DistriN=t

| KU LEUVEN

Wait a Cycle: Eroding
Cryptographic Trust in

Low-End TEEs via Timing Side
SEIIEE

Ruben Van Dijck, Marton Bognar, Jo Van Bulck

DistriNet, KU Leuven, Belgium
@ SysTEX (July 4th, 2025)

Computing spectrum: “Low-end” vs. “high-end”

ARM
Cortex-M Cortex-A Xeon / EPYC
:€ [1-10 10-100 >100]
@{g Security levels Virtualization support]
O TrustZone | (IREISEX (TDx/SEV |

Context: Growth of the Internet of Things (loT)

b

10% CAGR Other (2.1%,3.9%)
2018-2023 30 W Tablets (4%,3%)
25 — % PCs (7%,4%)

—
WTVs (13%,11%)

. 20
Billions of

— - -
Devices 15
19
5
0

'g_ 2018 2019 2020 2021 2022 2023
GU - 9_ * Figures (n) refer to 2018, 2023 device share

_e
\.

B Non-Smartphones (13%,5%)
® Smartphones (27%,23%)
B M2M (33%, 50%)

. 8L
—e e O
e, &

Side-channel threats?

“Compared to higher-end MMU-based systems, Sancus can be
considered less susceptible to [side-channel] threats considering the
elementary design of its security extensions, as well as the underlying
processor.”

Side-channel threats?

“Compared to higher-end MMU-based systems, Sancus can be
considered less susceptible to [side-channel] threats considering the
elementary design of its security extensions, as well as the underlying
processor.”

“Given the kind of small microprocessors that we target, many
side-channels such as cache timing attacks or page fault channels are not
applicable.”

Focus: timing attacks

e Start-to-end timing: memcmp on VRASED (remote attestation)
TABLE III. Execution time of VRASED, for authentication guesses.

VRF_AUTH[32]

Execution time (cycles)

{021 }
{0x0}

{0x59}
{0x59; Ox75}
{0x59, 0x76}

210,641
210,641
210,654
210,654
210,667

® More elaborate threats: interrupt latency, other contention attacks

® Precise timers!

Marton Bognar, Jo Van Bulck, Frank Piessens, “Mind the Gap: Studying the Insecurity of Provably Secure Embedded Trusted Execution Architectures”, S&P '22.

Embedded systems

|

standard
library

}

machine

code /
assembly

CPU

Embedded systems: timing leakage

|

standard
library

|

user
code

[
}

machine

code /
assembly

CPU

Standard library functions

e Authentic Execution C++ library
e VatiCAN authenticated automotive bus protocol

if (!std::equal(std::begin(tag), std::end(tag), expectedTag))
return BAD_TAG;

if (memcmp(ch->MAC, _tempBuffer, 8) == 0) {
res = MAC_OK;
ch->RemoteCounter++;

} else {
res = MAC_WRONG;

}

Embedded systems: timing leakage

|

standard
library

|

user
code

[
}

machine

code /
assembly

CPU

10

Embedded systems: timing leakage

|

standard
library

machine

code /
assembly

CPU

11

User code

® In newer VRASED-based systems: secure_memcmp

__attribute__ ((section (".do_mac.body"))) int secure_memcmp(const uint8_t* s1, const uint8_t* s2, int size) {
int res = 0;

int First.i= 1

for(int i = 0; i < size; i++) {
if (first == 1 && si[i] > s2[i]) {
res = 1;
Tifrst = 103
3
else if (first == 1 && si[i] < s2[i]) {
res = -1;
Finst. .= 03
}
}

return res;

User code: secure_memcmp

first=0
s1[i] < s2[i]?

' s1[i] >= s2]i]

13

User code: secure_memcmp

first=0
s1[i] < s2[i]?

' s1[i] >= s2]i]

14

User code: secure_memcmp

first=0
s1[i] < s2[i]?

. s1[i] >= s2]i]

15

Embedded systems: timing leakage

|

standard
library

machine

code /
assembly

CPU

16

Embedded systems: timing leakage

|

standard
library

machine

code /
assembly

CPU

17

What is the problem in this code?

/* 2. authenticated connection ? calculate and verify MAC */

if (vatican_mac_create(mac_me.bytes, *id, buf, rv) >= 0)

{
recv_len = vatican_receilve(ican, &id_recv, mac_recv.bytes, /*block=*/1);
fail = (id_recv != *id + 1) || (recv_len != CAN_PAYLOAD_SIZE) ||
(mac_me.quad != mac_recv.quad);
}

18

Compiler-introduced timing leakage

void function(uint64_t mac, uint64_t guess) {
bool match = mac != guess;

}

19

Compiler-introduced timing leakage

void function(uint64_t mac, uint64_t guess) {
bool match = mac != guess;

cCmp . w o6(rl), rl2

jne L1
cmp . w By, ®ld
jne L1
cCmp . w r10, rl4
jne L1

Cmp . w ell, ELlS
jne L1

Compiler-introduced timing leakage

void function(uint64_t mac, uint64_t guess) {
bool match = mac != guess;

cCmp . w o6(rl), rl2

jne L1
Cmp - W r 9 4 I l 3 Compiler Word size uintl6_t uint32_t uint64_t
jne Ll MSP430 gec v14.2.0 16 x x
sancus—cc (LLVM v4.0.1) 16
cCmp .w 1.0 r1l4 RISC-V gcc v14.2.0 32 x
’ MIPS (el) gcc v14.2.0 5 x
jne 1,1 x86 MSVC v19 32 x

Cmp . w ell, ELlS
jne L1

Does this matter?

Brute-forcing a 64-bit tag at 1000 cycles/guess (@ 16 MHz):

36.6 million years

Does this matter?

Brute-forcing 4 * 16-bit tags at 1000 cycles/guess:
16.4

23

Does this matter?

Brute-forcing 4 * 16-bit tags at 1000 cycles/guess:

16.4 seconds

24

Embedded systems: timing leakage

|

standard
library

machine

code /
assembly

CPU

25

Embedded systems: timing leakage

|

standard
library

machine

code /
assembly

CPU

26

Timing leakage in the hardware design

e Sancus features a cryptographic engine
o Tag comparison for authenticated encryption

INCORRECT WORD

VERIFY_TAG

BUSY
CALCULATING
NEXT WORD

FINISHED

VERIFY_TAG_WAIT

27

Mitigations

Library: use constant-time functions
Compiler: use binary analysis to validate security
Hardware: error-prone software mitigation

Cryptographic unit: straightforward state machine fix

28

Mitigation with extra state register

FAIL
INCORRECT WORD

VERIFY_TAG > FAIL

N
)

FINISHED &
PARTLY WRONG

S
BUSY ’/l//@&
CALCULATING &
NEXT WORD e BUSY
FINISHED CALCULATING
SUCCESS < VERIFY_TAG_WAIT FINISHED & NEXT WORD
FULLY CORRECT

SUCCESS VERIFY_TAG_WAIT

A

29

Mitigation with extra state register

FAIL

INCORRECT WORD
VERIFY_TAG

> FAIL

N
)

FINISHED &
PARTLY WRONG

S
BUSY ’/l//@&
CALCULATING S
NEXT WORD o BUSY
FINISHED CALCULATING
SUCCESS < VERIFY_TAG_WAIT FINISHED & NEXT WORD

FULLY CORRECT
SUCCESS -« VERIFY_TAG_WAIT
Total Crypto unit
Architecture LUT FF LUT FF
Original 5427 2240 1436 592

[Extra register 5,407 2,241 1,414 593 |
Extra states 5457 2240 1,482 592

30

Conclusion

Wait a Cycle: Eroding
Cryptographic Trust in Low-End
TEEs via Timing Side Channels

€) CI [passing O

<[> SysTEX'25 Artifact Evaluated 'Available’

<[> SysTEX'25 Artifact Evaluated Functional

<[> SysTEX'25 Artifact Evaluated 'Reusable

https://qithub.com/dnet-tee/wait-a-cycle

standard
library

.mpiler

machine
code /
assembly

System Library == operator = Hardware
VRASED+, RATA, ACFA, TRAIN X

VatiCAN X

LEIA x

VulCAN X

Sancus, Authentic Execution b 4 b 4

31

https://github.com/dnet-tee/wait-a-cycle

