechanisms guarantee architectural isolation
• Microarchitectural attacks aim to break isolation by exploiting the fact that the 

microarchitecture shares resources across isolation domains

processor

Victim
Program

Attacker
Program

Shared microarchitectural resources:
caches, branch predictors, …



26

Idea: Microarchitectural Contention

• Isolation mechanisms guarantee architectural isolation
• Microarchitectural attacks aim to break isolation by exploiting the fact that the 

microarchitecture shares resources across isolation domains
• E.g., memory of different stakeholders can compete for the same cache entry

Shared microarchitectural resources:
caches, branch predictors, …

Memory:

Cache:

Attacker Victim
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Example: CPU Cache Timing Side Channel
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Example: CPU Cache Timing Side Channel
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Example: CPU Cache Timing Side Channel
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Cache Timing Attacks in Practice: Flush+Reload
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Cache Timing Attacks in Practice: Flush+Reload
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Cache Timing Attacks in Practice: Flush+Reload
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Cache Timing Attacks in Practice: Flush+Reload
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Demo: Spying on Keystrokes with Flush+Reload

https://github.com/isec-tugraz/cache_template_attacks

https://github.com/isec-tugraz/cache_template_attacks
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Vulnerable Patterns: Secret-Dependent Code/Data Accesses

Leak only metadata
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Software Mitigation: “Constant-Time” Programming
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• “Constant-time” leakage model: Programmer makes sure that:
– Control flow of the program does not depend on secrets

– Memory addresses that are accessed do not depend on secrets

• State-of-the-art crypto libraries are (manually) implemented to be 
secure under this model [1,2]

• (But such programs still leak secrets on speculative processors)

Software Mitigation: “Constant-Time” Programming

(1)  Almeida et al., Verifying Constant-Time Implementations, USENIX Security 2016.

(2)  Jancar et al., “They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks, S&P 2022.
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Example: Constant-Time Mitigations in OpenSSL
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Overview

1. System model 

2. Microarchitectural side-channel attacks

3. Transient-execution attacks

– Spectre, Meltdown, Foreshadow

– Hardware-Software Defenses

4. Conclusions



42

• Modern CPUs have deep out-of-order (OoO) pipelines:
• Rather than executing one instruction at a time, fetch many instructions into 

a reorder buffer (ROB) of in-flight instructions
• Execute instructions from this buffer, possibly out-of-order 

→ This avoids having to wait while, for instance a slow memory load is happening

• Commit the effect of the instructions to the architectural state in order

• Prediction and speculation are used to speed things up
• For instance, fetching instructions beyond a branch requires prediction

Background: Out-of-Order and Speculative Execution

int a = *uncached_mem; // L1
int b = c + d;    // L2
if (a) { b++; }        // L3
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General Transient-Execution Attack Structure
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General Transient-Execution Attack Structure
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General Transient-Execution Attack Structure

Idea: Transiently executed instructions can also leak information to the attacker
    → On rollback, architectural effects are discarded, but microarchitectural effects remain...
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Transient Execution: Welcome to the Word of Fun!



47

The Transient-Execution Zoo https://transient.fail/

Idea: Transient instructions can access 
information expected to be inaccessible:
● Because the information is protected by software

→ “Spectre”-style attacks
● Because it is in another hardware protection domain

→  “Meltdown”-style attacks
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Breaking Architectural Isolation with Transient Execution

● Meltdown breaks user/kernel isolation
● Foreshadow breaks SGX enclave and virtual machine isolation
● Spectre breaks software-defined isolation on various levels
● ... many more – but all exploit the same underlying insights!
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Breaking Architectural Isolation with Transient Execution

● Meltdown breaks user/kernel isolation
● Foreshadow breaks SGX enclave and virtual machine isolation
● Spectre breaks software-defined isolation on various levels          → HW-SW fixes
● ... many more – but all exploit the same underlying insights!

HW fixes
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Meltdown: Transiently Encoding Unauthorized Memory
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Meltdown Variants: Escaping Virtual Memory (~2018)
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Meltdown Variants: Microarchitectural Buffers (~2019)



● “Meltdown-type” attacks (mostly) mitigated in modern hardware...
● “Spectre-type” attacks (v1/PHT and v4/STL) need patches in software...
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Spectre v1: Speculative Buffer Over-Read

● Programmer intention: no out-of-bounds accesses



58

Spectre v1: Speculative Buffer Over-Read

● Programmer intention: no out-of-bounds accesses

● Mistrain gadget to speculatively “ahead of time” 
execute with idx ≥ LEN in the transient world
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Spectre v1: Speculative Buffer Over-Read

● Programmer intention: no out-of-bounds accesses

● Mistrain gadget to speculatively “ahead of time” 
execute with idx ≥ LEN in the transient world

● Side channels may leave traces after roll-back!
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Spectre v1: Speculative Buffer Over-Read

● Programmer intention: no out-of-bounds accesses

● Mistrain gadget to speculatively “ahead of time” 
execute with idx ≥ LEN in the transient world

● Side channels may leave traces after roll-back!

● Insert explicit speculation barriers to tell the CPU 
to halt the transient world...
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Spectre v1: Speculative Buffer Over-Read

● Programmer intention: no out-of-bounds accesses

● Mistrain gadget to speculatively “ahead of time” 
execute with idx ≥ LEN in the transient world

● Side channels may leave traces after roll-back!

● Insert explicit speculation barriers to tell the CPU 
to halt the transient world...

Manual, error-prone effort(!)
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Overview

1. System model

2. Microarchitectural side-channel attacks

3. Transient-execution attacks

4. Conclusions
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Conclusions and Take-Away

Thank you! Questions?

● Microarchitectural attacks break architectural isolation “walls”

→ New dangerous class of transient-execution attacks

● Short-term defenses include patches across the system stack:

→ Hardware / operating system / compiler 

● Long-term defenses are the subject of current research
→ Fundamentally new hardware-software co-design may be required...


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Classic hierarchical OS protection
	Protecting the kernel: privilege levels
	Protecting processes: virtual memory
	Fine-grained protection: software
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Out-of-order and speculative execution
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63


@




















LEN
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[ user buffer I secret ]

if (idx < LEN)

{

= buffer[idx];
lookup([s];
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jo@gropius:/sys/devices/system/cpu/vulnerabilities$ find . -type f -exec sh -c 'for file; do if grep -q
"Not affected" "$file"; then echo -n "\033[32m\033[1m$(basename "$file"): \033[Om"; else echo -n "\033[3
Im\033[1m$ (basename "$file"): \033[Om"; fi; cat "$file"; done' sh {} +

spectre_v2: Mitigation: Enhanced / Automatic IBRS; IBPB: conditional; RSB filling; PBRSB-eIBRS: SW seque
nce; BHI: BHI DIS_ S

itlb_multihit: Not affected

vmscape: Mitigation: IBPB before exit to userspace

mmio_stale_data: Not affected

mds: Not affected

reg_file_data_sampling: Mitigation: Clear Register File

L1tf: Not affected

spec_store_bypass: Mitigation: Speculative Store Bypass disabled via prctl

tsx_async_abort: Not affected

spectre_vl: Mitigation: usercopy/swapgs barriers and _ user pointer sanitization

gather_data_sampling: Not affected

retbleed: Not affected

spec_rstack_overflow: Not affected

srbds: Not affected

meltdown: Not affected
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Unauthorized access

Listing 1: x86 assembly.

Transient out-of-order window

Listing 2: C code.

meltdown :
%rdi

%rsi

oracle

secret_ptr

movb (%rsi), %al

shl $0xc, %rax

movq (%rdi, %rax), %rdi
retq

void meltdown (
uint8_t *oracle ,
uint8._t xsecret_ptr)

{
uint8_t v = kxsecret_ptr
v = v % 0x1000;
uint64_t o = oracle[v];

}

-t
—_— —_—
¥ j..

Exception handler

oracle array

a

e

cache hit
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Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018
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<
[ user buffer I secret ]

if (idx < LEN)

{
asm("lfence\n\t") ;
s = buffer[idx];
e lookupl[s];









@ Cache principle: CPU speed > DRAM — cache code/data

maccess(&a);
endwh

CPU + cache DRAM memory
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if secret do
maccess(&a);

2 secret=1, load 'a’ from memory
maccess (&b) ;

endif

cache miss

/Y
=

flush(&a);
start timer

maccess(&a) ;
end timer

CPU cache DRAM memory
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VOLUME 1: BASIC ARCHITECTURE












.‘?' Cache miss: Request data from (slow) DRAM upon first use

cache miss

while true do /_\ m
- #\/ L

CPU + cache DRAM memory

maccess(&a);
endwh





1void secret_vote(char candidate) 1int secret_lookup(int s)
2{ 2{
T e 3 if (s> 0 &% s < ARRAY_LEN)
vote_candidate_a(); r ]
else

vote_candidate_b () ;

N~ o o s w

What are the ways for adversaries to create an “oracle” for all
victim code+data memory access sequences?




.q Cache hit: No DRAM access required for subsequent uses

cache hit

while true do Q # LLLLNLLLY

CPU + cache DRAM memory

maccess(&a);
endwh





if secret do
maccess (&a) ;

ELas flush ‘a’ to memory
maccess (&b) ;
endif
L — 4
o
flush(&a);

CPU cache DRAM memory

start timer
maccess (&a) ;
end timer





if secret do

maccess (&a) ; ‘a' is accessible

to attacker

else
maccess (&b) ;
endif

(AENENUNES)
LLLLOIICE

CPU cache DRAM memory

/Y
=

flush(&a);
start_timer

maccess (&a);
end_timer
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if secret do
maccess(&a) ;
else
maccess (&b) ;

endif
cache hit

(AENENUNES)
LLLLOIICE

Y
W,
flush(&a); @ d

start_timer

maccess (&a) ;
end timer fast access(&a) — secret=1

CPU cache DRAM memory
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1void check_pwd(char xinput)

2{

3

0 N o v

for (int i=0;
if (input[i]

return

return

1y

i < PWDL_LEN;

8

I= pwd[i])

i++)

1void check_pwd(char xinput)

2{

3 int rv = 0x0;

4 for (int i=0; i < PWDLEN; i++)
© v = inputli] " pwdlils

6

7 return (result = 0);

8}

Rewrite program such that execution time does not depend on secrets

— manual, error-prone solution; side-channels are likely here to stay. ..




°
= O Q repo:openssl/openss| "side channel" OR "side-channel" OR "constant time" OR "constant-time" S8 ~ + O e ?\:9

Filter by 126 results (1) Sortby: Bestmatch v [] save  -e-
<> Code 5.4M
openssl/openss|
© Issues 170 SM2: Use constant time modular inversion
1% Pull requests 263 Fixes CVE-2025-9231 Issue and a proposed fix reported by Stanislav Fort (Aisle Research). Reviewed-by: Neil Horman
<nhorman@openssl.org> ...
) Discussions 19
@ t8m committed on Sep 11 - dffoadb
| < commits 126
@ Packages 0
[0 Wikis . openssl/openss|
Prepare to detect side-channels in compiled ML-KEM code ***
Advanced
Loosely based on similar code in BoringSSL. Added the valgrind macros necessary to mark secret inputs as uninitialised on
@ Organization entry to the ML...
@ Author Viktor Dukhovni authored and () t8m committed on Dec 26,2024 - 95d764a
@ Committer

@ Author email openssl/openss|

@ Committer email Fix DSA, preserve BN_FLG_CONSTTIME

@ Merge commits Operations in the DSA signing algorithm should run in constant time in order to avoid side channel attacks. A flaw in the
OpenSSL DSA imp...
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A primer on Software Security



Secure program: Convert all input to expected output









A primer on Software Security (traditional attacks)



Buffer overflow vulnerabilities: trigger unexpected behavior









A primer on Software Security (traditional attacks)



Safe languages & formal verification: Preserve expected behavior









A primer on Software Security (this lecture)



Side-channel attacks: Observe side-effects of the computation









A primer on Software Security (this lecture)





Microarchitectural leaks: HW optimizations do not respect SW abstractions(!)







A primer on Software Security (this lecture)



Constant-time code: Eliminate secret-dependent side-effects







Introduction: The Setting of this Lecture



		System model:  





				A shared platform executing code from different stakeholders







		Attacker model: 

		Attacker can execute code on the same shared platform as the victim



		Attacker knows the implementation details of the platform and the victim code







		Objectives of the lecture are to understand:

		How software could be attacked in this setting



		What the vulnerabilities are that enable these attacks



		What defenses can help remove these vulnerabilities or mitigate these attacks













Overview



		 System model





				Architectural isolation mechanisms for shared platforms



		Architecture vs. Microarchitecture









		 Microarchitectural side-channel attacks



		 Transient-execution attacks



		 Conclusions









Hardware

Operating System

Process 1

Process 2

Process 3

…

Classic Hierarchical OS Protection





Hardware

Operating System

Process 1

Process 2

Process 3

…



OS is protected

from applications

by privilege level

Protecting the Kernel: CPU Privilege Levels







Hardware

Operating System

Process 1

Process 2

Process 3

…



OS is protected

from applications

by privilege level





Processes are protected from each other through virtual memory isolation (page tables) 

Protecting Processes: Virtual Memory











Hardware

Operating System

Process 1

Process 2

Process 3

…

OS is protected

from applications

by privilege level

sandbox

Software can additionally enforce

more fine-grained protection:

		Safe languages



		JVM



		WebAssembly



		…





and can implement security

checks such as bounds checks





Fine-grained Protection: Software-Defined Sandboxes















Processes are protected from each other through virtual memory isolation (page tables) 



Summary: Architectural CPU Support for Software Security





		Different software protection domains: Processes, virtual machines, (enclaves)



		CPU builds “walls” for memory isolation between apps and privilege levels









Summary: Architectural CPU Support for Software Security



		Different software protection domains: Processes, virtual machines, (enclaves)



		CPU builds “walls” for memory isolation between apps and privilege levels



		↔ But architectural protection walls permeate microarchitectural side channels!





















Microarchitectural Timing Leaks in Practice













Architecture versus Microarchitecture



		The Instruction Set Architecture (ISA) defines behavior of the machine code:





				Examples: x86, RISC-V, ARM, …



		The ISA defines:









						Architectural state: memory, registers, …



		Instruction semantics













		The microarchitecture is the way the ISA is implemented in a particular processor:

		Examples: single-cycle versus pipelined, in-order versus out-of-order, …



		This can introduce additional state and behavior:

		State: e.g., for performance improvements (caches, branch predictor state, various CPU buffers, …)



		Behavior: speculative execution, out-of-order execution, …































From Architecture...
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Aside: Security across the System Stack









Memory safety attacks



Microarchitectural attacks
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Idea: Microarchitectural Contention



		Isolation mechanisms guarantee architectural isolation



		Microarchitectural attacks aim to break isolation by exploiting the fact that the microarchitecture shares resources across isolation domains
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Idea: Microarchitectural Contention



		Isolation mechanisms guarantee architectural isolation



		Microarchitectural attacks aim to break isolation by exploiting the fact that the microarchitecture shares resources across isolation domains



		E.g., memory of different stakeholders can compete for the same cache entry
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Example: CPU Cache Timing Side Channel
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Cache Timing Attacks in Practice: Flush+Reload
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Cache Timing Attacks in Practice: Flush+Reload







Demo: Spying on Keystrokes with Flush+Reload





https://github.com/isec-tugraz/cache_template_attacks









Vulnerable Patterns: Secret-Dependent Code/Data Accesses









Leak only metadata





Software Mitigation: “Constant-Time” Programming







		“Constant-time” leakage model: Programmer makes sure that:





				Control flow of the program does not depend on secrets



		Memory addresses that are accessed do not depend on secrets









		State-of-the-art crypto libraries are (manually) implemented to be secure under this model [1,2]



		(But such programs still leak secrets on speculative processors)







Software Mitigation: “Constant-Time” Programming



		 Almeida et al., Verifying Constant-Time Implementations, USENIX Security 2016.



		 Jancar et al., “They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks, S&P 2022.













Example: Constant-Time Mitigations in OpenSSL
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		Modern CPUs have deep out-of-order (OoO) pipelines:





				Rather than executing one instruction at a time, fetch many instructions into a reorder buffer (ROB) of in-flight instructions



		Execute instructions from this buffer, possibly out-of-order 









				→ This avoids having to wait while, for instance a slow memory load is happening





		Commit the effect of the instructions to the architectural state in order







		Prediction and speculation are used to speed things up

		For instance, fetching instructions beyond a branch requires prediction











Background: Out-of-Order and Speculative Execution



int a = *uncached_mem; // L1

int b = c + d;		  // L2

if (a) { b++; }  // L3









General Transient-Execution Attack Structure
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General Transient-Execution Attack Structure





Idea: Transiently executed instructions can also leak information to the attacker

 → On rollback, architectural effects are discarded, but microarchitectural effects remain...









Transient Execution: Welcome to the Word of Fun!









The Transient-Execution Zoo





https://transient.fail/



Idea: Transient instructions can access information expected to be inaccessible:

		Because the information is protected by software

→ “Spectre”-style attacks





		Because it is in another hardware protection domain

→  “Meltdown”-style attacks



















Breaking Architectural Isolation with Transient Execution





		Meltdown breaks user/kernel isolation



		Foreshadow breaks SGX enclave and virtual machine isolation



		Spectre breaks software-defined isolation on various levels



		... many more – but all exploit the same underlying insights!









Breaking Architectural Isolation with Transient Execution





		Meltdown breaks user/kernel isolation



		Foreshadow breaks SGX enclave and virtual machine isolation



		Spectre breaks software-defined isolation on various levels  → HW-SW fixes



		... many more – but all exploit the same underlying insights!









HW fixes





Meltdown: Transiently Encoding Unauthorized Memory













Meltdown Variants: Escaping Virtual Memory (~2018)









Meltdown Variants: Microarchitectural Buffers (~2019)









		“Meltdown-type” attacks (mostly) mitigated in modern hardware...



		“Spectre-type” attacks (v1/PHT and v4/STL) need patches in software...













Spectre v1: Speculative Buffer Over-Read





		Programmer intention: no out-of-bounds accesses
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		Programmer intention: no out-of-bounds accesses
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Manual, error-prone effort(!)
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Conclusions and Take-Away





Thank you! Questions?







		Microarchitectural attacks break architectural isolation “walls”

→ New dangerous class of transient-execution attacks



		Short-term defenses include patches across the system stack:

→ Hardware / operating system / compiler 



		Long-term defenses are the subject of current research

→ Fundamentally new hardware-software co-design may be required...
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