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“Complexity is the worst enemy of
security, and our systems are getting
more complex all the time.”

— Bruce Schneier
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https://informationisbeautiful.net/visualizations/million-lines-of-code/
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Enclaved execution: Reducing attack surface
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Traditional layered designs: large trusted computing base
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Enclaved execution: Reducing attack surface
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Intel SGX promise: hardware-level isolation and attestation
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Enclaved execution: Privileged side-channel attacks
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Game-changer: Untrusted OS → new class of powerful side channels!
3







Evolution of “side-channel attack” research
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YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/
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Side-channel attacks and trusted computing (focus of this PhD)
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Research agenda: Understanding privileged side-channel attacks

1. Which novel privileged side channels exist?

→ We uncover previously unknown attack avenues

2. How well can they be exploited in practice?

→ We develop new techniques and practical attack frameworks

3. What can be leaked?

→ We leak metadata and data
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Idea 1: Privileged interrupts for

side-channel amplification



Case study: Comparing a secret password

p a s s w o r d

Overall execution time reveals correctness of individual password bytes!
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Building the side-channel oracle with execution timing?

Too noisy: modern x86 processors are lightning fast. . .
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Analogy: Studying galloping horse dynamics

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop
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SGX-Step: Executing enclaves one instruction at a time

SGX-Step

https://github.com/jovanbulck/sgx-step
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SGX-Step: Executing enclaves one instruction at a time

user space

OS kernel
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SGX-Step: Executing enclaves one instruction at a time
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Demo: Building a deterministic password oracle with SGX-Step
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SGX-Step: Enabling a new line of high-precision enclave attacks

Temporal

resolution

APIC PTE Desc

Yr Attack IR
Q
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#PF
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PPN
GDT

ID
T

Drv

’15 Ctrl channel ∼ Page # #  # # #  3

’16 AsyncShock ∼ Page # #  # # # # –
’17 CacheZoom 7 > 1  # # # # # # 3

’17 Hahnel et al. 7 0 - > 1  # # # # #  3

’17 BranchShadow 7 5 - 50  # # # # # # 7

’17 Stealthy PTE ∼ Page #  #  # #  3

’17 DarkROP ∼ Page # #  # # # # 3

’17 SGX-Step 3 0 - 1  #   # # # 3

’18 Off-limits 3 0 - 1  #  # #  # 3

’18 Single-trace RSA ∼ Page # #  # # # # 3

’18 Foreshadow 3 0 - 1  #  #  # # 3

’18 SgxPectre ∼ Page # #  # # # # 3

’18 CacheQuote 7 > 1  # # # # # # 3

’18 SGXlinger 7 > 1  # # # # # # 7

’18 Nemesis 3 1  #   # #  3

Temporal

resolution
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Yr Attack IR
Q

IP
I
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’19 Spoiler 3 1  # #  # #  3

’19 ZombieLoad 3 0 - 1  #   # #  3

’19 Tale of 2 worlds 3 1  #   # #  3

’19 MicroScope ∼ 0 - Page # #  # # # # 7

’20 Bluethunder 3 1  # # # # #  3

’20 Big troubles ∼ Page # #  # # # # 3

’20 Viral primitive 3 1  #   # #  3

’20 CopyCat 3 1  #   # #  3

’20 LVI 3 1  #    #  3

’20 A to Z ∼ Page # #  # # # # 3

’20 Frontal 3 1  #   # #  3

’20 CrossTalk 3 1  #  # # #  3

’20 Online template ∼ Page # #  # # # # 3

’20 Déjà Vu NSS ∼ Page # #  # # # # 3
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Idea 2: Privileged interrupts for

microarchitectural leakage



Back to basics: Fetch-decode-execute

Elementary CPU behavior: Stored program computer

Fetch Decode Execute

Jump?PC++
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no

Variable instruction latency
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Back to basics: Fetch-decode-execute

Interrupts: Asynchronous events, handled on instruction retirement

Fetch Decode Execute
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Back to basics: Fetch-decode-execute

Timing leak: IRQ response time depends on current instruction(!)

Fetch Decode Execute

IRQ?Jump?PC++

Secure IRQ logicPC = IVT[irq]
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Variable instruction latency
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Wait a cycle: Interrupt latency as a side channel
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CMD ADD IRQ logic ISR
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Nemesis attack: Inferring key strokes from Sancus enclaves
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Intel SGX microbenchmarks: Measuring x86 cache misses

Timing leak: reconstruct microarchitectural state
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Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Start-to-end trace enclaved execution
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Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Spotting high-latency instructions
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Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Zooming in on bsearch function
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De-anonymizing SGX enclave lookups with interrupt latency

Adversary: Infer secret lookup in known sequence (e.g., DNA)

left

right

hit
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De-anonymizing SGX enclave lookups with interrupt latency

Goal: Infer lookup → reconstruct bsearch control flow
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De-anonymizing SGX enclave lookups with interrupt latency

Goal: Infer lookup → reconstruct bsearch control flow
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Idea 3: Privileged page tables

for transient data leakage



Thesis outline: Privileged side channels (interrupt latency)
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Thesis outline: Privileged side channels (page-table accesses)
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Thesis outline: Transient-execution attacks (Foreshadow, LVI)
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Key finding of 2018

• CPU executes ahead of time in transient world

• Use side channels to reconstruct secrets!





Transient-execution attacks: Welcome to the world of fun!
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The transient-execution zoo https://transient.fail

Transient cause

Spectre-type

Meltdown-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Meltdown-NM-REG

Meltdown-PF

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK-L1

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

Meltdown-CPL-REG

Meltdown-NC-SB

Meltdown-AD

Meltdown-AVX-LP

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-AD-LFB

Meltdown-AD-SB
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Meltdown: Transiently encoding unauthorized memory

Unauthorized access
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Meltdown: Transiently encoding unauthorized memory
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Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window Exception

(discard architectural state)
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Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

cache hit

Exception handler
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Rumors: Meltdown immunity for SGX enclaves?

“[enclaves] remain protected and completely secure”

— International Business Times, February 2018

“[enclave memory accesses] redirected to an abort page, which has no value”

— Anjuna Security, Inc., March 2018
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https://web.archive.org/web/20180720144203/https://www.anjuna.io/blog/2018/2/7/meltdown-spectre-sgx


Rumors: Meltdown immunity for SGX enclaves?

https://wired.com and https://arstechnica.com
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Building Foreshadow: Evade SGX abort page semantics

OS? SGX?
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Foreshadow-SGX: Breaking enclave isolation
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Foreshadow-NG: Breaking virtual machine isolation
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Mitigating Foreshadow: Flush CPU microarchitecture



Mitigating Foreshadow: Flush CPU microarchitecture





Idea: Can we turn Foreshadow around?

Outside view

• Meltdown: out-of-reach

• Foreshadow: cache emptied

Intra-enclave view

• Access enclave + outside memory

→ Abuse in-enclave code gadgets!
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Reviving Foreshadow & co. with Load Value Injection (LVI)

Faulting load &encl

Transient gadget

Attacker domain Enclave domain

Page table manipulation
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Mitigating LVI: Fencing vulnerable load instructions
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Mitigating LVI: Compiler and assembler support

-mlfence-after-load

-mlvi-hardening

-Qspectre-load
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Intel architectural enclaves: lfence counts libsgx qe.signed.so

23 fences

October 2019—“surgical precision”

:
49,315 fences

March 2020—“big hammer”
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LVI performance impact https://www.phoronix.com
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Conclusions and takeaway

⇒ Trusted execution environments (Intel SGX) ≠ perfect(!)

⇒ Importance of fundamental side-channel research; no silver-bullet defenses

⇒ Security cross-cuts the system stack: hardware, OS, compiler, application
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Thank you!
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