
Microarchitectural Side-Channel Attacks

for Privileged Software Adversaries

Jo Van Bulck

STM PhD Award Talk (online), October 8, 2021

� imec-DistriNet, KU Leuven Q jo.vanbulck@cs.kuleuven.be 7 jovanbulck

https://distrinet.cs.kuleuven.be/people/jo
mailto:jo.vanbulck@cs.kuleuven.be
https://twitter.com/jovanbulck

“Complexity is the worst enemy of
security, and our systems are getting
more complex all the time.”

— Bruce Schneier

1

https://informationisbeautiful.net/visualizations/million-lines-of-code/

https://informationisbeautiful.net/visualizations/million-lines-of-code/

Enclaved execution: Reducing attack surface

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 AppApp

Traditional layered designs: large trusted computing base
3

Enclaved execution: Reducing attack surface

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Intel SGX promise: hardware-level isolation and attestation
3

Enclaved execution: Privileged side-channel attacks

Mem HDD

OS kernel

CPU

AppApp

TPM

Hypervisor

 Enclave app

Game-changer: Untrusted OS → new class of powerful side channels!
3

Evolution of “side-channel attack” research

1990 1994 1998 2002 2006 2010 2014 2018

3000

4000

2000

1000

DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/
6

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

Evolution of “side-channel attack” research

1990 1994 1998 2002 2006 2010 2014 2018

3000

4000

2000

1000

SGX

DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/
6

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

Side-channel attacks and trusted computing (focus of this PhD)

1990 1994 1998 2002 2006 2010 2014 2018

3000

4000

2000

1000

SGX

DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/
6

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

Research agenda: Understanding privileged side-channel attacks

1. Which novel privileged side channels exist?

→ We uncover previously unknown attack avenues

2. How well can they be exploited in practice?

→ We develop new techniques and practical attack frameworks

3. What can be leaked?

→ We leak metadata and data

8

Research agenda: Understanding privileged side-channel attacks

1. Which novel privileged side channels exist?

→ We uncover previously unknown attack avenues

2. How well can they be exploited in practice?

→ We develop new techniques and practical attack frameworks

3. What can be leaked?

→ We leak metadata and data

8

Idea 1: Privileged interrupts for

side-channel amplification

Case study: Comparing a secret password

p a s s w o r d

Overall execution time reveals correctness of individual password bytes!

9

Case study: Comparing a secret password

p a s s w o r d

p a s t a

pasta?

No!

Overall execution time reveals correctness of individual password bytes!

9

Case study: Comparing a secret password

p a s s w o r d

p a s t a

Overall execution time reveals correctness of individual password bytes!

9

Case study: Comparing a secret password

p a s s w o r d

p a s t a

Overall execution time reveals correctness of individual password bytes!

9

Case study: Comparing a secret password

p a s s w o r d

p a s t a

Overall execution time reveals correctness of individual password bytes!

9

Case study: Comparing a secret password

p a s s w o r d

p a s t a

Overall execution time reveals correctness of individual password bytes!

9

Case study: Comparing a secret password

p a s s w o r d

p a s t a

Overall execution time reveals correctness of individual password bytes!

9

Case study: Comparing a secret password

p a s s w o r d

p a s s a

Overall execution time reveals correctness of individual password bytes!

9

Case study: Comparing a secret password

p a s s w o r d

p a s s a

Overall execution time reveals correctness of individual password bytes!

9

Case study: Comparing a secret password

p a s s w o r d

p a s s a

Overall execution time reveals correctness of individual password bytes!

9

Case study: Comparing a secret password

p a s s w o r d

p a s s a

Overall execution time reveals correctness of individual password bytes!

9

Building the side-channel oracle with execution timing?

Too noisy: modern x86 processors are lightning fast. . .

60 70 80 90 100 110 120
Execution time (cycles)

0

5000

10000

15000

20000

25000

30000

F
re

q
u

e
n

c
y

100,000 runs, strlen=1

100,000 runs, strlen=2

10

Building the side-channel oracle with execution timing?

Too noisy: modern x86 processors are lightning fast. . .

60 70 80 90 100 110 120
Execution time (cycles)

0

5000

10000

15000

20000

25000

30000

F
re

q
u

e
n

c
y

100,000 runs, strlen=1

100,000 runs, strlen=2

10

Analogy: Studying galloping horse dynamics

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop
11

https://en.wikipedia.org/wiki/Sallie_Gardner_at_a_Gallop

SGX-Step: Executing enclaves one instruction at a time

SGX-Step

https://github.com/jovanbulck/sgx-step

13

https://github.com/jovanbulck/sgx-step

SGX-Step: Executing enclaves one instruction at a time

user space

OS kernel

13

SGX-Step: Executing enclaves one instruction at a time

user space

OS kernel

13

SGX-Step: Executing enclaves one instruction at a time

libsgxstep

user space

OS kernel

13

SGX-Step: Executing enclaves one instruction at a time

libsgxstep

user space

OS kernel

13

SGX-Step: Executing enclaves one instruction at a time

libsgxstep

user space

OS kernel

Interrupt handler

13

SGX-Step: Executing enclaves one instruction at a time

libsgxstep

user space

ERESUME

OS kernel

Interrupt handler

13

Demo: Building a deterministic password oracle with SGX-Step

14

SGX-Step: Enabling a new line of high-precision enclave attacks

Temporal

resolution

APIC PTE Desc

Yr Attack IR
Q

IP
I

#PF
A/D

PPN
GDT

ID
T

Drv

’15 Ctrl channel ∼ Page # # # # # 3

’16 AsyncShock ∼ Page # # # # # # –
’17 CacheZoom 7 > 1 # # # # # # 3

’17 Hahnel et al. 7 0 - > 1 # # # # # 3

’17 BranchShadow 7 5 - 50 # # # # # # 7

’17 Stealthy PTE ∼ Page # # # # 3

’17 DarkROP ∼ Page # # # # # # 3

’17 SGX-Step 3 0 - 1 # # # # 3

’18 Off-limits 3 0 - 1 # # # # 3

’18 Single-trace RSA ∼ Page # # # # # # 3

’18 Foreshadow 3 0 - 1 # # # # 3

’18 SgxPectre ∼ Page # # # # # # 3

’18 CacheQuote 7 > 1 # # # # # # 3

’18 SGXlinger 7 > 1 # # # # # # 7

’18 Nemesis 3 1 # # # 3

Temporal

resolution

APIC PTE Desc

Yr Attack IR
Q

IP
I

#PF
A/D

PPN
GDT

ID
T

Drv

’19 Spoiler 3 1 # # # # 3

’19 ZombieLoad 3 0 - 1 # # # 3

’19 Tale of 2 worlds 3 1 # # # 3

’19 MicroScope ∼ 0 - Page # # # # # # 7

’20 Bluethunder 3 1 # # # # # 3

’20 Big troubles ∼ Page # # # # # # 3

’20 Viral primitive 3 1 # # # 3

’20 CopyCat 3 1 # # # 3

’20 LVI 3 1 # # 3

’20 A to Z ∼ Page # # # # # # 3

’20 Frontal 3 1 # # # 3

’20 CrossTalk 3 1 # # # # 3

’20 Online template ∼ Page # # # # # # 3

’20 Déjà Vu NSS ∼ Page # # # # # # 3

16

Idea 2: Privileged interrupts for

microarchitectural leakage

Back to basics: Fetch-decode-execute

Elementary CPU behavior: Stored program computer

Fetch Decode Execute

Jump?PC++

yes

no

Variable instruction latency

17

Back to basics: Fetch-decode-execute

Interrupts: Asynchronous events, handled on instruction retirement

Fetch Decode Execute

IRQ?Jump?PC++

Secure IRQ logicPC = IVT[irq]

no

yesyes

no

Variable instruction latency

17

Back to basics: Fetch-decode-execute

Timing leak: IRQ response time depends on current instruction(!)

Fetch Decode Execute

IRQ?Jump?PC++

Secure IRQ logicPC = IVT[irq]

no

yesyes

no

Variable instruction latency

17

Wait a cycle: Interrupt latency as a side channel

CLK

CMD NOP IRQ logic ISR

IRQ

CMD ADD IRQ logic ISR

IRQ

18

Nemesis attack: Inferring key strokes from Sancus enclaves

1

4

IR
Q

 l
a
te

n
c
y

Instruction (interrupt number)

Enclave x-ray: Start-to-end trace enclaved execution

19

Nemesis attack: Inferring key strokes from Sancus enclaves

1

4

IR
Q

 l
a
te

n
c
y 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Instruction (interrupt number)

Enclave x-ray: Keymap bit traversal (ground truth)

19

Nemesis attack: Inferring key strokes from Sancus enclaves

1

4

IR
Q

 l
a
te

n
c
y 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

2

3

4

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

Instruction (interrupt number)

0 (no press) 1 (key pressed) 0 (no press)

19

Intel SGX microbenchmarks: Measuring x86 cache misses

Timing leak: reconstruct microarchitectural state

load cache hit

load cache miss

IRQ latency (cycles)

F
re

q
u

e
n

c
y

20

Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Start-to-end trace enclaved execution

Instruction (interrupt number)

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

21

Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Spotting high-latency instructions

Instruction (interrupt number)

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

rdrand (generate stack canary on enclave entry)

21

Single-stepping Intel SGX enclaves in practice

Enclave x-ray: Zooming in on bsearch function

Instruction (interrupt number)

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

21

De-anonymizing SGX enclave lookups with interrupt latency

Adversary: Infer secret lookup in known sequence (e.g., DNA)

left

right

hit

22

De-anonymizing SGX enclave lookups with interrupt latency

Goal: Infer lookup → reconstruct bsearch control flow

7800

7950

Interrupt (instruction number)

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

22

De-anonymizing SGX enclave lookups with interrupt latency

Goal: Infer lookup → reconstruct bsearch control flow

7800

7950

Interrupt (instruction number)

Left Right Hit

IR
Q

 l
a
te

n
c
y
 (

c
y
c
le

s
)

22

Idea 3: Privileged page tables

for transient data leakage

Thesis outline: Privileged side channels (interrupt latency)

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mem

 Enclave app

CPU

2

Metadata

23

Thesis outline: Privileged side channels (page-table accesses)

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mem

 Enclave app

CPU

2

Metadata

23

Thesis outline: Transient-execution attacks (Foreshadow, LVI)

Mem

OS kernel

 Enclave app

CPU

3

Metadata

Data

23

https://xkcd.com/1938

https://xkcd.com/1938

Key finding of 2018

• CPU executes ahead of time in transient world

• Use side channels to reconstruct secrets!

Transient-execution attacks: Welcome to the world of fun!

25

The transient-execution zoo https://transient.fail

Transient cause

Spectre-type

Meltdown-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Meltdown-NM-REG

Meltdown-PF

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK-L1

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

Meltdown-CPL-REG

Meltdown-NC-SB

Meltdown-AD

Meltdown-AVX-LP

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-AD-LFB

Meltdown-AD-SB

26

https://transient.fail

Meltdown: Transiently encoding unauthorized memory

Unauthorized access

27

Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

s
e
c
re

t
id

x

27

Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window Exception

(discard architectural state)

27

Meltdown: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

cache hit

Exception handler

27

Rumors: Meltdown immunity for SGX enclaves?

“[enclaves] remain protected and completely secure”

— International Business Times, February 2018

“[enclave memory accesses] redirected to an abort page, which has no value”

— Anjuna Security, Inc., March 2018

28

https://web.archive.org/web/20180617022540/https://www.ibtimes.co.uk/meltdown-melted-down-everything-except-one-thing-1663785
https://web.archive.org/web/20180720144203/https://www.anjuna.io/blog/2018/2/7/meltdown-spectre-sgx

Rumors: Meltdown immunity for SGX enclaves?

https://wired.com and https://arstechnica.com

28

https://wired.com
https://arstechnica.com

Building Foreshadow: Evade SGX abort page semantics

OS? SGX?

1 2

30

Building Foreshadow: Evade SGX abort page semantics

SGX?OS?

30

Building Foreshadow: Evade SGX abort page semantics

SGX?OS?

30

Foreshadow-SGX: Breaking enclave isolation

SGX?

L1D

vadrs

CPU microarchitecture

padrs

Tag? Pass to out-of-order

PT
walk?

30

Foreshadow-NG: Breaking virtual machine isolation

SGX?

L1D

vadrs

CPU microarchitecture

Tag? Pass to out-of-order

PT
walk?

EPT
walk?

host
padrs

guest
padrs

30

Mitigating Foreshadow: Flush CPU microarchitecture

Mitigating Foreshadow: Flush CPU microarchitecture

Idea: Can we turn Foreshadow around?

Outside view

• Meltdown: out-of-reach

• Foreshadow: cache emptied

Intra-enclave view

• Access enclave + outside memory

→ Abuse in-enclave code gadgets!

32

Idea: Can we turn Foreshadow around?

Outside view

• Meltdown: out-of-reach

• Foreshadow: cache emptied

Intra-enclave view

• Access enclave + outside memory

→ Abuse in-enclave code gadgets!

32

Reviving Foreshadow & co. with Load Value Injection (LVI)

Faulting load &encl

Transient gadget

Attacker domain Enclave domain

Page table manipulation

33

Reviving Foreshadow & co. with Load Value Injection (LVI)

Faulting load &encl

Transient gadget

Attacker domain Enclave domain

Page table manipulation

33

www.freepik.com

www.freepik.com

Mitigating LVI: Fencing vulnerable load instructions

Mitigating LVI: Fencing vulnerable load instructions

Mitigating LVI: Compiler and assembler support

-mlfence-after-load

-mlvi-hardening

-Qspectre-load

36

Intel architectural enclaves: lfence counts libsgx qe.signed.so

23 fences

October 2019—“surgical precision”

:
49,315 fences

March 2020—“big hammer”

37

Intel architectural enclaves: lfence counts libsgx qe.signed.so

23 fences

October 2019—“surgical precision”

:
49,315 fences

March 2020—“big hammer”

37

LVI performance impact https://www.phoronix.com

39

https://www.phoronix.com

Conclusions and takeaway

⇒ Trusted execution environments (Intel SGX) ≠ perfect(!)

⇒ Importance of fundamental side-channel research; no silver-bullet defenses

⇒ Security cross-cuts the system stack: hardware, OS, compiler, application

40

Thank you!

	Idea 1: Privileged interrupts for side-channel amplification
	Idea 2: Privileged interrupts for microarchitectural leakage
	Idea 3: Privileged page tables for transient data leakage

