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Computing spectrum: “Low-end” vs. “high-end”
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Context: Growth of the Internet of Things (IoT)



Side-channel threats?

“Compared to higher-end MMU-based systems, Sancus can be 
considered less susceptible to [side-channel] threats considering the 
elementary design of its security extensions, as well as the underlying 
processor.”
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Side-channel threats?

“Compared to higher-end MMU-based systems, Sancus can be 
considered less susceptible to [side-channel] threats considering the 
elementary design of its security extensions, as well as the underlying 
processor.”

“Given the kind of small microprocessors that we target, many 
side-channels such as cache timing attacks or page fault channels are not 
applicable.”
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Focus: timing attacks

● Start-to-end timing: memcmp on VRASED (remote attestation)

● More elaborate threats: interrupt latency, other contention attacks
● Precise timers!
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Marton Bognar, Jo Van Bulck, Frank Piessens, “Mind the Gap: Studying the Insecurity of Provably Secure Embedded Trusted Execution Architectures”, S&P '22.



Embedded systems
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Embedded systems: timing leakage
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Standard library functions

● Authentic Execution C++ library
● VatiCAN authenticated automotive bus protocol
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if (!std::equal(std::begin(tag), std::end(tag), expectedTag))
    return BAD_TAG;

if (memcmp(ch->MAC, _tempBuffer, 8) == 0) {
    res = MAC_OK;
    ch->RemoteCounter++;
} else {
    res = MAC_WRONG;
}



Embedded systems: timing leakage
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Embedded systems: timing leakage
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User code

● In newer VRASED-based systems: secure_memcmp
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User code: secure_memcmp
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User code: secure_memcmp
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User code: secure_memcmp
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Embedded systems: timing leakage
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Embedded systems: timing leakage
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What is the problem in this code?
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Compiler-introduced timing leakage
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void function(uint64_t mac, uint64_t guess) {
    bool match = mac != guess;
    …
}
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Compiler-introduced timing leakage
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void function(uint64_t mac, uint64_t guess) {
    bool match = mac != guess;
    …
}



Does this matter?

Brute-forcing a 64-bit tag at 1000 cycles/guess (@ 16 MHz):

36.6 million years
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Does this matter?

Brute-forcing 4 * 16-bit tags at 1000 cycles/guess:

16.4
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Does this matter?

Brute-forcing 4 * 16-bit tags at 1000 cycles/guess:

16.4 seconds
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Embedded systems: timing leakage
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Embedded systems: timing leakage
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Timing leakage in the hardware design

● Sancus features a cryptographic engine
○ Tag comparison for authenticated encryption
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● Library: use constant-time functions
● Compiler: use binary analysis to validate security
● Hardware: error-prone software mitigation
● Cryptographic unit: straightforward state machine fix

Mitigations
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Mitigation with extra state register
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Mitigation with extra state register
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🏆

Conclusion

https://github.com/dnet-tee/wait-a-cycle
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