
Wait a Cycle: Eroding
Cryptographic Trust in
Low-End TEEs via Timing Side
Channels

Ruben Van Dijck, Marton Bognar, Jo Van Bulck
DistriNet, KU Leuven, Belgium

@ SysTEX (July 4th, 2025)

Computing spectrum: “Low-end” vs. “high-end”

2

3

Context: Growth of the Internet of Things (IoT)

Side-channel threats?

“Compared to higher-end MMU-based systems, Sancus can be
considered less susceptible to [side-channel] threats considering the
elementary design of its security extensions, as well as the underlying
processor.”

4

Side-channel threats?

“Compared to higher-end MMU-based systems, Sancus can be
considered less susceptible to [side-channel] threats considering the
elementary design of its security extensions, as well as the underlying
processor.”

“Given the kind of small microprocessors that we target, many
side-channels such as cache timing attacks or page fault channels are not
applicable.”

5

Focus: timing attacks

● Start-to-end timing: memcmp on VRASED (remote attestation)

● More elaborate threats: interrupt latency, other contention attacks
● Precise timers!

6
Marton Bognar, Jo Van Bulck, Frank Piessens, “Mind the Gap: Studying the Insecurity of Provably Secure Embedded Trusted Execution Architectures”, S&P '22.

Embedded systems

7

standard
library

user
code

compiler
machine
code /

assembly
CPU

Embedded systems: timing leakage

8

standard
library

user
code

compiler
machine
code /

assembly
CPU

Standard library functions

● Authentic Execution C++ library
● VatiCAN authenticated automotive bus protocol

9

if (!std::equal(std::begin(tag), std::end(tag), expectedTag))
 return BAD_TAG;

if (memcmp(ch->MAC, _tempBuffer, 8) == 0) {
 res = MAC_OK;
 ch->RemoteCounter++;
} else {
 res = MAC_WRONG;
}

Embedded systems: timing leakage

10

standard
library

user
code

compiler
machine
code /

assembly
CPU

Embedded systems: timing leakage

11

standard
library

user
code

compiler
machine
code /

assembly
CPU

User code

● In newer VRASED-based systems: secure_memcmp

12

User code: secure_memcmp

13

User code: secure_memcmp

14

User code: secure_memcmp

15

Embedded systems: timing leakage

16

standard
library

user
code

compiler
machine
code /

assembly
CPU

Embedded systems: timing leakage

17

standard
library

user
code

compiler
machine
code /

assembly
CPU

What is the problem in this code?

18

Compiler-introduced timing leakage

19

void function(uint64_t mac, uint64_t guess) {
 bool match = mac != guess;
 …
}

Compiler-introduced timing leakage

20

void function(uint64_t mac, uint64_t guess) {
 bool match = mac != guess;
 …
}

Compiler-introduced timing leakage

21

void function(uint64_t mac, uint64_t guess) {
 bool match = mac != guess;
 …
}

Does this matter?

Brute-forcing a 64-bit tag at 1000 cycles/guess (@ 16 MHz):

36.6 million years

22

Does this matter?

Brute-forcing 4 * 16-bit tags at 1000 cycles/guess:

16.4

23

Does this matter?

Brute-forcing 4 * 16-bit tags at 1000 cycles/guess:

16.4 seconds

24

Embedded systems: timing leakage

25

standard
library

user
code

compiler
machine
code /

assembly
CPU

Embedded systems: timing leakage

26

standard
library

user
code

compiler
machine
code /

assembly
CPU

Timing leakage in the hardware design

● Sancus features a cryptographic engine
○ Tag comparison for authenticated encryption

27

● Library: use constant-time functions
● Compiler: use binary analysis to validate security
● Hardware: error-prone software mitigation
● Cryptographic unit: straightforward state machine fix

Mitigations

28

Mitigation with extra state register

29

Mitigation with extra state register

30

🏆

Conclusion

https://github.com/dnet-tee/wait-a-cycle

31

standard
library

user
code

compiler
machine
code /

assembly
CPU

https://github.com/dnet-tee/wait-a-cycle

