
Securing Interruptible Enclaved Execution on Small
Microprocessors

MATTEO BUSI, Dept. of Computer Science, Università di Pisa

JOB NOORMAN, imec-DistriNet, Dept. of Computer Science, KU Leuven

JO VAN BULCK, imec-DistriNet, Dept. of Computer Science, KU Leuven

LETTERIO GALLETTA, IMT School for Advanced Studies Lucca

PIERPAOLO DEGANO, Dept. of Computer Science, Università di Pisa and IMT School for Advanced

Studies Lucca

JAN TOBIAS MÜHLBERG, imec-DistriNet, Dept. of Computer Science, KU Leuven

FRANK PIESSENS, imec-DistriNet, Dept. of Computer Science, KU Leuven

Computer systems often provide hardware support for isolation mechanisms like privilege levels, virtual

memory, or enclaved execution. Over the past years, several successful software-based side-channel attacks

have been developed that break, or at least significantly weaken the isolation that these mechanisms offer.

Extending a processor with new architectural or micro-architectural features, brings a risk of introducing new

software-based side-channel attacks.

This paper studies the problem of extending a processor with new features without weakening the security

of the isolation mechanisms that the processor offers. Our solution is heavily based on techniques from

research on programming languages. More specifically, we propose to use the programming language concept

of full abstraction as a general formal criterion for the security of a processor extension. We instantiate

the proposed criterion to the concrete case of extending a microprocessor that supports enclaved execution

with secure interruptibility. This is a very relevant instantiation as several recent papers have shown that

interruptibility of enclaves leads to a variety of software-based side-channel attacks. We propose a design for

interruptible enclaves, and prove that it satisfies our security criterion. We also implement the design on an

open-source enclave-enabled microprocessor, and evaluate the cost of our design in terms of performance and

hardware size.

CCS Concepts: • Security and privacy→ Formal methods and theory of security; Embedded systems

security.

Additional Key Words and Phrases: language-based security, enclaves, full abstraction, secure compilation

ACM Reference Format:

Matteo Busi, Job Noorman, Jo Van Bulck, Letterio Galletta, Pierpaolo Degano, Jan Tobias Mühlberg, and Frank

Piessens. 2022. Securing Interruptible Enclaved Execution on Small Microprocessors. 1, 1 (March 2022),

76 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Authors’ addresses: Matteo Busi, matteo.busi@di.unipi.it, Dept. of Computer Science, Università di Pisa, Pisa, Italy; Job

Noorman, job.noorman@kuleuven.be, imec-DistriNet, Dept. of Computer Science, KU Leuven, Leuven, Belgium; Jo Van

Bulck, jo.vanbulck@kuleuven.be, imec-DistriNet, Dept. of Computer Science, KU Leuven, Leuven, Belgium; Letterio Galletta,

letterio.galletta@imtlucca.it, IMT School for Advanced Studies Lucca, Lucca, Italy; Pierpaolo Degano, pierpaolo.degano@

unipi.it, Dept. of Computer Science, Università di Pisa and IMT School for Advanced Studies Lucca, Lucca, Italy; Jan Tobias

Mühlberg, jantobias.muehlberg@kuleuven.be, imec-DistriNet, Dept. of Computer Science, KU Leuven, Leuven, Belgium;

Frank Piessens, frank.piessens@kuleuven.be, imec-DistriNet, Dept. of Computer Science, KU Leuven, Leuven, Belgium.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

XXXX-XXXX/2022/3-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: March 2022.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 Busi et al.

1 INTRODUCTION
Many computing platforms run programs coming from a number of different stakeholders that

do not necessarily trust each other. Hence, these platforms provide mechanisms to prevent code

from one stakeholder interfering with code from other stakeholders in undesirable ways. These

isolation mechanisms are intended to confine the interactions between two isolated programs to a

well-defined communication interface. Examples of such isolation mechanisms include process

isolation, virtual machine monitors, or enclaved execution [41].

However, security researchers have shown that many of these isolation mechanisms can be

attacked by means of software-exploitable side channels. Such side channels have been shown to

violate integrity of victim programs [33, 43, 54], as well as their confidentiality on both high-end

processors [9, 23, 34, 38] and on small microprocessors [56]. In fact, over the past two years,

many major isolation mechanisms have been successfully attacked: Meltdown [38] has broken

user/kernel isolation, Spectre [34] has broken process isolation and software defined isolation, and

Foreshadow [9] has broken enclaved execution on Intel processors.

The class of software-exploitable side-channel attacks is complex and varied. These attacks often

exploit, or at least rely on, specific hardware features or hardware implementation details. Hence, for

complex state-of-the-art processors there is a wide potential attack surface that should be explored

(see for instance [14] for an overview of just the attacks that rely on transient execution). Moreover,

the potential attack vectors vary with the attacker model that a specific isolation mechanism

considers. For instance, enclaved execution is designed to protect enclaved code from malicious

operating system software, whereas process isolation assumes that the operating system is trusted

and not under control of the attacker. As a consequence, protection against software-exploitable

side-channel attacks is much harder for enclaved execution [60].

Hence, no silver-bullet solutions against this class of attacks should be expected, and counter-

measures will likely be as varied as the attacks. They will depend on attacker model, performance

versus security trade offs, and on the specific processor feature that is being exploited.

The objective of this paper is to study how to design and prove secure such countermeasures.

In particular, we rigorously study the resistance of enclaved execution on small microproces-

sors [35, 45] against interrupt-based attacks [11, 29, 56]. This specific instantiation is important

and challenging. First, interrupt-based attacks are very powerful against enclaved execution:

fine-grained interrupts have been a key ingredient in many attacks against enclaved execution

[9, 15, 36, 56]. Second, to the best of our knowledge, all existing implementations of interruptible

enclaved execution are vulnerable to software-exploitable side channels, including implementations

that specifically aim for secure interruptibility [18, 35]. For our study, we rely on programming

language techniques developed in the field of secure compilation [48].

We base our study on the existing open-source Sancus platform [44, 45], a small microprocessor

with predictable timing of individual instructions, that supports non-interruptible enclaved execution.

We illustrate that achieving security is non-trivial through a variety of attacks enabled by supporting

interruptibility of enclaves. Next, we provide a formal model of the existing Sancus, called hereafter

Sancus
H
, and we then extend it with interrupts, dubbed SancusL. We prove that this extension does

not break isolation properties by instantiating full abstraction [1]. Full abstraction is a good fit for

this study, as Sancus is fully deterministic, including deterministic timing. Moreover, the attacks

we consider rely on distinguishing code paths of programs when they have different execution

time, which is closely related to distinguishing different programs.

Roughly, we show that what the attacker can learn from (or do to) an enclave is exactly the same

before and after adding the support for interrupts. In other words, adding interruptibility does not

open new avenues of attack. Finally, we implement the secure interrupt handling mechanism as an

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 3

extension to Sancus, and we show that the cost of the mechanism is low, in terms of both hardware

complexity and performance.

In summary, the novel contributions of this paper are:

• We propose a specific design for extending Sancus, an existing enclaved execution system,

with interrupts.

• We propose to use full abstraction [1] as a formal criterion of what it means to maintain

the security of isolation mechanisms under processor extensions. Also, we instantiate it for

proving that the mechanism of enclaved execution, extended to support interrupts, complies

with our security definition.

• We specialize the proof technique called backtranslation [47] to encode the attack logic within

the I/O device, so as to construct an attacker at Sancus
H
given one at SancusL. The novelty

of our backtranslation consists in using the unlimited state space of the (attacker-controlled)

I/O device to work around the 64KB memory limit of the processor.

• We implement our countermeasures on the open source Sancus processor, and evaluate cost

in terms of hardware size and performance impact.
1

The paper is structured as follows: in Section 2 we provide background information on enclaved

execution and interrupt-based attacks. Section 3 provides an informal overview of our approach.

Section 4 introduces our formalization, and Section 5 presents the semantics of Sancus without

and with interrupts. The proof that enclaved executions are resistant to interrupt-based attacks

is in Section 6; some auxiliary definitions and proofs are presented in full detail in the Appendix.

Section 7 shows how our full abstraction result implies some other security notions when tailored

to our setting. In Section 8 we describe and evaluate our implementation. Sections 9 and 10 discuss

limitations, and the connection to related work. Finally, Section 11 offers our conclusions and plans

for future work.

This is an extended version of the paper [13]. Here we include all the results of the conference

paper, and additionally include (1) a detailed outline of our formal model and full abstraction proof,

(2) additional results that make explicit how our full abstraction result relates to the preservation

of (variants of) non-interference and other security properties, and (3) a more detailed discussion

of the lessons that can be learned for other, more complex, enclaved execution systems, and the

challenges that remain there.

2 BACKGROUND
2.1 Enclaved execution
Enclaved execution is a security mechanism that enables secure remote computation [17]. It supports

the creation of enclaves that are initialized with a software module, and that have the following

security properties. First, the software module in the enclave is isolated from all other software on

the same platform, including system software such as the operating system. Second, the correct

initialization of an enclave can be remotely attested: a remote party can get cryptographic assurance

that an enclave was properly initialized with a specific software module (characterized by a

cryptographic hash of the binary module). These security properties are guaranteed while relying

on a small trusted computing base, for instance trusting only the hardware [41, 45], or possibly

also a small hypervisor [21, 40].

The remote attestation aspect is important for the secure initialization of enclaves, and for setting

up secure communication channels with them. However, it does not play an important role for

the interrupt-driven attacks that we study in this paper, and hence we will focus here on the

1
Our implementation is available online at https://github.com/sancus-pma/sancus-core/tree/nemesis.

, Vol. 1, No. 1, Article . Publication date: March 2022.

https://github.com/sancus-pma/sancus-core/tree/nemesis


4 Busi et al.

isolation aspect of enclaves only. Other papers describe in detail how remote attestation and secure

communication work on large [17] or small systems [35, 45].

The isolation guarantees offered to an enclaved software module are the following. The module

consists of two contiguous memory sections, a code section, initialized with the machine code of the

module, and a data section. The data section is initialized to zero, and the loading of confidential

data happens through a secure channel, after attesting the correct initialization of the module.

For instance, confidential data can be restored from cryptographically sealed storage, or can be

obtained from a remote trusted party.

The enclaved execution platform guarantees that: (1) the code and data sections of an enclave

are only accessible while executing code from the code section, and (2) the code section can only be

entered through one or more designated entry points.

These isolation guarantees are simple, but they offer the useful property that data of a module

can only be manipulated by code of the same module, i.e., an encapsulation property similar to what

programming languages offer through classes and objects. Actually, untrusted code may reside in

the same address space of the enclave, but outside its code and data sections. Untrusted code can

only interact with the enclave by jumping to an entry point. The enclave can return control (and

computation results) to the untrusted code by jumping back out.

2.2 Interrupt-based attacks
Enclaved execution is designed to be resistant against a very strong attacker that controls all

other software on the platform, including privileged system software. Isolating enclaves is well-

understood at the architectural level, including even successful formal verification efforts [21, 46].

As a matter of fact, researchers have shown that it is challenging to protect enclaves against side

channels. Particularly, a recent line of work on controlled-channel attacks [11, 12, 36, 42, 56, 60]

has demonstrated a new class of powerful, low-noise side channels that leverage the adversary’s

increased control over the untrusted operating system.

A specific consequence of this strong model is that the attacker also controls the scheduling and

handling of interrupts: the attacker can precisely schedule interrupts to arrive during enclaved

execution, and can choose the code to handle them. This power has been exploited for instance

to single-step through an enclave [11], or to mount a new class of ingenious interrupt latency

attacks [29, 56] that derive individual enclaved instruction timings from the time it takes to dispatch

to the untrusted operating system’s interrupt handler. We provide concrete examples of interrupt-

based attacks in the next section, after detailing our model of enclaved execution.

While advanced CPU features such as virtual memory [9, 12, 42, 60], branch prediction [15, 36]

or caching [53] are known to leak information on high-end processors, pure interrupt-based attacks

such as interrupt latency measurements are the only known controlled-channel attack against

low-end enclaved execution platforms lacking these advanced features. Moreover, they have been

shown to be very powerful: e.g., Van Bulck et al. [56] have shown how to efficiently extract enclave

secrets like passwords or PINs from embedded enclaves.

Some enclaved execution designs avoid the problem of interrupt-based attacks by completely

disabling interrupts during enclave execution [45, 46]. This has the important downside that system

software can no longer guarantee availability: if an enclaved module goes into an infinite loop,

the system cannot progress. All designs that do support interruptibility of enclaves [18, 35] are

vulnerable to these attacks.

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 5

Instr. 𝑖 Meaning Cycles Size in words

RETI Returns from interrupt. 5 1

NOP No-operation. 1 1

HLT Halt. 1 1

NOT r r← ¬r. (Emulated in MSP430) 2 2

IN r Reads word from the device and puts it in r. 2 1

OUT r Writes word in register r to the device. 2 1

AND r1 r2 r2 ← r1 & r2. 1 1

JMP &r Sets pc to the value in r. 2 1

JZ &r Sets pc to the value in r if bit 0 in sr is set. 2 1

MOV r1 r2 r2 ← r1. 1 1

MOV @r1 r2 Loads in r2 the word starting in location pointed to by r1. 2 1

MOV r1 0(r2) Stores the value of r1 starting at location pointed to by r2. 4 2

MOV #𝑤 r2 r2 ← 𝑤 . 2 2

ADD r1 r2 r2 ← r1 + r2. 1 1

SUB r1 r2 r2 ← r1 − r2. 1 1

CMP r1 r2 Zero bit in sr set if r2 − r1 is zero. 1 1

Table 1. Summary of the assembly language considered.

3 OVERVIEW OF OUR APPROACH
We set out to design an interruptible enclaved execution system that is provably resistant against

interrupt-based attacks. This section discusses our approach informally, later sections discuss a

formalization with security proofs, and report on implementation and experimental evaluation.

We base our design on Sancus [45], an existing open-source enclaved execution system. We first

describe our Sancus model, and discuss how naively extending Sancus with interrupts leads to the

attacks mentioned in Section 2.2. In other words, we show how extending Sancus with interrupts

breaks some of the isolation guarantees provided by the original architecture.

Then, we propose a formal security criterion that defines what it means for interruptibility to

preserve the isolation properties, and we illustrate that definition with examples.

Finally, we propose a design for an interrupt handling mechanism that is resistant against the

considered attacks and that satisfies our security definition. Crucial to our design is the assumption

that the timing of individual instructions is predictable, which is typical of “small” microprocessors,

like Sancus (whose memory has only 64KB). Our approach of ensuring that the same attacks are

possible before and after an architecture extension is tailored here on a specific architecture and on

a specific class of attacks, however we expect it to be applicable in other settings too, as briefly

discussed in Section 9.3.

3.1 Sancus model
Processor. Sancus is based on the TI MSP430 16-bit microprocessor [30], with a classic von

Neumann architecture where code and data share the same address space. We formalize the subset

of instructions summarized in Table 1 that is rich enough to model all the attacks on Sancus we

care about (see also Section 9). We have a subset of memory-to-register and register-to-memory

transfer instructions; a comparison instruction; an unconditional and a conditional jump; and basic

arithmetic instructions.

Memory. Sancus has a byte-addressable memory of at most 64KB, where a finite number of

enclaves can be defined. The bound on the number of enclaves is a parameter set at processor

synthesis time. In our model, we assume that there is a single enclave, made of a code section,

initialized with the machine code of the module, and a data section. A data section is securely

provisioned with data by relying on remote attestation and secure communication, not modeled

here as they play no role in the interrupt-based attacks of interest in this paper. Instead, our model

, Vol. 1, No. 1, Article . Publication date: March 2022.



6 Busi et al.

allows direct initialization of the data section with confidential enclave data. All the other memory

is unprotected memory that is under full control of the attacker.

Enclaves have a single entry point: the enclave can only be entered by jumping to the first address

of the code section. Multiple logical entry points can easily be implemented on top of this single

physical entry point. Control-flow can leave the enclave by jumping to any address in unprotected

memory. Obviously, a compiler can implement higher-level abstractions such as enclave function

calls and returns, or out-calls from the enclave to functions in the untrusted code [45].

Sancus enforces memory access control based on program counter (pc). If the pc points to

unprotected memory, the processor cannot access any memory location within the enclave – the

only way to interact with the enclave is to jump to the entry point. If the pc is within the code

section of the enclave, the processor can only access the enclave data section for reading/writing

and the enclave code section for execution. This access control is faithfully rendered in our model,

see Section 4.8 for the full definition of the relevant mechanism.

I/O devices. Sancus usesmemory-mapped I/O to interact with peripherals. One important example

of a peripheral for the attacks we study is a cycle-accurate timer, which allows software to measure

time in terms of the number of CPU cycles. In our model, we include a single very general I/O

device that behaves as a state machine running synchronously to CPU execution. In particular, it is

trivial to instantiate this general I/O device to a cycle-accurate timer.

Instead of modeling memory-mapped I/O, we introduce the two special instructions IN and OUT
that allow writing/reading a word to/from the device (see Table 1). Actually these instructions

are short-hands, which are easy to macro-expand, at the price of dealing with special cases in the

execution semantics for any memory operation. For instance, software could read the current cycle

timer value from a timer peripheral by using the IN instruction.
The I/O devices can request to interrupt the processor with single-cycle accuracy. The original

Sancus disables interrupts during enclaved execution. One of the key objectives of this paper is to

propose a Sancus extension that does handle such interrupts without weakening security.

3.2 Security definitions
Attacker model. An attacker controls the entire execution environment, aka the context of an

enclave: he controls (1) the whole unprotected memory (including code interacting with the enclave,

as well as data in unprotected memory), and (2) the connected device. This is the standard attacker

model for enclaved execution. In particular, it implies that the attacker has complete control over

the Interrupt Service Routines, i.e., pieces of code that the CPU invokes when an interrupt is raised.

Contextual equivalence formalizes isolation. Informally, our security objective is extending the

Sancus processor without weakening the isolation it provides to enclaves. What isolation achieves

is that attackers cannot see “inside” an enclave, so making it possible to “hide” enclave data or

implementation details from the attacker. We precisely formalize this concept of isolation by

using the notion of contextual equivalence or contextual indistinguishability, as done by Abadi [1].

Contextual equivalence (as opposed to alternatives based on for instance non-interference) also

covers confidentiality of the code in the enclave, which some enclaved execution systems guarantee

[25]. Two enclaved modules𝑀1 and𝑀2 are contextually equivalent if there exists no context that

tells them apart. We discuss this on the following example.

Example 3.1 (Start-to-end timing). The following enclave compares a user-provided password in

the register R15 with a secret in-enclave password at address pwd_adrs, and stores the user-provided
value in the register R14 into the enclave location at store_adrs if the user password was correct.

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 7

1 enclave_entry:
2 /* Load addresses for comparison */
3 MOV #store_adrs , r10 ; 2 cycles
4 MOV #access_ok , r11 ; 2 cycles
5 MOV #endif , r12 ; 2 cycles
6 MOV #pwd_adrs , r13 ; 2 cycles
7 /* Compare user vs. enclave password */
8 MOV @r13 , r13 ; 2 cycles
9 CMP r13 , r15 ; 1 cycle
10 JZ &r11 ; 2 cycles
11 access_fail: /* Password fail: return */
12 JMP &r12 ; 2 cycles
13 access_ok: /* Password ok: store user val */
14 MOV r14 , 0(r10) ; 4 cycles
15 endif: /* Clear secret enclave password */
16 SUB r13 , r13 ; 1 cycle
17 enclave_exit:

In the absence of a timer device, this enclave successfully hides the in-enclave password. If we

take enclaves𝑀1 and𝑀2 to be two instances of the above only differing in the value of the secret

password, then 𝑀1 and 𝑀2 are indistinguishable for any context that does not have access to a

cycle-accurate timer: all such a context can do is calling the entry point, but the context gets no

indication whether the user-provided password was correct. This formalizes that enclave isolation

successfully “hides” the password.

However, with the help of a cycle-accurate timer, the attacker can distinguish 𝑀1 and 𝑀2 as

follows. The attacker can create a context that measures the start-to-end execution time of an

enclave call: the context reads the timer right before jumping to the enclave. On enclave exit, the

context reads the timer again to compute the total time spent in the enclave.

In order to reason about execution time, we represent enclaved executions as an ordered ar-

ray of individual instruction timings. (Table 1 conveniently specifies how many cycles it takes

to execute each instruction.) Hence the two possible control-flow paths of the above program

are: ok=[2,2,2,2,2,1,2,4,1] for the access_ok branch, or fail=[2,2,2,2,2,1,2,2,1] for the
access_fail branch. Since sum(ok) = 18 and sum(fail) = 16, the context can distinguish the

two control-flow paths, and hence can distinguish 𝑀1 and 𝑀2 (and by launching a brute-force

attack [24], can also extract the secret password).

This example illustrates how contextual equivalence formalizes isolation. It also shows that the

original Sancus already has some side-channel vulnerabilities under our attacker model. Since we

assume the attacker can use any I/O device, he can use a timer device and mount the start-to-end

timing attack we discussed.

It is important to note that it is not our objective in this paper to close these existing side-channel

vulnerabilities in Sancus. Our objective is to make sure that adding interrupts does not introduce

additional side channels, i.e., that this does not weaken the isolation properties of Sancus.

For existing side channels, like the start-to-end timing side channel, countermeasures can

be applied by the enclave programmer or by a security-aware compiler [7]. For instance, the

programmer can balance out the various secret-dependent control-flow paths as in Example 3.2.

Example 3.2 (Interrupt latency). Consider the program of Example 3.1, balanced in terms of overall

execution time by adding two NOP instructions at lines 13-14 below. The two possible control-

flow paths are: ok=[2,2,2,2,2,1,2,4,1] vs. fail=[2,2,2,2,2,1,2,1,1,2,1]. Since sum(ok)
is equal to sum(fail), the start-to-end timing attack is mitigated.

, Vol. 1, No. 1, Article . Publication date: March 2022.



8 Busi et al.

1 enclave_entry:
2 /* Load addresses for comparison */
3 MOV #store_adrs , r10 ; 2 cycles
4 MOV #access_ok , r11 ; 2 cycles
5 MOV #endif , r12 ; 2 cycles
6 MOV #pwd_adrs , r13 ; 2 cycles
7 /* Compare user vs. enclave password */
8 MOV @r13 , r13 ; 2 cycles
9 CMP r13 , r15 ; 1 cycle
10 JZ &r11 ; 2 cycles
11 access_fail:
12 /* Password fail: constant time return */
13 NOP ; 1 cycle
14 NOP ; 1 cycle
15 JMP &r12 ; 2 cycles
16 access_ok: /* Password ok: store user val */
17 MOV r14 , 0(r10) ; 4 cycles
18 endif: /* Clear secret enclave password */
19 SUB r13 , r13 ; 1 cycle
20 enclave_exit:

Interrupts can weaken isolation. Wenow show that a straightforward implementation of interrupts

in the Sancus processor would significantly weaken isolation. Consider an implementation of

interrupts similar to TI MSP430. The processor checks for the presence of pending interrupts after

the completion of each instruction. Hence, if an interrupt arrives while the processor is executing

a multi-cycle instruction, it will only be handled once that instruction is completed. If there is

an interrupt, the processor saves some essential state (like where to resume after the interrupt is

handled) and then sets the program counter to the interrupt service routine. The interrupt service

routine performs any actions required to handle the interrupt and then uses the RETI instruction

to resume execution at the instruction following the interrupted instruction.

The program in Example 3.2 is secure on Sancus without interrupts. However, it is not secure

against a malicious context that can schedule interrupts to be handled while the enclave executes.

To see why, consider the following attack. The attacker schedules an interrupt to arrive within

the first cycle after the conditional jump at line 10 (call this clock cycle 𝑡0), and the attacker

measures when control flow arrives in the interrupt service routine (clock cycle 𝑡1). The attacker

can then compute the interrupt latency 𝑡1 − 𝑡0. If the jump was taken then the instruction being

interrupted is the 4-cycle MOVat line 18, otherwise it is the 1-cycle NOP at line 13. Now, since the
attacker’s interrupt service routine will only be called after completion of the current instruction,

the adversary observes an interrupt latency difference of 3 cycles, depending on the secret branch

condition inside the enclave. Researchers have shown how interrupt latency can be practically

measured to precisely reconstruct individual enclave instruction timings on both high-end and

low-end enclave processors [56].

Using this attack technique, illustrated in Figure 1, an attacker can again distinguish two instances

of the module with a different password, and hence the addition of interrupts hasweakened isolation.

A strawman solution to fix the above timing leakage is to modify the implementation of interrupt

handling in the processor to always dispatch interrupt service routines in constant time T, i.e.,
regardless of the execution time of the interrupted instruction. We show in the two examples below

that this is however a necessary but not sufficient condition.

Example 3.3 (Resume-to-end timing). Consider the program from Example 3.2 executed on a

processor which always dispatches interrupts in constant time T. The attacker schedules an interrupt
to arrive in the first cycle after the JZ instruction, yielding constant interrupt latency T. Next, the
context resumes the enclave and measures the time it takes to let the enclave run to completion

without further interrupts. While interrupt latency timing differences are properly masked, the

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 9

mov mov mov mov mov cmp jz mov sub

0

1

2

3

4

L
a
t
e
n
c
y

access_ok

mov mov mov mov mov cmp jz nop nop jmp sub

0

1

2

3

4

Instruction

L
a
t
e
n
c
y

access_fail

Fig. 1. Interrupt latency traces corresponding to the conditional control-flow paths in Example 3.2. When

interrupting after the 7th instruction, the adversary observes a distinct latency difference for the 4-cycle MOV
instruction vs. the 1-cycle NOP instruction.

time to complete enclave execution after resume from the interrupt is 1 cycle for the ok path and 4

cycles for the fail path (cf. Figure 1). Hence, like in Example 3.2, the compiler’s or developer’s

effort to equalize both branches is undermined.

Example 3.4 (Interrupt-counting attack). An alternative way to attack the program from Exam-

ple 3.2 even when interrupt latency is constant, is to count how often the enclave execution can be

interrupted, e.g., by scheduling a new interrupt 1 cycle after resuming from the previous one. Since

interrupts are handled on instruction boundaries, this allows the attacker to count the number

of instructions executed in the enclave, and hence to distinguish the two possible control-flow

paths (cf. Figure 1). Such interrupt counting attacks [42] have been shown to be dangerous even on

enclaved execution systems like Intel SGX, where timing measurements are noisy.

Defining the security of an extension. The examples above show how a new processor feature

(like interrupts) can weaken an existing isolation mechanism (like enclaved execution), and this is

exactly what we want to avoid. Here we propose and implement a defense against these attacks

and formally prove that it is indeed secure. Our security definition should now be clear: given

an original system (like Sancus), and an extension of that system (like interruptible Sancus), that

extension is secure if and only if it does not change the contextual equivalence of enclaves. Enclaves

that are contextually equivalent in the original system must be contextually equivalent in the

extended system and vice versa (we shall formalize this as a full abstraction property later on).

3.3 Secure interruptible Sancus
Designing an interrupt handling mechanism that is secure according to our definition above is

quite subtle. We illustrate some of the subtleties. In particular, we provide an intuition on how an

appropriate use of time padding can handle the various attacks discussed above. We also discuss

how other design aspects are crucial for achieving security. In this section, we just provide intuition

and examples. The ultimate argument that our design is secure is our proof, discussed later.

Padding. We already discussed that it is insufficient for security to naively pad interrupt latency

to make it constant, while we need a padding approach that handles all kinds of attacks.

Our padding scheme (see Figure 2) is as follows. Suppose the attacker schedules the interrupt

to arrive at 𝑡𝑎 , during the execution of instruction 𝐼 in the enclave. Let Δ𝑡1 be the time needed to

complete the execution of 𝐼 . To make sure the attacker cannot learn anything from the interrupt

latency, we introduce padding for Δ𝑡𝑝1 cycles where Δ𝑡𝑝1 is computed by the interrupt handling

, Vol. 1, No. 1, Article . Publication date: March 2022.



10 Busi et al.

I I’

Interrupt service 
routine runs here

Legend:

: enclave instruction

: padding

T
T

Fig. 2. The secure padding scheme.

logic such that Δ𝑡1 + Δ𝑡𝑝1 is a constant value 𝑇 . This value 𝑇 should be chosen as small as possible

to avoid wasting unnecessary time, but must be larger than or equal to the maximal instruction

cycle time MAX_TIME (to make sure that no negative padding is required, even when an interrupt

arrives right at the start of an instruction with the maximal cycle time). This first padding ensures

that an attacker always measures a constant interrupt latency.

But this alone is not enough, as an attacker can nowmeasure resume-to-end time as in Example 3.3.

Thus, we provide a second kind of padding. On return from an interrupt, the interrupt handling

logic will pad again for Δ𝑡𝑝2 cycles, ensuring that Δ𝑡𝑝1 + Δ𝑡𝑝2 is again the constant value 𝑇 (i.e.,

Δ𝑡𝑝2 = Δ𝑡1). This makes sure that the resume-to-end time measured by the attacker does not depend

on the instruction being interrupted.

This description of our padding scheme is still incomplete: it is also important to specify what

happens if a new interrupt arrives while the interrupt handling logic is still performing padding

because of a previous interrupt. This is important to counter attacks like that of Example 3.4.

Intuitively, the property we get is that (1) an attacker can schedule an interrupt at any time 𝑡𝑎
during enclave execution; (2) that interrupt will always be handled with a constant latency 𝑇 ; (3)

the resume-to-end time is always exactly the time the enclave still would have needed to complete

execution from point 𝑡𝑎 if it had not been interrupted. Interrupt counting attacks become useless,

as the number of times an execution path can be interrupted does no longer depend on the number

of instructions in that path.

This double padding scheme is a main ingredient of our secure interrupt handling mechanism,

but many other aspects of the design are important for security. We briefly discuss a number of

other issues that came up during the security proof, leading to the refinement of the implementation

of Sancus.

Saving execution state on interrupt. When an enclaved execution is interrupted, the processor state

(contents of the registers) is saved (to allow resuming the execution once the interrupt is handled)

and is cleared (to avoid leaking confidential register contents to the context). A straightforward

implementation would be to store the processor state on a stack in the enclave accessible memory.

However, the proof of our security theorem showed that this solution is not secure: consider two

enclaved modules that monitor the content of the memory area where processor state is saved,

and behave differently on observing a change in the content of this memory area. These modules

are contextually equivalent in the absence of interrupts (as the contents of this memory area will

never change), but become distinguishable in the presence of interrupts. Hence, our design saves

processor state in a storage area inaccessible to software.

No access to unprotected memory from within an enclave. Most designs of enclaved execution

allow an enclave to access unprotected memory (even if this has already been criticized for security

reasons [52]). However, for a single core processor, interruptibility significantly weakens contextual

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 11

equivalence for enclaves that can access unprotected memory. Consider an enclave𝑀1 that always

returns a constant 0, and an enclave𝑀2 that reads twice from the same unprotected address and

returns the difference of the values read. On a single-core processor without interrupts, 𝑀2 will

also always return 0, and hence is indistinguishable from𝑀1. But an interrupt scheduled to occur

between the two reads from𝑀2 can change the value returned by the second read, and hence𝑀1

and𝑀2 become distinguishable. Hence, our design forbids enclaves to access unprotected memory.

For similar reasons, our design forbids an interrupt handler to reenter the enclave while it has

been interrupted, and forbids the enclave to directly interact with I/O devices.

Finally, we prevent the interrupt enable bit in the status register from being changed by the

software in the enclave, as such changes are unobservable in the original Sancus and they would

be observable once interruptibility is added.

While the security proof is a significant amount of effort, an important benefit of this formalization

is that it forced us to consider all these cases and to think about secure ways of handling them. We

made our design choices to keep the model simple and the proof manageable, although some of

them may seem restrictive. Section 9 discusses the practical impact of these choices and possible

ways of relaxing some limitations.

4 THE FORMAL MODEL OF THE ARCHITECTURE
Here we set up the formal model of the architecture that runs both the original, uninterruptible

Sancus (Sancus
H
, Sancus-High) and the secure interruptible Sancus (SancusL, Sancus-Low).2 The

next section will define the semantics of of Sancus
H
and SancusL, and then we will formally show

that the two versions of Sancus actually provide the same security guarantees, i.e., the isolation

mechanism is not broken by adding our carefully designed interruptible enclaved execution.

4.1 Memory and memory layout
Recall from Section 3.1 that MSP430 has a 16-bit architecture, thus we model its memory as a

(finite) function mapping 2
16
locations to bytes 𝑏. Given a memoryM, we denote the operation of

retrieving the byte associated with the location 𝑙 asM(𝑙). On top of that, we define read and write

operations on words (i.e., pairs of bytes) and we write𝑤 = 𝑏1𝑏0 to denote that the most significant

byte of a word𝑤 is 𝑏1 and its least significant byte is 𝑏0.

The read operation is standard: it retrieves two consecutive bytes from a given memory location

𝑙 (in a little-endian fashion, as in MSP430):

M[𝑙] ≜ 𝑏1𝑏0 ifM(𝑙) = 𝑏0 ∧M(𝑙 + 1) = 𝑏1
We define the write operation as follows

(M[𝑙 ↦→ 𝑏1𝑏0]) (𝑙 ′) ≜


𝑏0 if 𝑙 ′ = 𝑙

𝑏1 if 𝑙 ′ = 𝑙 + 1
M(𝑙 ′) o.w.

Writing 𝑏0𝑏1 in location 𝑙 inM means to build an updated memory mapping 𝑙 to 𝑏0, 𝑙 + 1 to 𝑏1 and
unchanged otherwise.

Note that reads and writes in 𝑙 = 0xFFFF are undefined (𝑙+1 would overflow hence it is undefined).

The memory access control explicitly forbids these accesses (see below). Also, the write operation

deals with unaligned memory accesses (cfr. case 𝑙 ′ = 𝑙 + 1). We faithfully model these aspects to

prove that they do not lead to potential attacks.

2
The high and low terminology is inherited from the field of secure compilation of high source languages to low target

ones. Also, for readability we hereafter highlight in blue, sans-serif font elements of Sancus
H
, in red, bold font elements of

SancusL and in black those that are in common.

, Vol. 1, No. 1, Article . Publication date: March 2022.



12 Busi et al.

Since modeling the memory as a function gives no clues on how the enclave is organized, we

assume a fixed memory layout L ≜ ⟨ts, te, ds, de, isr⟩. It describes how the enclave and the interrupt

service routine (ISR) are placed in non-fragmented portions of memory and is used to check memory

accesses during the execution of each instruction (see below). To reflect the memory segmentation

of the real Sancus, we have two protected memory sections, containing the code and the data

of the enclave. The protected code section is denoted by [ts, te), while [ds, de) is the protected
data section, and they are placed in non-overlapping memory sections. The first address of the

protected code section is the single entry point of the enclave. The last component of the tuple

L, isr , is the address of the ISR. Finally, we reserve the location 0xFFFE to store the address of the

first instruction to be executed when the CPU starts or when an exception happens, reflecting

the behavior of MSP430. Thus, 0xFFFE must be outside the enclave sections and different from isr .

Note that memory operations enforce no memory access control w.r.t. L, since these checks are
performed during the execution of each instruction (see below).

Summing up, a memory layout is defined as

L ≜ ⟨ts, te, ds, de, isr⟩, where

• [ts, te) and [ds, de) are the protected code and data sections, resp., with [ts, te) ∩ [ds, de) = ∅;
• isr ∉ [𝑡𝑠, 𝑡𝑒) ∪ [𝑑𝑠, 𝑑𝑒) is the entry point for the ISR;

• isr ≠ 0xFFFE, and 0xFFFE ∉ [ts, te) ∪ [ds, de). The address 0xFFFE is the one from which the

CPU starts executing on boot, or on an exception.

4.2 Register files
Sancus

H
, just like the original Sancus, has sixteen 16-bit registers three of which R0, R1, R2 are used

for dedicated functions, whereas the others are for general use. (R3 is a constant generator in the real
MSP430 machine, but we ignore that use in our formalization.) More precisely, R0 (hereafter denoted
as pc) is the program counter and points to the next instruction to be executed. Instruction accesses

are performed by word and the pc is aligned to even addresses. The register R1 (sp hereafter) is
the stack pointer and it is used, as usual, by the CPU to store the pointer to the activation record

of the current procedure. Also the stack pointer is aligned to even addresses. The register R2 (sr
hereafter) is the status register and contains different pieces of information encoded as flags. The

most important here is the fourth bit, called GIE, set to 1 when interrupts are enabled. Other bits

are set, e.g., when an operation produces a carry or when the result of an operation is zero.

Formally, our register file R is a function that maps each register r to a word. The read operation

is standard:

R[r] ≜ 𝑤 if R(r) = 𝑤

The write operation requires instead accommodating the hardware itself and our security re-

quirements:

R[r ↦→ 𝑤] ≜ 𝜆[r′] .



𝑤&0xFFFE if r′ = r ∧ (r = pc ∨ r = sp)
(𝑤&0xFFF7) | (R[sr]&0x8) if r′ = r = sr ∧ R[pc] ⊢mode PM

𝑤 if r′ = r ∧ (r ≠ pc ∧ r ≠ sp) ∧
(r ≠ sr ∨ R[pc] ⊢mode UM)

R[r′] o.w.

In the definition above & and | denote the standard and and or bitwise operators, and we use the

relation R[pc] ⊢mode m, for𝑚 ∈ {PM, UM} that is defined in Section 4.7. It indicates that the execution

is carried on in protected or in unprotected mode. Note that word alignment is enforced because

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 13

the least-significant bit of the program counter and of the stack pointer are always masked to 0 (as

it happens in MSP430). Also, the GIE bit of the status register is always masked to its previous value

when in protected mode, i.e., it cannot be changed when the CPU is running in protected code

(resulting from the bitwise or between𝑤&0xFFF7 - masking the GIE bit of𝑤 - and R[sr]&0x8 -
masking everything except the value of the GIE bit of the status register).

Finally, it is convenient defining the following special register files:

R0 ≜ {pc ↦→ 0, sp ↦→ 0, sr ↦→ 0, R3 ↦→ 0, . . . , R15 ↦→ 0}
Rinit

M ≜ {pc ↦→ M[0xFFFE], sp ↦→ 0, sr ↦→ 0x8, R3 ↦→ 0, . . . , R15 ↦→ 0}
where

• pc is set toM[0xFFFE] as it does in the MSP430;

• sp is set to 0 and we expect untrusted code to set it up in a setup phase, if any;

• sr is set to 0x8, i.e., register is clear except for the GIE flag.

Register file R0 is used when we jump out from the enclave to zero the processor state; R𝑀 denotes

the initial file register of the CPU, when it starts executing.

4.3 I/O Devices
Recall from the previous section that the attacker can raise an interrupt and observe the effects it

has on the execution of the enclave. This kind of attack usually requires a software component

and a hardware one. The software component is settled in the unprotected memory and is detailed

below. The hardware component is a physical device that interacts with the processor through

synchronous I/O operations. Additionally, the progress of I/O devices is tied to that of the CPU,

making them cycle-accurate and allowing to model the full power of the attacker considered in the

real Sancus (e.g., to use a cycle-accurate timer). In our case it is a Sancus I/O device, and we model

it as a (simplified) deterministic I/O automaton [39], as follows:

D ≜ ⟨Δ, 𝛿init,
𝑎
{𝐷⟩, where

• 𝑎 ∈ 𝐴, with 𝐴 a signature that includes the following actions (below𝑤 is a word):

– 𝜖 , a silent, internal action;

– rd (𝑤), an output action (i.e., read request from the CPU);

– wr (𝑤), an input action (i.e., write request from the CPU);

– int? an output action telling that an interrupt was raised in the last state;

• Δ ≠ ∅ is the finite set of internal states of the device;
• 𝛿init ∈ Δ is the single initial state;

• 𝛿 𝑎
{𝐷 𝛿

′ ⊆ Δ ×𝐴 × Δ is the transition function that takes one step in the device while doing

action 𝑎 ∈ 𝐴, starting in state 𝛿 and ending in state 𝛿 ′. (We write 𝑎 for a string of actions

and we omit 𝜖 when unnecessary.) The transition function is such that ∀𝛿 either 𝛿
𝜖
{𝐷 𝛿

′
or

𝛿
int?

{𝐷 𝛿
′′
(i.e., one and only one of the two transitions must be possible), also at most one

rd (𝑤) action must be possible starting from a given state.

4.4 Software modules, contexts and whole programs
A module contains both protected code and protected data.

Definition 4.1. A software module is a memoryM𝑀 containing both protected code and protected

data sections.

Intuitively, the context is the part of the whole program that can be manipulated by an attacker,

i.e., the software component and the physical device:

, Vol. 1, No. 1, Article . Publication date: March 2022.



14 Busi et al.

Definition 4.2. A context 𝐶 is a pair ⟨M𝐶 ,D⟩, where D is a device andM𝐶 defines the contents

of all memory locations outside the protected sections of the layout.

Filling in a context hole with a software module yields a whole program.

Definition 4.3. Given a context𝐶 = ⟨M𝐶 ,D⟩ and a software moduleM𝑀 such that dom (M𝐶 ) ∩
dom (M𝑀 ) = ∅, a whole program is

𝐶 [M𝑀 ] ≜ ⟨M𝐶 ⊎M𝑀 ,D⟩.

4.5 Instruction set
The instruction set Inst is the same for both SancusL and Sancus

H
and is (almost) that of the

MSP430. An overview of the instruction set is in Table 1. For each instruction 𝑖 the table includes its

operands, an intuitive meaning of its semantics, its duration and the number of words it occupies

in memory. The durations are used to define the function cycles(𝑖) and implicitly determine a value

MAX_TIME, greater than or equal to the duration of longest instruction. Here we choose MAX_TIME = 6,

in order to maintain the compatibility with MSP430 (whose longest instruction takes 6 cycles). Since

instructions are stored in either the unprotected or in the protected code section of the memory

M, for getting them we use the meta-function decode(M, 𝑙) that decodes the contents of the cell(s)
starting at location 𝑙 , returning an instruction in the table if any and ⊥ otherwise.

4.6 Configurations
Given an I/O device D, the internal state of the entire system is described by configurations of the

form:

𝑐 ≜ ⟨𝛿, 𝑡, 𝑡𝑎,M,R, pc
old
,B⟩ ∈ C, where

• 𝛿 is the current state of the I/O device;

• 𝑡 is the current clock cycle, i.e., a natural number denoting the time elapsed since the CPU

started its execution;

• 𝑡𝑎 is the arrival time (clock cycle) of the last pending interrupt, set to ⊥ if there are none;

• M is the current memory;

• R is the current content of the registers;

• pc
old

is the value of the program counter before executing the current instruction

• B is the backup that can assume the following values:

– ⊥, indicating that the CPU is either handling no interrupt or it is handling one originated

in unprotected mode;

– ⟨R, pc
old
, 𝑡pad⟩, indicating that the interrupt handler is managing an interrupt raised in

protected mode. The triple includes the register file R, the program counter pc
old

at the time

the interrupt was originated, and the value 𝑡pad , which indicates the remaining padding

time that must be applied before returning into protected mode;

– ⟨⊥,⊥, 𝑡pad⟩, indicating that the CPU is currently padding the resumption from an interrupt.

The initial states of the CPU are represented by the initial configurations from which the

computation starts. The initial configuration for a whole program 𝐶 [M𝑀 ] = ⟨M,D⟩ is:

INIT𝐶 [M𝑀 ] ≜ ⟨𝛿init, 0,⊥,M,Rinit

M𝐶
, 0xFFFE,⊥⟩ where

• the state of the I/O device D is 𝛿init;

• the initial value of the clock is 0 and no interrupt has arrived yet;

• the memory is initialized to the whole program memoryM𝐶 ⊎M𝑀 ;

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 15

• all the registers are initialized to 0, their initial value, except that pc is set to 0xFFFE (the

address from which the CPU gets the initial program counter), and that sr is set to 0x8 (the

register is clear except for the GIE flag);

• the “old” program counter is also initialized to 0xFFFE;
• the backup is set to ⊥, as no interrupt has been raised yet.

Dually, HALT is the only configuration denoting termination. More precisely, we feel free to use

this distinguished and opaque configuration for representing termination.

Also, we define exception handling configurations, that model what happens on soft reset of the

machine (e.g., on a memory access violation, or a halt in protected mode). On such a soft reset,

control returns to the attacker by jumping to the address stored in location 0xFFFE:

EXC⟨𝛿,𝑡,𝑡𝑎,M,R,pc
old
,B⟩ ≜ ⟨𝛿, 𝑡,⊥,M,R0 [pc ↦→ M[0xFFFE]], 0xFFFE,⊥⟩.

4.6.1 I/O device wrapper. Since the class of interrupt-based attacks requires a cycle-accurate timer,

it is convenient to synchronize the CPU and the device time by forcing the device to take as many

steps as the number of cycles consumed for each instruction by the CPU. The following “wrapper”

around the device D models this synchronization:

D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷𝑘
𝐷 𝛿
′, 𝑡 ′, 𝑡 ′𝑎

Intuitively, assume the device be in state 𝛿 , the clock time be 𝑡 and the last interrupt be raised at

time 𝑡𝑎 . Then, after 𝑘 cycles the new clock time will be 𝑡 ′ = 𝑡 + 𝑘 , the last interrupt was raised at

time 𝑡 ′𝑎 and the new state will be 𝛿 ′; when no interrupt has to be handled, 𝑡𝑎 = 𝑡
′
𝑎 = ⊥. Formally:

𝑎 ∈ {𝜖, int?}
𝑘−1∧
𝑖=0

𝛿𝑖
𝑎
{𝐷 𝛿𝑖+1 𝑡 ′𝑎 =


𝑡 + 𝑗 if ∃0 ≤ 𝑗 < 𝑘. 𝛿 𝑗

int?

{𝐷 𝛿 𝑗+1∧
∀𝑗 ′ < 𝑗 . 𝛿 𝑗 ′

𝜖
{𝐷 𝛿 𝑗 ′+1

𝑡𝑎 o.w.

D ⊢ 𝛿0, 𝑡, 𝑡𝑎 ↷𝑘
𝐷 𝛿𝑘 , (𝑡 + 𝑘), 𝑡

′
𝑎

4.7 CPU mode
We now specify when the CPU is running in protected or in unprotected mode. Actually, the mode

m ∈ {PM, UM} is determined by the value of the program counter, which can be in either code section:

pc ∈ [L .ts,L .te)
pc ⊢mode PM

pc ∉ [L .ts,L .te) ∪ [L .ds,L .de)
pc ⊢mode UM

Also, we lift the definition to configurations as follows:

R[pc] ⊢mode m

⟨𝛿, 𝑡, 𝑡𝑎,M,R, pc
old
,B⟩ ⊢mode m HALT ⊢mode UM

Note in passing that no mode is defined when the program counter points within the data section,

because the memory access control introduced below prevents the program counter to assume

values therein.

4.8 Memory access control
We formalize thememory access control (MAC)mechanism of Sancus using the predicateMACL (f , rght, t)
in Table 2. Roughly, this predicate holds whenever the address that the CPU is trying to read is

within the same memory partition as the program counter of the last completed instruction (pc
old
);

in other words, whenever from the location 𝑓 (usually pc
old
) we have the rights rght on location

, Vol. 1, No. 1, Article . Publication date: March 2022.



16 Busi et al.

𝑡

Entry Point Prot. code Prot. Data Other

𝑓
Entry Point/Prot. code r-x r-x rw- –x

Other –x — — rwx

Table 2. Definition of MACL (f , rght, t) function, where 𝑓 and 𝑡 are locations.

R[sp] ≠ 2
16 − 1 R[sp] + 2 ≠ 2

16 − 1 MACL (pcold , x, R[pc]) MACL (pcold , x, R[pc] + 1)
MACL (R [pc], r, R[sp]) MACL (R [pc], r, R[sp] + 1) MACL (R [pc], r, R[sp] + 2) MACL (R [pc], r, R[sp] + 3)

RETI, R, pc
old
,⊥ ⊢mac OK

𝑖 ∈ {NOP, AND r1 r2, ADD r1 r2, SUB r1 r2, CMP r1 r2, MOV r1 r2, JMP &r, JZ &r}
MACL (pcold , x, R[pc]) MACL (pcold , x, R[pc] + 1)

𝑖, R, pc
old
,⊥ ⊢mac OK

𝑖 ∈ {NOT r, MOV #𝑤 r}
MACL (pcold , x, R[pc]) MACL (pcold , x, R[pc] + 1) MACL (pcold , x, R[pc] + 2) MACL (pcold , x, R[pc] + 3)

𝑖, R, pc
old
,⊥ ⊢mac OK

𝑖 ∈ {IN r, OUT r} R [pc] ⊢mode UM MACL (pcold , x, R[pc]) MACL (pcold , x, R[pc] + 1)
𝑖, R, pc

old
,⊥ ⊢mac OK

R[r1 ] ≠ 2
16 − 1 R[r1 ] + 1 ≠ 2

16 − 1
MACL (R [pc], r, R[r1 ]) MACL (R [pc], r, R[r1 ] + 1) MACL (pcold , x, R[pc]) MACL (pcold , x, R[pc] + 1)

MOV@r1 r2, R, pcold ,⊥ ⊢mac OK

R[r2 ] ≠ 2
16 − 1 R[r2 ] + 1 ≠ 2

16 − 1 MACL (R [pc], w, R[r2 ]) MACL (R [pc], w, R[r2 ] + 1)
MACL (pcold , x, R[pc]) MACL (pcold , x, R[pc] + 1) MACL (pcold , x, R[pc] + 2) MACL (pcold , x, R[pc] + 3)

MOV r1 0(r2), R, pcold ,⊥ ⊢mac OK

𝑖 ≠ RETI B ≠ ⊥ 𝑖, R, pc
old
,⊥ ⊢mac OK R[sr] .GIE = 0 R[pc] ≠ ts

𝑖, R, pc
old
, B ⊢mac OK

B ≠ ⊥
RETI, R, pc

old
, B ⊢mac OK

Fig. 3. The rules defining the memory access control.

𝑡 , reflecting the mechanism provided by Sancus. Note that when 𝑓 is within unprotected code,

MACL (f , rght, t) grants it no rights on a location 𝑡 in the protected memory.

Building on the above, we define the following relation

𝑖,R, pc
old
,B ⊢mac OK

that holds whenever the instruction 𝑖 can be executed in a CPU configuration in which the pre-

vious program counter is pc
old
, the registers are R and the backup is B. We check that (1) when

transitioning from pc
old

to R[pc], the CPU has execution rights to execute instruction 𝑖 , i.e.,

MACL (pcold, x,R[pc] + j) for 𝑗 ∈ {0, ..., 𝑠𝑖𝑧𝑒 (𝑖) − 1}; (2) if 𝑖 is an I/O instruction, it can be executed

in current CPU mode; and (3) if 𝑖 is a memory operation (i.e., either MOV r1 0(r2) or MOV@r1 r2)
from R[pc] we have the appropriate rights to perform it. The predicate MAC is the minimal

relation satisfying the inference rules in Figure 3. Note that (𝑖) for each word that is accessed in

memory we also check that the first location is not the last byte of the memory (except for the

program counter, for which the decode function would fail since it would try to access undefined

memory); (𝑖𝑖) word accesses must be checked once for each byte of the word; and (𝑖𝑖𝑖) checks on
pc guarantee that a memory violation does not happen while decoding. We briefly comment on

the rule for 𝑖 ∈ {IN r, OUT r}, the others being self-explanatory. The pre-conditions say that (𝑖) the

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 17

current value of the program counter is in unprotected mode; (𝑖𝑖) that the instructions pointed to

by pc
old

and R[pc] are executable, according to𝑀𝐴𝐶L ; and (𝑖𝑖𝑖) that the same holds for pc
old

and

R[pc] + 1, i.e., the next instruction.

5 THE SEMANTICS OF Sancus
H AND SancusL AND THEIR INTERRUPT LOGIC

As anticipated, we proceed to formally define the semantics of Sancus
H
and SancusL. The two

share most of their structure and just differ in the way they deal with interrupts, because Sancus
H

has none of them and so the handler is trivial, while SancusL has an appropriate interrupt logic,

based on the mitigation intuitively introduced in Section 3. Each version of Sancus is endowed

with two transitions systems: the main one specifies the operational semantics of instructions,

while the other is auxiliary and describes the relevant interrupt logic. Therefore, we will factorize

as much as possible the inference rules shared by the main transition systems, and only indicate

the differences using the mentioned code: blue, sans-serif font for SancusH and in red, bold font

elements for SancusL.
More precisely, assume hereafter as given a context𝐶 = ⟨M𝐶 ,D⟩, where𝑀𝐶 defines the contents

of the memory locations of the unprotected section and D is an I/O device, and let 𝑐, 𝑐 ′ ∈ C be two

configurations. Then, the main transition system of Sancus
H
has the transitions on the left and its

auxiliary one the transitions on the right:

D ⊢ 𝑐 → 𝑐 ′ D ⊢ 𝑐 ↩→I 𝑐
′

while the main and the auxiliary transition systems of SancusL have the transitions on the left and

on the right, respectively:

D ⊢ 𝑐 → 𝑐 ′ D ⊢ 𝑐 ↩→I 𝑐
′

5.1 The Operational Semantics of SancusH

We first present the auxiliary transition system implementing the logic that decides what happens

when an interrupt arrives, and then we formalize how the instructions are executed in Sancus
H
.

5.1.1 Interrupts in Sancus
H. Interrupts in Sancus

H
are always ignored, thus the configuration is

left unchanged, and we have the following trivial rule:

INT

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M,R, pc
old
,B⟩ ↩→I ⟨𝛿, 𝑡, 𝑡𝑎,M,R, pc

old
,B⟩

5.1.2 Main transition system. The transitions of the main transition system describe how the

Sancus
H
configurations evolve during the execution. Figure 4 shows selected inference rules of

the transition system, on which we briefly comment below; the other rules can be found in the

Appendix.

The rule (CPU-HLT-UM) is the only one that halts the CPU and only applies when an HLT instruction
is executed in unprotected mode. Dually the rule (CPU-HLT-PM) deals with the case in which an HLT
instruction is to be executed in protected mode. In such a case, the exception handling configuration

is reached, allowing for a cleanup and a graceful termination. The rule (CPU-Violation-PM) takes care

of the violations in protected mode: the transition in the conclusion of the rule leads to the exception

handling configuration if there is a non-empty backup (first premise) and if the instruction 𝑖 does

not pass the memory-access control relation (second premise). The rule (CPU-MovL) is for when

the current instruction 𝑖 loads in r2 the word in memory at the position pointed to by r1. Its first
premise checks that the CPU is not currently padding interrupt resumption time (more details on

that later on, it can be safely ignored for now); the second one if the instruction can be executed;

the third one increments the program counter by 2 and loads in r2 the valueM[r1]; the fourth

, Vol. 1, No. 1, Article . Publication date: March 2022.



18 Busi et al.

premise registers in the device that 𝑖 requires cycles(𝑖) cycles to complete; and the last one executes

the interrupt logic to check whether an interrupt needs to be handled or not (see below). Rules

dealing with jumps are quite standard. Upon a JZ &r instruction (jump if zero), the CPU checks the

content of the 𝑍 (zero) bit of the status register. If R[sr] .𝑍 is 0, then the rule (CPU-Jz0) is triggered

and R[pc] is left unchanged, otherwise the rule (CPU-Jz1) applies and the content of the register r is
copied into pc, so performing the jump. Another interesting rule is (CPU-In) that deals with the case

in which the instruction reads a word from the device and puts the result in r. Its third premise

holds when the device sends the word𝑤 to the CPU; the others are similar to those of (CPU-MovL).

Dually, the rule (CPU-Out) deals with outputs to the device. Note that, the CPU is forced to halt

when the I/O device is not ready for a read or a write (rules (CPU-NoIn) and (CPU-NoOut)). As a matter

of fact, this can only happen in unprotected mode, since the MAC relation forbids I/O operations

inside enclaves. Note also that the current time of the CPU is always incremented by the time

needed to complete the current instruction.

5.2 The Operational Semantics of SancusL

In SancusL interrupts can be raised and must be properly handled securely both in protected and

unprotected mode, and for that we define a non-trivial auxiliary transition system. Although the

rules of the main transition system are largely the same of Sancus
H
, the new auxiliary transitions

affect the behaviour of the instruction for returning from interrupts.

5.2.1 Interrupts in SancusL. The inference rules in Figure 5 formalize the mitigation outlined in

Section 3 as a defense against interrupt-based attacks, regardless of the CPU being in unprotected

or protected mode. To intuitively clarify how our rules realize the secure padding schema, we refer

again to Figure 2. We still denote the time when the interrupt is raised with 𝑡𝑎 . Instead, the intervals

Δ𝑡1 (in the rules 𝑡 − 𝑡𝑎) and Δ𝑡𝑝1 (in the rules 𝑘 = MAX_TIME− (𝑡 − 𝑡𝑎)) represent the time to complete

the current instruction and the padding before the ISR starts, respectively. The interval Δ𝑡𝑝2 (in the

rules 𝑡pad ) completes the padding making sure that mitigation always amounts to MAX_TIME (recall

from Section 4.5 that the longest instruction takes 6 cycles). Note also that MSP430 takes 6 cycles

to set up the call to the interrupt handler (which is not displayed in Figure 2).

All the semantic rules have a premise checking the mode in which the last instruction was

executed (pc
old
⊢mode UM or pcold ⊢mode PM).

The rules (INT-UM-NP) and (INT-PM-NP) take care of when the GIE bit of the status register is set

to 0, i.e., interrupts are disabled, or there is none (𝑡𝑎 = ⊥). In this case the configurations are simply

left untouched.

When instead GIE = 1 and an interrupt is on (𝑡𝑎 ≠ ⊥), either rule (INT-UM-P) or (INT-PM-P)

handles it. When in unprotected mode, a premise of (INT-UM-P) concerns registers: the program

counter gets the entry point of the handler; the status register gets 0; and the top of the stack is

moved 4 positions ahead to allocate the activation record of the interrupt handler.

Accordingly, the new memoryM ′ updates the locations pointed by the relevant elements of the

stack with the current program counter and the contents of the status register. The last premise

reflects that setting up this interrupt handling takes 6 cycles.

The rule (INT-PM-P) is for protected mode and it is more interesting. Besides assigning the

entry point of the handler to the program counter, it computes the padding time for mitigation of

interrupt-based timing attacks and saves the backup in B ′. The padding 𝑘 is then used, causing

interrupt handling to take 6 + 𝑘 steps. Such a padding implements the first part of the mitigation

(see Section 3.3) and is computed so as to make the dispatching time of interrupts constant. Note

that the padding never gets negative. When an interrupt arrives in protected mode two cases may

arise. Either GIE = 1, and the padding is non-negative because the interrupt is handled at the end

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 19

of the current instruction; or GIE = 0, and no padding is needed because the interrupt is handled

as soon as GIE becomes 1, which is only possible in unprotected mode. The backup stores part of

the CPU configuration (R and pc
old
) and 𝑡pad = 𝑡 − 𝑡𝑎 . The value of 𝑡pad will then be used as further

padding before returning, so fully implementing the mitigation (cf. Section 3.3). Recall that the

register file R0 is {pc ↦→ 0, sp ↦→ 0, sr ↦→ 0, R3 ↦→ 0, . . . , R15 ↦→ 0}.
It might be worthy to briefly describe what happens upon “corner cases:”

• Whenever an interrupt has to be handled in protected mode, but the current instruction drives

the CPU in unprotected mode, the padding mechanism is applied as in the rule (CPU-Reti)

including the padding after the RETI. Indeed, if partial padding (resp. no padding at all) was

applied then the duration of the padding (resp. of the last instruction) would be leaked to the

attacker (cf. Figure 5).

• Interrupts are ignored when arising during the time spent in padding and before invoking the

interrupt service routine. This is because the padding duration and the instruction duration

would be leaked otherwise. To avoid that, the rule (INT-PM-P) ignores any interrupts raised

during the cycles needed for the interrupt logic and for the padding. A viable alternative

would require to buffer interrupts and handle them later on.

• Interrupts happening during the execution of the interrupt service routine are simply “chained”

and handled as soon as the current routine completes (see rule (CPU-Reti-Chain)).

• Finally, interrupts raised during the padding time and after the interrupt service routine are

handled as any other interrupt happening in protected mode (see rule (CPU-Reti-Pad)).

5.2.2 Main transition system. The rules of the main transition system of SancusL are exactly the

same used for the semantics of Sancus
H
, except for the blue arrows turned into red, notably those

for the interrupt logic: the red arrow ↩→I replaces the blue arrow ↩→I in the premises.

Figure 6 shows the rules dealing with the cases that may happen when the interrupt handler

returns and the processor gives the control back to the code that was executing before the interrupt

was raised. The first rule (CPU-Reti), deals with the actual return from an interrupt. In this case the

processor restores the status register and sets the program counter to the instruction following the

interrupted one. The previous values of these registers are stored in the current activation record

on the stack (i.e., R ′ = R[pc ↦→ M[R[sp] + 2], sr ↦→ M[R[sp]]]). Instead, rule (CPU-Reti-Chain)

applies if an interrupt arrived while returning from handling an interrupt raised in protected mode

(third and fifth premises). In this case the CPU directly jumps to the handler of the new interrupt

with no further padding. Finally, we discuss the rules (CPU-Reti-PrePad) and (CPU-Reti-Pad). Their

combination deals with the case in which the CPU is returning from handling an interrupt raised

in protected mode, and no new interrupt arrived afterwards (or the GIE bit is off, cf. the fourth

premise of rule (CPU-Reti-PrePad)). First, the rule (CPU-Reti-PrePad) restores registers and pc
old

from the backup B, so enabling the application of the rule (CPU-Reti-Pad) (note that no other rule

is applicable because of the contents of B). Then, through the rule (CPU-Reti-Pad) the remaining

padding (recorded in the backup) is applied so to prevent resume-to-end timing attacks (note that

this last padding is interruptible, as witnessed by the last premise). This last padding is applied

even though the configuration reached through rule (CPU-Reti-PrePad) is in unprotected mode

(i.e., when the interrupted instruction was a jump out of protected mode). Otherwise, the attacker

may discover the value of the padding applied before the interrupt service routine. Actually, we

model the mechanism of restoring registers, pc
old

and of applying the remaining padding with two

rules instead of just one for technical reasons.

, Vol. 1, No. 1, Article . Publication date: March 2022.



20 Busi et al.

(CPU-HLT-UM)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ ⊢mode UM

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → HALT

decode (M, R[pc]) = HLT

(CPU-NoIN)

𝛿 ̸
rd (w)
{𝐷

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → HALT

decode (M, R[pc]) = IN r

(CPU-NoOUT)

𝛿 ̸
wr (R [r])
{𝐷

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → HALT

decode (M, R[pc]) = OUT r

(CPU-HLT-PM)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ ⊢mode PM

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → EXC⟨𝛿,𝑡+cycles (𝑖 ),𝑡𝑎,M,R,pc

old
,B⟩

𝑖 = decode (M, R[pc]) = HLT

(CPU-Decode-Fail)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ decode (M, R[pc]) = ⊥
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → EXC⟨𝛿,𝑡,𝑡𝑎,M,R,pc

old
,B⟩

(CPU-Violation-PM)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊬mac OK

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → EXC⟨𝛿,𝑡+cycles (𝑖 ),𝑡𝑎,M,R,pc

old
,B⟩

𝑖 = decode (M, R[pc]) ≠ ⊥

(CPU-MovL)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

R′ = R[pc ↦→ R [pc] + 2] [r2 ↦→ M[R [r1 ] ] ] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = MOV @r1 r2

(CPU-Jz0)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

R′ = R[pc ↦→ R [pc] + 2] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = JZ &r ∧ R[sr] .𝑍 = 0

(CPU-Jz1)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

R′ = R[pc ↦→ R [r] ] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = JZ &r ∧ R[sr] .𝑍 = 1

(CPU-In)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

𝛿
rd (w)
{ 𝐷 𝛿′ R′ = R[pc ↦→ R [pc] + 2] [r ↦→ 𝑤 ] D ⊢ 𝛿′, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )−1

𝐷
𝛿′′, 𝑡 ′, 𝑡 ′𝑎

D ⊢ ⟨𝛿′′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = IN r

(CPU-Out)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

R′ = R[pc ↦→ R [pc] + 2] 𝛿
wr (R [r])
{ 𝐷 𝛿′ D ⊢ 𝛿′, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )−1

𝐷
𝛿′′, 𝑡 ′, 𝑡 ′𝑎

D ⊢ ⟨𝛿′′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = OUT r

Fig. 4. Some rules of the main transition system for Sancus
H
.

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 21

(INT-UM-P)

pc
old
⊢mode UM R[sr] .GIE = 1 𝑡𝑎 ≠ ⊥ R′ = R[pc ↦→ isr, sr ↦→ 0, sp ↦→ R [sp] − 4]
M′ = M[R[sp] − 2 ↦→ R [pc], R[sp] − 4 ↦→ R [sr] ] D ⊢ 𝛿, 𝑡,⊥↷6

𝐷 𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ ↩→I ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M′, R′, pcold , B⟩

(INT-UM-NP)

pc
old
⊢mode UM (R [sr] .GIE = 0 ∨ 𝑡𝑎 = ⊥)

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ ↩→I ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩

(INT-PM-P)

𝑘 = MAX_TIME − (𝑡 − 𝑡𝑎)
pc

old
⊢mode PM R[sr] .GIE = 1 𝑡𝑎 ≠ ⊥ R′ = R0 [pc ↦→ isr ] D ⊢ 𝛿, 𝑡,⊥↷6+𝑘

𝐷 𝛿′, 𝑡 ′, 𝑡 ′𝑎 B′ = ⟨R, pc
old
, 𝑡 − 𝑡𝑎 ⟩

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ ↩→I ⟨𝛿′, 𝑡 ′,⊥,M, R′, pc

old
, B′⟩

(INT-PM-NP)

pc
old
⊢mode PM (R [sr] .GIE = 0 ∨ 𝑡𝑎 = ⊥)

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ ↩→I ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩

Fig. 5. The transition system for handling interrupts in SancusL.

(CPU-Reti)

B ≠ ⟨⊥,⊥, 𝑡
pad
⟩ 𝑖, R, pc

old
,⊥ ⊢mac OK

R′ = R[pc ↦→ M[R [sp] + 2], sr ↦→ M[R [sp] ], sp ↦→ R [sp] + 4]
D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc],⊥⟩

𝑖 = decode (M, R[pc]) = RETI

(CPU-Reti-Chain)

B ≠ ⟨⊥,⊥, 𝑡
pad
⟩ B ≠ ⊥ D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎 R[sr.GIE] = 1

𝑡 ′𝑎 ≠ ⊥ D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′, R[pc], B⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′, R[pc], B⟩

𝑖 = decode (M, R[pc]) = RETI

(CPU-Reti-PrePad)

B ≠ ⟨⊥,⊥, 𝑡
pad
⟩ 𝑖, R, pc

old
, B ⊢mac OK

B ≠ ⊥ D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎 (R [sr.GIE] = 0 ∨ 𝑡 ′𝑎 = ⊥)
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, B.R, B.pc

old
, ⟨⊥,⊥, B.𝑡

pad
⟩⟩
𝑖 = decode (M, R[pc]) = RETI

(CPU-Reti-Pad)

B = ⟨⊥,⊥, 𝑡
pad
⟩

D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷
𝑡
pad

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎 D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R, pc

old
,⊥⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M, R′, pc

old
, B′⟩

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M, R′, pc

old
, B′⟩

Fig. 6. Some rules from the operational semantics of SancusL.

, Vol. 1, No. 1, Article . Publication date: March 2022.



22 Busi et al.

5.3 A progress property
As a sanity check we prove the following progress theorem showing that both Sancus

H
and SancusL

get stuck only if the CPU reaches the distinguished configuration HALT. Its proof is in the Appendix:

Theorem 5.1 (Progress). For all 𝐶 = ⟨M𝐶 ,D⟩,M𝑀 and configuration 𝑐

D ⊢ INIT𝐶 [M𝑀 ] →∗ 𝑐 ↛ =⇒ 𝑐 = HALT and D ⊢ INIT𝐶 [M𝑀 ] →∗ 𝑐 ↛ =⇒ 𝑐 = HALT.

6 THE SECURITY THEOREM
In this section we establish that SancusL enjoys the following security property: what an attacker

can learn from an enclave is exactly the same before and after adding the support for interrupts.

Technically, we show that the semantics of SancusL is fully abstract w.r.t. the semantics of Sancus
H
;

in other words all the attacks that can be carried out in SancusL can also be carried out in Sancus
H
,

and viceversa.

Before stating the full abstraction theorem, we introduce some further notations, which also

help in the main steps of its proof; additional, minor lemmata and definitions for completing the

proofs are in the Appendix. Recall from Section 4.4 that 𝐶 [M𝑀 ] is a whole program, whereM𝑀

is the software module and 𝐶 = ⟨M𝐶 ,D⟩ represents the context (M𝐶 contains the unprotected

program and data and D is the I/O device).

We first define the notion of convergence of whole programs.

Definition 6.1. Let 𝐶 = ⟨M𝐶 ,D⟩ be a context, andM𝑀 be a software module. A whole program

𝐶 [M𝑀 ] converges in Sancus
H
(written 𝐶 [M𝑀 ]⇓H) iff
D ⊢ INIT𝐶 [M𝑀 ] →∗ HALT.

Similarly, the same whole program converges in SancusL (written 𝐶 [M𝑀 ]⇓L) iff
D ⊢ INIT𝐶 [M𝑀 ] →∗ HALT.

The following definition introduces the notion of contextual equivalence of two software modules.

Roughly, the notion of contextual equivalence formalizes the intuitive notion of indistinguishability:

two modules are contextually equivalent if they behave in the same way when they interact with

an arbitrary, attacker-controlled context. Due to the quantification over all contexts, it suffices

to consider just terminating and non-terminating executions as distinguishable, since any other

distinction can be reduced to it.

Definition 6.2. Two software modulesM𝑀 andM𝑀′ are contextually equivalent in Sancus
H
,

writtenM𝑀 ≃H M𝑀′ , iff

∀𝐶.
(
𝐶 [M𝑀 ]⇓H ⇐⇒ 𝐶 [M𝑀′]⇓H

)
.

Similarly,M𝑀 andM𝑀′ are contextually equivalent in SancusL, writtenM𝑀 ≃L M𝑀′ , iff

∀𝐶.
(
𝐶 [M𝑀 ]⇓L ⇐⇒ 𝐶 [M𝑀′]⇓L

)
.

Finally, we state and prove the main theorem establishing the security of our mitigation:

Theorem 6.3 (Full abstraction). ∀M𝑀 ,M𝑀′ . (M𝑀 ≃H M𝑀′ ⇐⇒ M𝑀 ≃L M𝑀′).

Proof. Here we only present the “surface” of the proof by stating the main properties, whose

proofs often require many other auxiliary definitions and properties that are detailed in the Ap-

pendix. Actually, the proof that our mitigation guarantees absence of interrupt-based attacks is

rather long, and has the following steps. We first establish reflection of behaviors:M𝑀 ≃H M𝑀′ ⇐

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 23

M𝑀 ≃H M𝑀′

M𝑀 ≃L M𝑀′ M𝑀
𝑇
=M𝑀′(𝑖)

(𝑖𝑖)
(𝑖𝑖𝑖)

Fig. 7. An illustration of the proof strategy of preservation of behaviors.

M𝑀 ≃L M𝑀′ (Lemma 6.6 in Section 6.1). Then, the other implication, i.e., preservation of behaviors

is proved by Lemma 6.15 in Section 6.2 following the strategy summarized in Figure 7. We rely on

the well-known notion of traces, i.e., the sequences of actions performed by a moduleM𝑀 plugged

in a context that can be observed by an attacker. In particular we focus on the invocations ofM𝑀

and on the returns from it. In both cases our traces also carry information about the contents of

the registers and for returns also the flow of time. We then say that two modulesM𝑀 andM ′
𝑀

are trace equivalent, in symbolsM𝑀
𝑇
=M ′

𝑀
, if they exhibit the same traces (see Definition 6.7).

Proving preservation is then done in two steps, the composition of which gives (𝑖𝑖𝑖) in Figure 7. First
Lemma 6.14 establishes (𝑖𝑖) in Figure 7: two modules equivalent in Sancus

H
are trace equivalent.

The proof technique that we adopt specializes backtranslation of [47], applied to the contrapositive

of (𝑖𝑖). Roughly, we construct a context in Sancus
H
distinguishing two modules when they are not

trace equivalent. Then Lemma 6.12 establishes (𝑖) in Figure 7: two modules that are trace equivalent

are also equivalent in SancusL. The proof of this lemma is rather technical: essentially, it consists

in showing that neither the context affects the behavior of the module, nor the module affects that

of the context.

Summing up:

• Case⇐. Reflection of behaviors follows from Lemma 6.6 in Section 6.1.

• Case⇒. Preservation of behaviors follows from Lemma 6.15 in Section 6.2. □

6.1 Reflection of behaviors
Recall that SancusL differs from Sancus

H
because of its interrupt handling mechanism, only. Conse-

quently, to prove the reflection of behaviors, i.e., that for allM𝑀 ,M𝑀′ we have thatM𝑀 ≃L M𝑀′

impliesM𝑀 ≃H M𝑀′ it suffices to inhibit interrupts in SancusL. For establishing that, we introduce
the notion of interrupt-less context 𝐶̸𝐼 for a context 𝐶 . Intuitively, 𝐶̸𝐼 behaves as 𝐶 but never raises

any interrupt. When a module is plugged in an interrupt-less context, it terminates according to

the low level semantics if and only if it does in the high level semantics. Technically, to obtain the

interrupt-less version of a context 𝐶 it suffices to remove from the device the transitions that may

raise an interrupt.

Definition 6.4. Let D = ⟨Δ, 𝛿init,
𝑎
{𝐷⟩ be an I/O device. Given a context 𝐶 = ⟨M𝐶 ,D⟩, we define

its corresponding interrupt-less context as 𝐶̸𝐼 = ⟨M𝐶 ,
𝑎
{𝐷̸ 𝐼 ⟩ where:

• D̸𝐼 = ⟨Δ, 𝛿init,
𝑎
{𝐷̸ 𝐼 ⟩, and

• 𝑎
{𝐷̸ 𝐼 ≜

𝑎
{𝐷 ∪ {(𝛿, 𝜖, 𝛿 ′) | (𝛿, int?, 𝛿 ′) ∈

𝑎
{𝐷 } \ {(𝛿, int?, 𝛿 ′) | (𝛿, int?, 𝛿 ′) ∈

𝑎
{𝐷 }.

Note that D̸𝐼 is actually a device, due to the constraints on its transition function.

The behavior of interrupt-less contexts in SancusL directly correspond to the behavior of their

standard counterparts in Sancus
H
as stated below.

, Vol. 1, No. 1, Article . Publication date: March 2022.



24 Busi et al.

Lemma 6.5. For any moduleM𝑀 , context 𝐶 , and corresponding interrupt-less context 𝐶̸𝐼 :

𝐶̸𝐼 [M𝑀 ]⇓L ⇐⇒ 𝐶 [M𝑀 ]⇓H

Reflection now follows, because whole programs in Sancus
H
behave just like a subset of whole

programs in SancusL.

Lemma 6.6 (Reflection). ∀M𝑀 ,M𝑀′ . (M𝑀 ≃L M𝑀′ =⇒ M𝑀 ≃H M𝑀′).

6.2 Preservation of behaviors
Here, we prove the preservation of behaviors, i.e., the chain of implications (𝑖𝑖) and then (𝑖),
resulting in (𝑖𝑖𝑖) in Figure 7. More precisely we perform the following steps.

In Section 6.2.1 we first define two notions of traces: the fine-grained and coarse-grained traces.

The first is an auxiliary notion that directly derives from the semantics of SancusL and facilitates

the proofs. Intuitively, it takes into account all the actions performed by the system. The second

kind of traces only records the actions that attackers can observe, and are easily derived from the

fine-grained ones. Also, we call trace equivalent two modules with the same set of coarse-grained

traces. Using the fine-grained traces, we state and prove the key yet rather technical Property 6.1

ensuring that our mitigation reflects the intuition described in Figure 2. This property also helps

in showing that, roughly speaking, the observed actions of the enclave are not influenced by

those of the context (Lemma 6.10), as well as in proving the correctness of the backtranslation

algorithm (Property A.22). For proving both facts, we use the timing information recorded in the

coarse-grained traces that result from assembling those in the fine-grained traces.

Then we prove in Section 6.2.2 that trace equivalence implies contextual equivalence at SancusL

(the implication (𝑖) of Figure 7). For that Lemma 6.11 is crucial, since it ensures that two trace

equivalent modules still produce the same traces when plugged in a given context.

Next, in Section 6.2.3 we prove that contextual equivalence implies trace equivalence at Sancus
H

(the implication (𝑖𝑖) of Figure 7). This is achieved by defining a backtranslation [47] that given an

attacker (a context that differentiate two modules) at SancusL returns an attacker at Sancus
H
.

Finally, Section 6.2.4 immediately concludes our proof of item (𝑖𝑖𝑖) in Figure 7.

6.2.1 Fine-grained and coarse-grained traces. We consider the fine-grained and the coarse-grained

traces. The first traces record the relevant actions performed by the processors including those

concerned with interrupt handling. The coarsed-grained, instead, record what the attacker is able

to observe, i.e., jumping in and out an enclave.

The fine-grained observables are defined as follows:

𝛼 F 𝜉 | 𝜏 (𝑘) | reti?(𝑘) | handle!(𝑘) | • | jmpIn?(R) | jmpOut!(𝑘 ;R) .
Above, 𝑘 ∈ N indicates that the observed action takes 𝑘 cycles. Intuitively, 𝜉 denotes unobservable

actions performed by the context; 𝜏 (𝑘) indicates an internal action; handle!(𝑘) and reti?(𝑘) denote
when the processor starts executing the interrupt service routine from protected mode and when it

returns from it, respectively. Then, the observable • indicates that termination occurred; jmpIn?(R)
and jmpOut!(𝑘 ;R) record when the CPU enters and exits from protected mode, respectively, where

R is the contents of the register file when the action ends.

The relation

𝛼
====⇒ in Figure 8 extracts observables from the execution of a whole program. Note

that each transition D ⊢ 𝑐 → 𝑐 ′ has a corresponding transition D ⊢ 𝑐 𝛼
====⇒ 𝑐 ′ for some 𝛼 , possibly

the silent 𝜉 . The transitive and reflexive closure of

𝛼
====⇒ is

𝛼
====⇒∗, where 𝛼 is a trace, i.e., a sequence of

actions (𝜖 is the empty trace).

Note that in any trace 𝛼 , only the observables 𝜏 (𝑘), reti?(𝑘) or handle!(𝑘) may occur between

a jmpIn?(R) and a jmpOut!(𝑘 ;R). When an interrupt has to be handled, the observed trace starts

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 25

(Obs-Internal-PM)

R[pc] ⊢mode PM D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → ⟨𝛿′, 𝑡 + 𝑘, 𝑡 ′𝑎,M′, R′, pc′old ,⊥⟩ R′ [pc] ⊢mode PM

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ 𝜏 (k)

=======⇒ ⟨𝛿′, 𝑡 + 𝑘, 𝑡 ′𝑎,M′, R′, pc′old ,⊥⟩

(Obs-JmpIn)

R[pc] ⊢mode UM D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
,⊥⟩ → ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M′, R′, pc′old ,⊥⟩ R′ [pc] ⊢mode PM

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
,⊥⟩ jmpIn?(R′)

=============⇒ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M′, R′, pc′old ,⊥⟩

(Obs-Reti)

R[pc] ⊢mode UM B ≠ ⊥ D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → ⟨𝛿′, 𝑡 + 𝑘, 𝑡 ′𝑎,M′, R′, pc′old , ⟨⊥,⊥, 𝑡pad ⟩⟩

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ reti?(k)

==========⇒ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M′, R′, pc′old , ⟨⊥,⊥, 𝑡pad ⟩⟩

(Obs-JmpOut)

R[pc] ⊢mode PM D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
,⊥⟩ → ⟨𝛿′, 𝑡 + 𝑘, 𝑡 ′𝑎,M′, R′, pc′old ,⊥⟩ R′ [pc] ⊢mode UM

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
,⊥⟩ jmpOut!(k;R′)

===============⇒ ⟨𝛿′, 𝑡 + 𝑘, 𝑡 ′𝑎,M′, R′, pc′old , B
′⟩

(Obs-JmpOut-PostPoned)

R[pc] ⊢mode UM D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, ⟨⊥,⊥, 𝑡pad ⟩⟩ → ⟨𝛿′, 𝑡 + 𝑘, 𝑡 ′𝑎,M′, R′, pc′old ,⊥⟩ R′ [pc] ⊢mode UM

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, ⟨⊥,⊥, 𝑡pad ⟩⟩

jmpOut!(k;R′)
===============⇒ ⟨𝛿′, 𝑡 + 𝑘, 𝑡 ′𝑎,M′, R′, pc′old , B

′⟩

(Obs-Handle)

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
,⊥⟩ → ⟨𝛿′, 𝑡 + 𝑘, 𝑡 ′𝑎,M′, R′, pc′old , B

′⟩ R′ [pc] ⊢mode UM B′ ≠ ⊥

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
,⊥⟩ handle!(k)

============⇒ ⟨𝛿′, 𝑡 + 𝑘, 𝑡 ′𝑎,M′, R′, pc′old , B
′⟩

(Obs-Internal-UM)

R[pc] ⊢mode UM D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M′, R′, pc′old , B⟩ R′ [pc] ⊢mode UM

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ 𝜉

====⇒ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M′, R′, pc′old , B⟩

(Obs-Final)

R[pc] ⊢mode UM D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → HALT

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ •===⇒ HALT

Fig. 8. The relation

𝛼
====⇒ for fine-grained observables.

with handle!(·), followed by a sequence of 𝜉 and then a reti?(𝑘), provided that a RETI is exe-

cuted (𝑘 always has value cycles(RETI)). If the interrupted instruction was a jump from protected

to unprotected mode, the reti?(·) is followed by a jmpOut!(·; ·) (cf. rules (Obs-Handle), (Obs-
Internal-UM), (Obs-Reti) and (Obs-JmpOut-PostPoned)); otherwise a 𝜏 (·) – or a handle!(·) if
an interrupt has to be handled.

Actually, an attacker (i.e., the context) cannot observe all 𝛼 ’s, but only the following coarse-

grained observables, where jmpIn?(R) and jmpOut!(Δ𝑡 ;R) represent invoking a module and

returning from it.

𝛽 F • | jmpIn?(R) | jmpOut!(Δ𝑡 ;R).

In Figure 9 we define the relation

𝛽
====⇒⇒, under the assumption that both the existentially quantified

configuration 𝑐 and the configuration 𝑐 ′ are reachable from the same initial configuration. Essentially,

we remove the observables for interrupts and silent actions from the fine-grain traces, making them

not visible any longer. More in detail, all the actions in between a jmpIn?(·) and the immediately

following jmpOut!(𝑘 ;R) (or a •) are dropped; similarly for the fine-grained observables in between

a jmpOut!(𝑘 ;R) (or the very first observable from the initial configuration) and the next jmpIn?(·).
In addition, the parameter 𝑘 is replaced by Δ𝑡 in the observable jmpOut!(Δ𝑡 ;R) to model that

, Vol. 1, No. 1, Article . Publication date: March 2022.



26 Busi et al.

D ⊢ INIT𝐶 [M𝑀 ]
𝜉 ···𝜉 ·jmpIn?(R)
================⇒∗ 𝑐

D ⊢ INIT𝐶 [M𝑀 ]
jmpIn?(R)
============⇒⇒ 𝑐

D ⊢ INIT𝐶 [M𝑀 ]
𝜉 ···𝜉 ·•
========⇒∗ HALT

D ⊢ INIT𝐶 [M𝑀 ]
•
===⇒⇒ HALT

∃𝑐. D ⊢ 𝑐 jmpOut!(Δ𝑡 ;R′)
================⇒⇒ 𝑐′ D ⊢ 𝑐′ 𝜉 ···𝜉 ·jmpIn?(R′′)

==================⇒∗ 𝑐′′

D ⊢ 𝑐′ jmpIn?(R′′)
=============⇒⇒ 𝑐′′

∃𝑐. D ⊢ 𝑐 jmpOut!(Δ𝑡 ;R′)
================⇒⇒ 𝑐′ D ⊢ 𝑐′ 𝜉 ···𝜉 ·•

========⇒∗ HALT
D ⊢ 𝑐′ •===⇒⇒ HALT

∃𝑐. D ⊢ 𝑐 jmpIn?(R′)
=============⇒⇒ 𝑐′

D ⊢ 𝑐′ 𝛼 (0) ···𝛼 (n−1) ·jmpOut!(k′′;R′′)
==============================⇒∗ 𝑐′′ ∀0 ≤ 𝑖 < 𝑛. 𝛼𝑖 ∉ {jmpOut!(_; _), •} Δ𝑡 = 𝑘′′ +

𝑛−1∑
𝑖=0

time (𝛼 (𝑖 ) )

D ⊢ 𝑐′ jmpOut!(Δ𝑡 ;R′′)
=================⇒⇒ 𝑐′′

∃𝑐. D ⊢ 𝑐 jmpIn?(R′)
=============⇒⇒ 𝑐′ D ⊢ 𝑐′ 𝛼

0
···𝛼

n−1 ·•
=============⇒∗ HALT ∀0 ≤ 𝑖 < 𝑛. 𝛼𝑖 ∉ {jmpOut!(_; _), •}
D ⊢ 𝑐′ •===⇒⇒ HALT

where time (𝛼) =
{
𝑘 if 𝛼 ∈ {reti?(𝑘), handle!(𝑘), 𝜏 (𝑘), jmpOut!(𝑘 ; R) }
0 o.w.

Fig. 9. The relation

𝛽
====⇒⇒ for coarse-grained observables.

an attacker can only measure the end-to-end time of a piece of code running in protected mode.

The value Δ𝑡 is computed by accumulating the values time(𝛼 (𝑖) ) that are the number of cycles

associated with the observable 𝛼 (𝑖) .

Then, we take its reflexive and transitive closure

𝛽
====⇒⇒∗ (where traces 𝛽 are strings of 𝛽’s), and we

use it to eventually define when two modules are trace equivalent:

Definition 6.7. Two modules are (coarse-grained) trace equivalent, writtenM𝑀
𝑇
=M𝑀′ , iff

Tr (M𝑀 ) = Tr (M𝑀′) .

where Tr (M𝑀 ) ≜ {𝛽 | ∃𝐶 = ⟨M𝐶 ,D⟩.D ⊢ INIT𝐶 [M𝑀 ]
𝛽
====⇒⇒∗ 𝑐 ′}.

Notation. Hereafter let 𝑥 ∈ {1, 2}; let 𝑐, 𝑐1, 𝑐2, . . . , possibly dashed, be configurations; and let

𝑐
(𝑛)
𝑥 = ⟨𝛿 (𝑛)𝑥 , 𝑡

(𝑛)
𝑥 , 𝑡

(𝑛)
𝑎𝑥 ,M

(𝑛)
𝑥 ,R (𝑛)𝑥 , pc

old

(𝑛)
𝑥 ,B (𝑛)𝑥 ⟩ be the configuration reached after 𝑛 execution

steps from the initial configuration 𝑐
(0)
𝑥 . We will index the elements of a trace and the components

of a context𝐶𝑥 in a similar way. Finally, let 𝑐
(𝑖)
𝑥 be the configuration right before the action of index

𝑖 in a given (fine- or coarse-grained) trace.

To prove a crucial property of our mitigation, it is convenient to introduce the notion of complete

interrupt segments of a fine-grained trace, which are those starting with an handle!(·) action and

ending with a reti?(·) action (see Definition A.1 in the Appendix). Also, let |I𝛼 | be the number of

the complete interrupt segments in a given trace 𝛼 .

The property below characterizes how our mitigation affects the execution time of a module.

Intuitively, it ensures that handling each interrupt contributes to the time spent in protected mode

with a constant number of cycles equal to 11 + MAX_TIME. This is crucial to guarantee a constant

delay before and after interrupt handling, otherwise an attacker would be able to observe different

timings as it happens in Examples 3.1 and 3.3. In its statement 𝛾 (𝑐) is the time taken by the current

protected-mode instruction in the given configuration to be executed (cf. Figure 2). Also, recall

from Figure 9 that time(𝛼 (𝑖) ) indicates the number of cycles associated with the observable 𝛼 (𝑖) .

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 27

Note that when the observables are reti?(𝑘) and handle!(𝑘), the value 𝑘 takes care of MAX_TIME, as

dictated by the interrupt logic of SancusL in Figure 5.

Property 6.1. If 𝑐 (0) ⊢mode PM andD ⊢ 𝑐 (0)
𝛼
====⇒∗ 𝑐 (𝑛+1) , with𝛼 = 𝛼 (0) · · ·𝛼 (𝑛−1) ·jmpOut!(𝑘 (𝑛) ;R ′),

then 𝑘 (𝑛) +∑𝑛−1
𝑖=0 time(𝛼 (𝑖) ) = ∑𝑛

𝑖=0 𝛾 (𝑐 (𝑖) ) + (11 + MAX_TIME) · |I𝛼 |, where

𝛾 (𝑐) ≜
{
cycles(decode(M,R[pc])) if 𝑐 ⊢mode PM ∧ B = ⊥
0 o.w.

Proof. By definition of the interrupt logic and the operational semantics of SancusL, for each
interrupt handled in protected mode we perform a 0 ≤ 𝑘 ≤ MAX_TIME padding before invoking the

interrupt service routine and an additional padding of (MAX_TIME − 𝑘) cycles after its execution, i.e.,
the padding time introduced for each complete interrupt segment amounts to MAX_TIME. Also, since

the interrupt logic always requires 6 cycles to jump to the interrupt service routine and 5 cycles

are required upon RETI it easily follows that:

𝑘 (𝑛) +
𝑛−1∑
𝑖=0

time(𝛼 (𝑖) ) =
𝑛∑
𝑖=0

𝛾 (𝑐 (𝑖) ) + (11 + MAX_TIME) · |I𝛼 |. □

6.2.2 Trace equivalence implies contextual equivalence at SancusL. Here we prove the implication

(𝑖) of Figure 7, i.e., thatM𝑀
𝑇
=M𝑀′ =⇒ M𝑀 ≃L M𝑀′ . We rely on the following proposition to

ensure that a terminating program generates a coarse-grained trace ending with •, and vice versa.

Proposition 6.8. 𝐶 [M𝑀 ]⇓L iff ∃𝛽. D ⊢ INIT𝐶 [M𝑀 ]
𝛽 ·•
=====⇒⇒∗ HALT.

Proof. The only-if part holds trivially. For the other direction, the definition of 𝐶 [M𝑀 ]⇓L
implies that D ⊢ INIT𝐶 [M𝑀 ] →∗ HALT and the definitions of fine- and coarse-grained traces

(Figures 8 and 9) guarantee that the last observed action is • as requested. □

Consider two whole programs that share the same context. The lemma below states that if they

perform the same sequence of actions reaching a unprotected configuration, then their next action,

if any, will be the same (its proof relies on Property A.19). Intuitively, this is because the context is

deterministic and because our mitigation makes the context behavior independent of the module.

Recall that coarse-grained traces record timing information, and therefore this lemma and the next

one also express timing independence between contexts and modules.

Lemma 6.9. Let 𝐶 = ⟨M𝐶 ,D⟩. If D ⊢ INIT𝐶 [M𝑀 ]
𝛽
====⇒⇒∗ 𝑐1

𝛽
====⇒⇒ 𝑐 ′

1
, D ⊢ INIT𝐶 [M𝑀′ ]

𝛽
====⇒⇒∗ 𝑐2,

𝑐1 ⊢mode UM and 𝑐2 ⊢mode UM, then there exists 𝑐 ′
2
such that D ⊢ 𝑐2

𝛽
====⇒⇒ 𝑐 ′

2
.

The following lemma shows the viceversa: the isolation mechanism offered by the enclave

guarantees that the behavior of the module is not influenced by the context:

Lemma 6.10. Let 𝐶 = ⟨M𝐶 ,D⟩. IfM𝑀
𝑇
=M𝑀′ , D ⊢ INIT𝐶 [M𝑀 ]

𝛽
====⇒⇒∗ 𝑐 ′′

1

jmpIn?(R1)
============⇒⇒ 𝑐1

𝛽
====⇒⇒ 𝑐 ′

1

and D ⊢ INIT𝐶 [M𝑀′ ]
𝛽
====⇒⇒∗ 𝑐 ′′

2

jmpIn?(R2)
============⇒⇒ 𝑐2, then there exists 𝑐 ′

2
such that D ⊢ 𝑐2

𝛽
====⇒⇒ 𝑐 ′

2
.

The two lemmata above imply that two whole programs obtained by plugging two trace equivalent

modules in the same context 𝐶 produce the same traces:

Lemma 6.11. Given a context 𝐶 = ⟨M𝐶 ,D⟩ and two modulesM𝑀 andM𝑀′ . IfM𝑀
𝑇
=M𝑀′ and

D ⊢ INIT𝐶 [M𝑀 ]
𝛽
====⇒⇒∗ 𝑐1, then there exists a 𝑐2 such that D ⊢ INIT𝐶 [M𝑀′ ]

𝛽
====⇒⇒∗ 𝑐2.

, Vol. 1, No. 1, Article . Publication date: March 2022.



28 Busi et al.

Proof. We show this by induction on the length 𝑛 of 𝛽 .

• Case 𝑛 = 0. Since 𝛽 = 𝜀, by definition of

·
===⇒⇒∗, we have 𝑐1 = INIT𝐶 [M𝑀 ] = 𝑐1. Again, by

definition of

·
===⇒⇒∗, we choose 𝑐2 = INIT𝐶 [M𝑀′ ] and get the thesis.

• Case 𝑛 = 𝑛′ + 1. The induction hypothesis (IHP) is then:

D ⊢ INIT𝐶 [M𝑀 ]
𝛽
′

====⇒⇒∗ 𝑐 ′
1
⇒ D ⊢ INIT𝐶 [M𝑀′ ]

𝛽
′

====⇒⇒∗ 𝑐 ′
2

and we must show that

D ⊢ INIT𝐶 [M𝑀 ]
𝛽
′

====⇒⇒∗ 𝑐 ′
1

𝛽
====⇒⇒ 𝑐1 ⇒ D ⊢ INIT𝐶 [M𝑀′ ]

𝛽
′

====⇒⇒∗ 𝑐 ′
2

𝛽
====⇒⇒ 𝑐2

By cases on the CPU mode in 𝑐 ′
1
and 𝑐 ′

2
:

– R ′
1
[pc] ⊢mode UM and R ′2 [pc] ⊢mode UM: Follows by (IHP) and Lemma 6.9;

– R ′
1
[pc] ⊢mode PM and R ′2 [pc] ⊢mode PM: Follows by (IHP) and Lemma 6.10;

– R ′
1
[pc] ⊢mode m and R ′2 [pc] ⊢mode m

′
and m ≠ m′: It never happens, as observed in Proposi-

tion A.6. □

Finally, we conclude with the proof that if two modules are trace equivalent then they are

contextually equivalent in SancusL (arrow (𝑖) in Figure 7):

Lemma 6.12. IfM𝑀
𝑇
=M𝑀′ thenM𝑀 ≃L M𝑀′ .

Proof. Expanding the definition of ≃L, the statement becomes:

M𝑀
𝑇
=M𝑀′ ⇒ (∀𝐶 = ⟨M𝐶 ,D⟩.𝐶 [M𝑀 ]⇓L ⇐⇒ 𝐶 [M𝑀′]⇓L)

We split the double implication and we show the two cases independently.

• Case⇒. By Proposition 6.8 there exists 𝛽 such that D ⊢ INIT𝐶 [M𝑀 ]
𝛽 ·•
=====⇒⇒∗ HALT. Since

M𝑀
𝑇
=M𝑀′ , we know by Lemma 6.11 that D ⊢ INIT𝐶 [M𝑀′ ]

𝛽 ·•
=====⇒⇒∗ HALT. Thus, again by

Proposition 6.8, we have 𝐶 [M𝑀′]⇓L;
• Case⇐. Symmetric to the previous one. □

6.2.3 Contextual equivalence at SancusH implies trace equivalence. Here we prove by contraposition

thatM𝑀 ≃H M𝑀′ =⇒ M𝑀
𝑇
=M𝑀′ , i.e., implication (𝑖𝑖) of Figure 7.

We first define those traces, if any, that distinguish a given a pair of modules, i.e., one converges

while the other does not. Given a context in SancusL that keeps two modules apart through two

such traces, we define two algorithms: the first builds a memory and the other a device. Once

put together, they implement a backtranslation [47] and return a context differentiating the two

modules in Sancus
H
. Because of the strong limitations of MSP430 (e.g., it only has 64KB of memory)

building such a context in unprotected memory only is infeasible. Since the attacker model we

assumed has the strong power of controlling everything except the enclave, it is also assumed

to control the I/O device that has unlimited memory. Therefore, the backtranslation takes full

advantage of such a strength to build a distinguishing context. Of course, this also implies that only

isolation properties proved on Sancus
H
under this attacker model with unbounded device memory

are guaranteed to be preserved in SancusL.
We start from two distinguishing traces, that consist of a common prefix followed by two further

traces starting with two different observables. We then make sure that there always exist such

traces for two modules that are kept apart in SancusL.

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 29

Definition 6.13 (Distinguishing traces). LetM𝑀 andM𝑀′ be two modules, and let 𝛽 = 𝛽𝑠 · 𝛽 · 𝛽𝑒 ∈
Tr (M𝑀 ) and 𝛽

′
= 𝛽𝑠 · 𝛽 ′ · 𝛽

′
𝑒 ∈ Tr (M𝑀′). We say that 𝛽 and 𝛽

′
are distinguishing traces forM𝑀

andM𝑀′ iff there exist a context 𝐶𝐿 = ⟨M𝐶𝐿 ,D𝐿⟩ such that

• D𝐿 ⊢ INIT𝐶𝐿 [M𝑀 ]
𝛽
====⇒⇒∗ 𝑐 and D𝐿 ⊢ INIT𝐶𝐿 [M𝑀′ ]

𝛽
′

====⇒⇒∗ 𝑐 ′, for some 𝑐, 𝑐 ′;

• 𝛽 ∉ Tr (M𝑀′), 𝛽
′
∉ Tr (M𝑀 ) and 𝛽 ≠ 𝛽 ′.

Property 6.2. IfM𝑀 andM𝑀′ are two modules such thatM𝑀 ;
L M𝑀′ , then there always exist

𝛽 and 𝛽
′
that are distinguishing traces forM𝑀 andM𝑀′ .

First algorithm: memory initialization. Intuitively, given two modules and two distinguishing

traces 𝛽 = 𝛽𝑠 · 𝛽 · 𝛽𝑒 and 𝛽
′
= 𝛽𝑠 · 𝛽 ′ · 𝛽

′
𝑒 for them, the Algorithm 1 builds the memory of the wanted

distinguishing context. Actually, this memory only contains the code that cooperates with the I/O

device built in Algorithm 2 to mimic the target context and to differentiate the two modules at

hand. Intuitively, the generated code communicates the state of the CPU to the I/O device enabling

it to drive the context execution and thus the behavior of the processor.

Assume as given an assembler function encode that returns the encoding of any assembly in-

struction as one or two words – according to the size specified in Table 1. Also, assume that the

unprotected memory is large enough to contain the code of the context we are building (there is

no lack of generality since the space required for this code is bounded by a constant (≤ 25 words)

plus the number of different addresses to which the protected code jumps – kept anyway in the

unprotected memory). Suppose also to have the five constants A_HALT, A_LOOP, A_JIN, A_EP and
A_RDIFF representing addresses in the unprotected memory: they are assumed different from (𝑖)
each other, (𝑖𝑖) 0xFFFE and (𝑖𝑖𝑖) any address R[pc] such that jmpOut!(Δ𝑡 ;R) occurs in either input

distinguishing traces. Finally, assume for simplicity that the modules never jump to 0xFFFE.3

First, the algorithm initializes the memoryM𝐶 by filling it with the code in Figure 10. It consists

of five parts. The first two are for convergence (line 1) and divergence (line 3). The next part (lines 5

to 20) inputs the registers values from the device and then jumps into the enclave. Line 25 specifies

that the first instruction to be executed is at the address specified by A_EP. Finally, the code in
lines 22 and 23 interacts with the device to get the next instruction to execute.

Then, the algorithm inspects 𝛽 and 𝛽 ′, and generates a piece of code that orchestrates the interac-
tions between the distinguishing context and the I/O device. Roughly, the generated code operates

as follows: it (i) writes to the I/O device the different content of the register that distinguishes the

traces; and (ii) reads from the I/O device a new value for the program counter (either A_HALT or
A_LOOP), which causes the context to either diverge or terminate.

If they are both jmpOut!(·; ·) and at least one register has different values in the observables, two

cases arise:

• If one of the registers differentiating 𝛽 and 𝛽 ′ is r ≠ pc, then we store inM𝐶 the instructions

to ask the device a new program counter (that will depend on the value of r), starting at the

address A_RDIFF (line 7). Note that in this case joutd and joutd
′
are left undefined;

• Otherwise, the register differentiating 𝛽 = jmpOut!(Δ𝑡 ;R) and 𝛽 ′ = jmpOut!(Δ𝑡 ;R ′) is pc.
In this case, we store inM𝐶 the instructions to ask the device a new program counter at the

address R[pc] and R ′[pc] for the first and second module, respectively (lines 15 – 19). Also,

we record the differentiating values of the program counter in joutd and joutd
′
, to be used by

Algorithm 2.

3
Slightly changing Algorithm 1 suffices to remove this limitation: upon the jump into protected mode right before jumping

to 0xFFFE, the context writes the right code to deal with it in 0xFFFE and, afterwards, restores the old content of that

address.

, Vol. 1, No. 1, Article . Publication date: March 2022.



30 Busi et al.

Finally, the algorithm adds the code to deal with jumps out from the protected module to

unprotected code for any jmpOut!(Δ𝑡 ;R) in 𝛽𝑠 · 𝛽 or 𝛽𝑠 · 𝛽 ′ such that R[pc] ≠ joutd and R[pc] ≠
joutd

′
. Since the code cannot track timing directly, we delegate the device to deal with the case

when the observables differ on timings, i.e., when 𝛽 = jmpOut!(Δ𝑡 ;R) and 𝛽 ′ = jmpOut!(Δ𝑡 ′;R)
with Δ𝑡 ≠ Δ𝑡 ′ (see Algorithm 2). Eventually, the algorithm returns the memory built and the values

of joutd and joutd
′
(if any), used by Algorithm 2 to build the distinguishing device.

Algorithm 1 Builds the memory of the distinguishing context.

1: procedure BuildMem(𝛽 = 𝛽𝑠 · 𝛽 · 𝛽𝑒 , 𝛽
′
= 𝛽𝑠 · 𝛽 ′ · 𝛽

′
𝑒 )

2: ⊲ 𝛽 and 𝛽
′
are distinguishing traces w. common prefix 𝛽𝑠

3: joutd = joutd
′ = ⊥

4: M𝐶 = filled as described in Figure 10

5: if 𝛽 = jmpOut!(Δ𝑡 ;R) ∧ 𝛽 ′ = jmpOut!(Δ𝑡 ;R ′) ∧ (∃r.R[r] ≠ R ′[r]) then
6: if r ≠ pc then

7: M𝐶 =M𝐶 [A_RDIFF ↦→ encode(OUT r), A_RDIFF + 1 ↦→ encode(IN pc)]
8: else

9: joutd = R[pc]
10: joutd

′ = R ′[pc]
11: M𝐶 =M𝐶 [joutd ↦→ encode(OUT pc), joutd + 1 ↦→ encode(IN pc)]
12: M𝐶 =M𝐶 [joutd ′ ↦→ encode(OUT pc), joutd ′ + 1 ↦→ encode(IN pc)]
13: end if

14: end if

15: for jmpOut!(Δ𝑡 ;R) ∈ 𝛽𝑠 · 𝛽, 𝛽𝑠 · 𝛽 ′ do
16: if R[pc] ≠ joutd ∧ R[pc] ≠ joutd

′
then

17: M𝐶 =M𝐶 [R[pc] ↦→ encode(IN pc)]
18: end if

19: end for

20: return (M𝐶 , joutd, joutd
′)

21: end procedure

Second algorithm: device construction. This second algorithm iteratively builds a device that

cooperates with the memory of the context given by Algorithm 1 to distinguishM𝑀 fromM𝑀′ .
4

The algorithm is in the Appendix, and here we only briefly comment on it, for space reasons.

Let joutd and joutd
′
be the addresses returned by Algorithm 1 (if any) and that represent the

differentiating values of the program counter; let 𝛽 = 𝛽𝑠 · 𝛽 · 𝛽𝑒 and 𝛽
′
= 𝛽𝑠 · 𝛽 ′ · 𝛽

′
𝑒 (𝛽 ≠ 𝛽 ′) be

two distinguishing traces forM𝑀 andM𝑀′ under𝐶
𝐿
; finally, let term (resp. term

′
) denote whether

M𝑀 (resp.M𝑀′) converges in a context with no interrupts after the last jump into protected mode.

The algorithm starts with an empty device and iterates over the observables 𝛽𝑖 in 𝛽𝑠 :

• Case 𝛽𝑖 = jmpIn?(R).
In this case either this is the first observable or 𝛽𝑖−1 = jmpOut!(·; ·). According to Algorithm 1,

in both cases we reach the instruction IN pc (either at address A_EP or those of jumps out of

protected mode), waiting for the next program counter. The algorithm appends the behavior

described in Figure 11a to the device built so far. Intuitively, the device ignores possible write

4
The interactions between the module and the I/O device need not to be preserved because the module runs in protected

mode and therefore it cannot access the I/O device in the first place.

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 31

1 A_HALT. HLT
2

3 A_LOOP. JMP pc
4

5 A_JIN . IN sp
6 . IN sr
7 . IN R3
8 . IN R4
9 . IN R5
10 . IN R6
11 . IN R7
12 . IN R8
13 . IN R9
14 . IN R10
15 . IN R11
16 . IN R12
17 . IN R13
18 . IN R14
19 . IN R15
20 . IN pc
21

22 A_EP . OUT pc
23 . IN pc
24

25 0xFFFE. A_EP ; the content of 0xFFFE is A_EP
26

Fig. 10. Initial content of unprotected memory as used by Algorithm 1.

operations and outputs the special address A_JIN. Then, it starts sending the values of the
registers in R, so to simulate in Sancus

H
what happens in SancusL and to match the code

requests.

• Case 𝛽𝑖 = jmpOut!(Δ𝑡 ;R).
The device is simply updated with an 𝜖-loop on the last added state 𝛿𝐿 and ignores write

operations (so as to deal with R[pc] = joutd or R[pc] = joutd
′
). Figure 11b pictorially

represents this case.

Then, as soon as 𝛽 and 𝛽 ′ show up, the algorithm sets up the device to differentiate the modules:

• Case 𝛽 = jmpOut!(Δ𝑡 ;R) ∧ 𝛽 ′ = jmpOut!(Δ𝑡 ′;R ′) ∧ (∃r.R[r] ≠ R ′[r]).
In this case the differentiation is due to a register, and two further sub-cases may arise. If

the register is pc then the device gets the differentiating value from the context (executing

code at joutd and joutd
′
by construction); based on that value, it outputs either A_HALT or

A_LOOP (see Figure 12a). For any other register than pc, the context waits for the next program
counter and replies with the address A_RDIFF. This address points to the code that sends

the differentiating register value and, based on that, the device replies with either A_HALT or

A_LOOP (see Figure 12b).

• Case 𝛽 = jmpOut!(Δ𝑡 ;R) ∧ 𝛽 ′ = jmpOut!(Δ𝑡 ′;R) ∧ Δ𝑡 ≠ Δ𝑡 ′.
Since different timings in SancusL correspond to different timings in Sancus

H
(see Prop-

erty A.22), we program the device so as to either reply with A_HALT or with A_LOOP depending
on the time value (Figure 12c).

• Case 𝛽 = • ∧ 𝛽 ′ = jmpOut!(Δ𝑡 ;R).
In this case • may occur during an interrupt service routine. Two sub-cases may arise,

depending on whether the first moduleM𝑀 terminates or not when executed in a context

with no interrupts after the last jump into protected mode. Note that the value of term

differentiates the two sub-cases. When term holds,M𝑀 causes a transition to an exception

handling configuration from which there is a a jump to A_EP, and the device instructs the

, Vol. 1, No. 1, Article . Publication date: March 2022.



32 Busi et al.

𝛿𝐿

𝜖

wr (_)

𝜖 𝜖 𝜖 𝜖 𝜖

𝜖

𝜖𝜖𝜖𝜖𝜖

𝜖

𝜖 𝜖 𝜖 𝜖

rd (JIN) rd (R [sp]) rd (R [sr]) rd (R [R3 ]) rd (R [R4 ])

r
d(R
[R

5 ])

rd (R [R6 ])rd (R [R7 ])rd (R [R8 ])rd (R [R9 ])rd (R [R10 ])

r
d(R
[R

1
1 ])

rd (R [R12 ]) rd (R [R13 ]) rd (R [R14 ]) rd (R [R15 ]) rd (R [pc])

(a) The case of 𝛽𝑖 = 𝛽
′
𝑖
= jmpIn?(R).

𝛿𝐿

𝜖

wr (_)

(b) The case of 𝛽𝑖 = 𝛽
′
𝑖
= jmpOut!(Δ𝑡 ;R).

Fig. 11. A graphical representation of the algorithm building the I/O device for 𝛽𝑖 and 𝛽
′
𝑖
being in the longest

common prefix. Here, 𝛿𝐿 denotes the final state of the I/O device being updated, while the final state of the

updated device is depicted as a solid, black circle.

code to jump to A_HALT. Instead, the second module jumps to another location different

from the distinguished address A_EP, thus a jump to A_LOOP occurs (Figure 12d). When term

does not hold,M𝑀 diverges and the second module makes the CPU jump to a location in

unprotected code and the CPU is instructed to jump to A_HALT (Figure 12e).

• Case 𝛽 = jmpOut!(Δ𝑡 ;R) ∧ 𝛽 ′ = 𝜀.
Analogous to the above, with term

′
replacing term.

• Otherwise. No other cases may arise (see Property A.21).

At the end, the algorithm returns a device built as just summarized.

The correctness of the two algorithms is established by the Properties A.21 and A.22 in the

Appendix. The first states that, under the stated conditions, BuildDevice always produces an

actual I/O device. The second property guarantees that the context built by joining together the

results of the two algorithms is indeed a distinguishing one.

We finally prove that if two modules are contextually equivalent in Sancus
H
, then they are trace

equivalent (implication (𝑖𝑖) in Figure 7).

Lemma 6.14. IfM𝑀 ≃H M𝑀′ thenM𝑀
𝑇
=M𝑀′ .

Proof. We prove the contrapositive:M𝑀

𝑇
≠ M𝑀′ thenM𝑀 ;

H M𝑀′ . By Property 6.2, since

𝑇
≠ there exists a pair of distinguishing traces forM𝑀 andM𝑀′ . Algorithm 1 and 2 witness the

existence of a context𝐶𝐻 that is an actual context and is guaranteed to differentiateM𝑀 fromM𝑀′ ,

i.e., 𝐶𝐻 [M𝑀 ]⇓H and 𝐶𝐻 [M𝑀′] ̸⇓H (or vice versa). Thus, by definition of contextually equivalent

modules in Sancus
H
, we getM𝑀 ;

H M𝑀′ as requested. □

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 33

𝛿𝐿

𝜖
𝜖 𝜖

𝜖

rd (A_RDIFF) wr (R′ [r])

w
r(R
[r])

rd (A_LOOP)

rd
(A_H

ALT
)

(a) The case of 𝛽𝑖 = jmpOut!(Δ𝑡 ;R) ∧ 𝛽 ′
𝑖
= jmpOut!(Δ𝑡 ′;R ′) ∧ (∃r ≠ pc.R[r] ≠ R ′[r]).

𝛿𝐿

𝜖
𝜖

𝜖

wr (joutd)

w
r(
j
o
u
t
d ′)

rd (A_LOOP)

rd
(A_H

ALT
)

(b) The case of 𝛽𝑖 = jmpOut!(Δ𝑡 ;R) ∧ 𝛽 ′
𝑖
= jmpOut!(Δ𝑡 ′;R ′) ∧ R[pc] ≠ R ′[pc].

𝛿𝐿 . . . . . .𝜖 𝜖 𝜖 𝜖

rd (A_LOOP)

r
d(A

_HALT)

min(𝑡, 𝑡 ′) max (𝑡, 𝑡 ′) −min(𝑡, 𝑡 ′)

(c) The case of 𝛽𝑖 = jmpOut!(Δ𝑡 ;R) ∧ 𝛽 ′
𝑖
= jmpOut!(Δ𝑡 ′;R) ∧ Δ𝑡 ≠ Δ𝑡 ′. Let 𝑡 and 𝑡 ′ be the timing differences

observed by the attacker at SancusL, see Algorithm 2 in the Appendix for details.

𝛿𝐿

𝜖

wr (𝑤), 𝑤 ≠ A_EP

wr (A_EP) rd (A_HALT)

rd (A_LOOP)

(d) The case of

𝛽𝑖 = • ∧ 𝛽 ′𝑖 = jmpOut!(Δ𝑡 ;R)∧ term.

𝛿𝐿

𝜖

wr (_)

rd (A_HALT)

(e) The case of

𝛽𝑖 = • ∧ 𝛽 ′𝑖 = jmpOut!(Δ𝑡 ;R) ∧ ¬term.

Fig. 12. A graphical representation of the algorithm building the I/O device for 𝛽𝑖 and 𝛽
′
𝑖
being the distin-

guishing observables. Here, 𝛿𝐿 denotes the final state of the I/O device being updated, while the final state of

the updated device is depicted as a solid, black circle.

, Vol. 1, No. 1, Article . Publication date: March 2022.



34 Busi et al.

6.2.4 Preservation of behaviours. The last step of this long proof consists in stating and proving

the lemma that guarantees preservation of behaviours, i.e., the implication (𝑖𝑖𝑖) in Figure 7:

Lemma 6.15 (Preservation).

∀M𝑀 ,M𝑀′ . (M𝑀 ≃H M𝑀′ ⇒M𝑀 ≃L M𝑀′).

Proof. Just compose the implications (𝑖) and (𝑖𝑖) of Figure 7 (i.e., Lemmata 6.14 and 6.12,

resp.). □

7 PRESERVATION OF HYPERPROPERTIES
This section shows that our full abstraction result allows us to easily derive the preservation of

some notions of non-interference and hypersafety when passing from Sancus
H
to SancusL. Since

we are dealing with enclaves, the standard notions will be adapted to our framework.

From now onwards, we will use the following equivalence relation to express configurations that

are equivalent from an attacker’s point of view. According to this relation two configurations are

equivalent if they cannot be distinguished by code running in unprotected mode (e.g., the contents

of unprotected memory). In its definition we use the auxiliary equivalence of memories that holds

when their public portions coincide.

Definition 7.1. Let 𝑐 and 𝑐 ′ be two configurations, and letM 𝑈
=M ′ iff ∀𝑙 ∉ [ts, te)∪[ds, de).M[𝑙] =

M ′[𝑙].
Then we define 𝑐

𝐿
= 𝑐 ′ iff (𝑐 = 𝑐 ′ = HALT) ∨ (𝑐.𝛿 = 𝑐 ′.𝛿 ∧ 𝑐.𝑡 = 𝑐 ′.𝑡 ∧ 𝑐.𝑡𝑎 = 𝑐 ′.𝑡𝑎 ∧

𝑐.M 𝑈
= 𝑐 ′.M ∧ 𝑐.R = 𝑐 ′.R).

7.1 Take one: termination-insensitive, time-sensitive non-interference
We now tailor the notion of termination-insensitive, time-sensitive non-interference (inspired

by [32]) to fit our framework. Roughly, two modules are non-interferent if and only if no context

can distinguish them by examining the content of their public memories right before they terminate.

Formally:

Definition 7.2. Two modules M𝑀 and M𝑀′ are termination-insensitive, time-sensitive non-

interferent (ISNI ) in Sancus
H
(writtenM𝑀 ≈ISM𝑀′) iff for all contexts 𝐶 = ⟨M𝐶 ,D⟩

D ⊢ INIT𝐶 [M𝑀 ] →∗ 𝑐 → HALT ∧ D ⊢ INIT𝐶 [M𝑀′ ] →
∗ 𝑐 ′→ HALT =⇒ 𝑐

𝐿
= 𝑐 ′.

Similarly, we define ISNI in SancusL,M𝑀 ≈ISM𝑀′ .

Commonly termination-insensitive non-interference is a property of a single program, to which

our definition actually reduces when considering initial configurations as programs whose public

input is a context and secret input is a module. Indeed this is a good model of what happens

in reality: contexts are controlled by the attackers, whereas modules are securely deployed (i.e.,

we model the situation where both code and data are confidentially deployed, as can be done in

Sancus 2.0 [45] and in Soteria [25]). Note in passing that our definition and results still hold if

the code is made public before being loaded in the enclave (see also the discussion at the end of

Section 7.2).

In the following, we clarify the relation between non-interference as defined in Definition 7.2 and

our instance of full abstraction established in Theorem 6.3. Note that contextual equivalence requires

equiconvergence, and thus it is termination sensitive. On the contrary, ISNI is termination insensitive

by definition and can relate modules that are not contextually equivalent. Therefore, preservation

of termination-insensitive non-interference cannot be directly derived from full abstraction. As a

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 35

matter of fact, requiring equiconvergence transforms Definition 7.2 in Definition 7.5 that introduces

the more demanding notion of termination-sensitive non-interference, which is preserved (see

below). Nevertheless, we can establish a couple of interesting properties. First, we relate contextual

equivalence with non-interference in SancusL:

Lemma 7.3. IfM𝑀 ≃L M𝑀′ thenM𝑀 ≈ISM𝑀′ .

From that it easily follows that non-interference in SancusL is guaranteed when two modules

are contextual equivalent in Sancus
H
:

Theorem 7.4. IfM𝑀 ≃H M𝑀′ thenM𝑀 ≈ISM𝑀′ .

7.2 Take two: termination- and time-sensitive non-interference
In this section we consider a notion of non-interference inspired from [19] and distinguishes

terminating modules from non-terminating ones. In the standard notion the program is public and

the memory is split in a public and a secret segment: an attacker cannot discover any secret data by

running the code with different public data. In our framework however also the code is protected,

being hosted in the enclave. We first adapt the standard definition to our case, where the entire

module is protected, and at the end of this section, we discuss how to recover the classic notion,

where the code is public and some data secret.

Definition 7.5 (SSNI). Two modules M𝑀 and M𝑀′ are termination- and time-sensitive non-

interferent (SSNI ) in Sancus
H
(written M𝑀 ≈SS M𝑀′) iff for all contexts 𝐶 = ⟨M𝐶 ,D⟩, and

configurations 𝑐 both implications hold:

• D ⊢ INIT𝐶 [M𝑀 ] →∗ 𝑐 → HALT =⇒ ∃𝑐 ′. (D ⊢ INIT𝐶 [M𝑀′ ] →∗ 𝑐 ′→ HALT ∧ 𝑐
𝐿
= 𝑐 ′)

• D ⊢ INIT𝐶 [M𝑀′ ] →∗ 𝑐 → HALT =⇒ ∃𝑐 ′. (D ⊢ INIT𝐶 [M𝑀 ] →∗ 𝑐 ′→ HALT ∧ 𝑐
𝐿
= 𝑐 ′)

Similarly, we define SSNI in SancusL,M𝑀 ≈SSM𝑀′ .

The following theorem is easily established:

Theorem 7.6.

(1) IfM𝑀 ≃L M𝑀′, thenM𝑀 ≈SSM𝑀′ and (2) ifM𝑀 ≈SSM𝑀′, thenM𝑀 ≃H M𝑀′

Thus, due to Theorem 6.3, the preservation of SSNI holds:

Corollary 7.7. M𝑀 ≈SSM𝑀′ =⇒ M𝑀 ≈SSM𝑀′ .

To recover the standard notion of termination- and time-sensitive non-interference, we only

consider the code part of a module. In this way, we model the fact that the code needs not to be

kept confidential, even though it is part of the enclave.

Recall the notion of layout L = ⟨ts, te, ds, de, isr⟩, which is fixed in our model, and letM𝑃 and

M𝐷 be two modules. ByM𝑃 ◀M𝐷 denote the module resulting from the composition of the code

ofM𝑃 (called module program) and the data ofM𝐷 (called module data). Formally:

Definition 7.8. Given two modulesM𝑃 andM𝐷 , let

M𝑃 ◀M𝐷 ≜ 𝜆𝑙 .

{
M𝑃 (𝑙) if 𝑙 ∈ [𝑡𝑠, 𝑡𝑒)
M𝐷 (𝑙) if 𝑙 ∈ [𝑑𝑠, 𝑑𝑒)

Since the standard notion of termination- and time-sensitive non-interference only predicates

on single programs. To recover it, we first tailor our SSNI to consider a single module program:

, Vol. 1, No. 1, Article . Publication date: March 2022.



36 Busi et al.

Definition 7.9 (Unary SSNI). A module programM𝑃 is termination- and time-sensitive non-

interferent (USSNI ) in Sancus
H
(written ⊢H

USSNI
M𝑃 ) iff for all module data M𝐷 ,M𝐷′ , for all

contexts 𝐶 = ⟨M𝐶 ,D⟩, and for all configurations 𝑐:

D ⊢ INIT𝐶 [M𝑃◀M𝐷 ] →∗ 𝑐 → HALT =⇒ ∃𝑐 ′. (D ⊢ INIT𝐶 [M𝑃◀M𝐷′ ] →
∗ 𝑐 ′→ HALT ∧ 𝑐

𝐿
= 𝑐 ′).

Similarly, we define USSNI in SancusL, ⊢LUSSNI M𝑃 .

The following theorem then relates USSNI with our contextual equivalence, both in Sancus
H

and SancusL:

Theorem 7.10. LetM𝑃 be a module program, then

(1) if ∀M𝐷 ,M𝐷′ . (M𝑃 ◀M𝐷 ) ≃L (M𝑃 ◀M𝐷′), then ⊢LUSSNI M𝑃 ; and

(2) if ⊢H
USSNI

M𝑃 , then ∀M𝐷 ,M𝐷′ . (M𝑃 ◀M𝐷 ) ≃H (M𝑃 ◀M𝐷′).
Finally, the preservation of USSNI easily follows by Theorem 6.3:

Corollary 7.11. If ⊢H
USSNI

M𝑃 , then ⊢LUSSNI M𝑃 .

As a final remark, note that both Corollary 7.7 and 7.11 hold under the hypothesis that Sancus
H

and SancusL are fully abstract.

7.3 Take three: stepwise termination- and time-sensitive non-interference
Since the attacker in our model is able to interrupt execution at every CPU cycle, one might wonder

about the preservation of a stronger, stepwise notion of non-interference.

For that, we start from SSNI and introduce stepwise termination- and time-sensitive non-interference.

It stipulates that two modules are non-interferent whenever their public memories are kept equiva-

lent while stepping between successive unprotected configurations. For that, we first need the

following definition:

Definition 7.12. D ⊢ 𝑐 ↠
𝑘
𝑐 ′ iff

D ⊢ 𝑐 → 𝑐1 → . . .→ 𝑐𝑛 → 𝑐 ′ ∧ 𝑐, 𝑐 ′ ⊢mode UM ∧ ∀1 ≤ 𝑖 ≤ 𝑛. 𝑐𝑖 ⊢mode PM ∧ 𝑘 =

{
0 𝑛 = 0

2 o.w.

Also, let D ⊢ 𝑐1 ↠𝑡
𝐾
𝑐𝑡 , where 𝐾 =

∑𝑡
𝑖=1 𝑘𝑖 , be the shorthand for D ⊢ 𝑐1 ↠𝑘1

. . . ↠
𝑘𝑡
𝑐𝑡 .

Similarly, we define D ⊢ 𝑐 ↠
𝑘
𝑐 ′ and D ⊢ 𝑐 ↠𝑡

𝐾
𝑐 ′.

Intuitively 𝑘 counts the interactions between the context and the module (𝑘 = 0 if there are none

and 𝑘 = 2 if there is one entry and one exit) whereas the arrows↠
𝑘
and↠

𝑘
ignore all the steps

taken in protected mode and just take into account the actions of the context.

We can now define the new notion of stepwise termination- and time-sensitive non-interference:

Definition 7.13. Two modulesM𝑀 andM𝑀′ are stepwise termination- and time-sensitive non-

interferent (SSSNI ) in Sancus
H
(writtenM𝑀 ≈SSS M𝑀′) iff for all contexts 𝐶 = ⟨M𝐶 ,D⟩ both

implications hold

• D ⊢ INIT𝐶 [M𝑀 ] ↠
𝑡
𝐾
𝑐 =⇒ ∃𝑐 ′. D ⊢ INIT𝐶 [M𝑀′ ] ↠

𝑡
𝐾
𝑐 ′ ∧ 𝑐

𝐿
= 𝑐 ′

• D ⊢ INIT𝐶 [M𝑀′ ] ↠
𝑡
𝐾
𝑐 ′ =⇒ ∃𝑐. D ⊢ INIT𝐶 [M𝑀 ] ↠

𝑡
𝐾
𝑐 ∧ 𝑐

𝐿
= 𝑐 ′

Similarly, we define SSSNI in SancusL,M𝑀 ≈SSSM𝑀′ .

Since the arrows↠𝑡
𝐾
and↠𝑡

𝐾
are in a clear relation with

𝛽
====⇒⇒ (see Property A.24), we can prove

the following results, leading to the preservation of SSSNI :

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 37

Lemma 7.14.

(1) ifM𝑀 ≃L M𝑀′, thenM𝑀 ≈SSSM𝑀′ and (2) ifM𝑀 ≈SSSM𝑀′, thenM𝑀 ≃H M𝑀′

Thus, due to Theorem 6.3, the preservation of SSSNI holds:

Corollary 7.15. IfM𝑀 ≈SSSM𝑀′ thenM𝑀 ≈SSSM𝑀′ .

We note in passing that the same considerations made at the end of Section 7.2 suffice to show

that our contextual-equivalence coincides with this notion of non-interference when the code and

some data are deemed public.

7.4 Take five: hypersafety 5

In this section we briefly sketch how to reduce our notion of full abstraction to the preservation

of a much wider family of security properties than just non-interference, building on the work of

Patrignani and Garg [50].

We first recall some notation. A compiler is seen in [50] as a mapping J·K from source to target

programs. Our compiler is actually the identity function, since any moduleM𝑀 in Sancus
H
is

mapped into the same moduleM𝑀 in SancusL. Also, Patrignani and Garg [50], give the following

notion of trace equivalence, which we call whole program trace equivalence:

Definition 7.16 (Definition 19 [50]). We say that

M𝑀
𝑊𝑇
= M𝑀′ ⇐⇒ ∀𝐶.WTr (𝐶 [M𝑀 ]) = WTr (𝐶 [M𝑀′]),

whereWTr (𝐶 [M𝑀 ]) ≜ {𝛽 | ∃𝑐.D ⊢ INIT𝐶 [M𝑀 ]
𝛽
====⇒⇒∗ 𝑐}.

Contrary to our notion of Definition 6.7, their definition of trace equivalence requires the

programs to produce the same set of traces under a fixed context (i.e., it is defined on whole

programs).

Crucially, the following theorem links the notion of whole program trace equivalence with ours:

Theorem 7.17. The following relations are equivalent:

(1)M𝑀
𝑊𝑇
= M𝑀′ (2)M𝑀

𝑇
=M𝑀′ (3)M𝑀 ≃L M𝑀′ (4)M𝑀 ≃H M𝑀′

As a consequence of Theorem 7.17, our coarse-grained traces (Figure 9) are thus a fully abstract

trace semantics for both Sancus
H
and SancusL, according Definition 20 of [50]:

Corollary 7.18.

(1) ∀M𝑀 ,M𝑀′ .M𝑀 ≃H M𝑀′ ⇐⇒ M𝑀
𝑊𝑇
= M𝑀′ ;

(2) ∀M𝑀 ,M𝑀′ .M𝑀 ≃L M𝑀′ ⇐⇒ M𝑀
𝑊𝑇
= M𝑀′ .

Due to this corollary, both Assumption 1 (i.e., trace semantics of Sancus
H
is fully abstract) and

Assumption 2 (i.e., trace semantics of SancusL is fully abstract) from [50] hold. Recall that the

compiler from Sancus
H
to SancusL implicitly used throughout the paper is an identity compiler

(mapping a module in itself). By the assumption above, it also follows that Sancus
H
and SancusL

share the same set of fully abstract traces. Our identity compiler is therefore trivially correct, and it

also is a fail-safe-behavior compiler – roughly, a compiler producing target programs that always halt

after an invalid input (Definition 16 of [50]). We finally conclude that all the safety hyperproperties

that hold for whole programs in Sancus
H
also hold in SancusL (Theorems 10 and 6 of [50]).

5
Not four as a homage to Dave Brubeck and his Quartet.

, Vol. 1, No. 1, Article . Publication date: March 2022.



38 Busi et al.

Note that the above is just a sketch of how one could prove the preservation of hypersafety

following the approach of [50]. Indeed, a more formal and complete treatment of hyperproperty

preservation would require traces to be the ground truth concerning what an attacker might observe.

This might call for a complete reworking of the notion of traces in our setting, that are now a mere

tool, beneficial to the proof. The same considerations hold for other principles of secure compilation

based on (robust) hyperproperty preservation, such as those in [2, 3]; see also Section 9.1.

8 IMPLEMENTATION AND EVALUATION
We provide a full implementation

6
of our approach based on the Sancus [45] architecture which,

in turn, is based on the openMSP430, an open source implementation of the TI MSP430 ISA. Our

implementation has two parts. First, we adapted the execution unit’s state machine to add padding

cycles whenever an interrupt happens in protected mode and when we return from such interrupts.

Second, we added a protected storage area corresponding to B.

Cycle padding. To implement cycle padding, we added three counters to the processor’s frontend.

The first, Creti_nxt, tracks the number of cycles to be padded on the next RETI. Whenever an

interrupt request (IRQ) occurs, this counter is initialized to zero and is subsequently incremented

every cycle until the current instruction completes. Thus, at the end of an instruction, this counter

holds 𝑡 − 𝑡𝑎 , which corresponds to 𝑡pad in B (cf. the (INT-PM-P) rule of SancusL).
The second counter, Cirq, holds the number of cycles that needs to be padded when an IRQ

occurs. It is initialized to MAX_TIME−Creti_next (MAX_TIME is 6 in our case) when the instruction, during

which an IRQ occurred, finishes execution. That is, it holds the value 𝑘 from the rule (INT-PM-P) of

SancusL after the instruction finishes. From this point on, the counter is decremented every cycle

and the execution unit’s state machine is kept in a wait state until the counter reaches zero. Only

then it is allowed to progress and start handling the IRQ.

Lastly, the third counter, Creti, holds the number of cycles that needs to be padded for the current

RETI instruction. Whenever a RETI is executed while handling an IRQ from protected mode, this

counter is initialized with the value of Creti_nxt. Then, after restoring the processor state from B
this counter is decremented every cycle until it reaches zero. After these padding cycles, the next

instruction is fetched, from R[pc] restored from B, and executed. Note that these padding cycles

behave as any 𝑡pad-cycle instruction from the perspective of the padding logic. That is, they can

be interrupted and, hence, padded as well. This is the reason why we need two counters to hold

padding information for RETI: Creti is used to pad the current RETI instruction and Creti_nxt is
used – concurrently, if an IRQ occurs – to count 𝑡pad for the next RETI.

Saving and restoring the processor state. Whenever an IRQ in protected mode occurs, the pro-

cessor’s register state needs to be saved in a location inaccessible from software. Our current

implementation uses a shadow register file to this end. We duplicate all registers R0, . . . , R15 (except
R3, the constant generator, which does not store state). On an IRQ, all registers are first copied

to the shadow register file and then cleared. When a subsequent RETI is executed, registers are

restored from their copies. For the other values in B, pc
old

is handled the same as registers, and 𝑡pad
is saved from Creti_nxt and restored to Creti. Besides the values in B, we add a single bit to indicate
if we are currently handling an IRQ from protected mode, allowing us to test if B ≠ ⊥.
The current implementation saves and restores the processor state in a single cycle at the cost

of approximately doubling the size of the register file. If this increase in area is unacceptable, the

state could be stored in the protected memory area. Directly implementing this in hardware would

increase the number of cycles needed to save and restore a state to one cycle per register. Of course,

6
Our implementation is available online at https://github.com/sancus-pma/sancus-core/tree/nemesis.

, Vol. 1, No. 1, Article . Publication date: March 2022.

https://github.com/sancus-pma/sancus-core/tree/nemesis


Securing Interruptible Enclaved Execution on Small Microprocessors 39

one should make sure that this memory area is inaccessible from software by adapting the memory

access control logic of the processor accordingly.

Evaluation. To evaluate the impact on the performance of our implementation, we only need to

quantify the overhead on handling interrupts and returning from them, as an uninterrupted flow

of instructions is not impacted by our design.

When an IRQ occurs, as well as when the subsequent RETI is executed, there is a maximum of

MAX_TIME padding cycles executed. This variable part of the overhead is thus bounded by MAX_TIME

cycles for both cases. The fixed part – saving and restoring the processor’s state – turns out to be 0

in our current implementation: since the fetch unit’s state machine needs at least one extra cycle to

do a jump in both cases, copying the state is done during this cycle and causes no extra overhead.

Of course, if the register state is stored in memory, as described above, the fixed overhead grows

accordingly.

To evaluate the impact on hardware cost, we consider the scenario where the Sancus processor is

synthesized on an FPGA, and we count the number of FPGA resources required for this synthesis.

More specifically, we count the number of registers required (a measure for the amount of hardware

state, i.e., flip-flops) and the number of lookup-tables (LUTs) required (a measure for the amount of

hardware combinational logic).

We synthesized our implementation on a Xilinx XC6SLX25 Spartan-6 FPGA with a speed grade

of −2 using Xilinx ISE Design Suite optimizing for area. The baseline is an unaltered Sancus 2.0

core configured with support for a single protected module and 64-bit keys for remote attestation.

The unaltered core could be synthesized using 1239 registers and 2712 LUTs. Adding support for

saving and restoring the processor state increases the area to 1488 registers and 2849 LUTs and the

implementation of cycle padding further increases it to 1499 registers and 2854 LUTs. It is clear

that the largest part of the overhead comes from saving the processor state which is necessary

for any implementation of secure interrupts and can be optimized as discussed in Section 8. The

implementation of cycle padding, on the other hand, does not have a significant impact on the

processor’s area.

9 DISCUSSION
9.1 On the use of full abstraction as a security objective
The security guarantee that our approach offers is quite strong: an attack is possible in Sancus

H
if

and only if it is possible at SancusL. Since isolation is defined in term of contextual equivalence,

full abstraction fits nicely in our setting, in that it ensures preservation and reflection of contextual

equivalence.

The if -part, namely preservation, guarantees that extending Sancus
H
with interrupts opens no

new vulnerabilities. Reflection, i.e., the only if -part is needed because otherwise two enclaves that

are distinguishable in Sancus
H
become indistinguishable in SancusL. Although this mainly concerns

functionality and not security, a problem emerges: adding interrupts is not fully “backwards

compatible.” Indeed, reflection rules out mechanisms that while closing the interrupt side channels

also close other channels. We believe the situation is very similar for other extensions: adding

caches, pipelining, etc. should not strengthen existing isolation mechanisms either.

Actually, full abstraction enables us to take the security guarantees of Sancus
H
as the specification

of the isolation required after an extension is added.

A property alternative to full abstraction would be to require (a non interactive version of) robust

preservation of timing-sensitive non-interference [3]. This can also guarantee resistance against

the example attacks in Section 3. However, this property offers a strictly weaker guarantee: our full

abstraction result implies that timing-sensitive non-interference properties of Sancus
H
programs

, Vol. 1, No. 1, Article . Publication date: March 2022.



40 Busi et al.

are preserved in SancusL, provided that non-interference takes as secret the whole enclave, i.e., its

memory, code, and initial state (see also the discussion in Section 7 about the role of full abstraction

in preservation of non-interference).

In addition, full abstraction implies that isolation properties that rely on code confidentiality

are preserved, and this matters for enclave systems that guarantee code confidentiality, like the

Soteria system [25]. An advantage however might be that robust preservation of timing-sensitive

non-interference might be easier to prove.

In case full abstraction is considered too strong as a security criterion, it is possible to selectively

weaken it by modifying Sancus
H
. For instance, to specify that code confidentiality is not important,

one can modify Sancus
H
to allow contexts to read the code of an enclave (see also the discussion at

the end of Section 7.2).

9.2 The impact of our simplifications
The model and implementation we discussed in this paper make several simplifying assumptions.

A first important observation that we want to make is that some of them are straightforward to

remove. For instance, supporting more MSP430 instructions would not affect the strong security

guarantees offered by our approach, and only requires straightforward, yet tedious technical work.

However, there are also other assumptions that are more essential, and removing these would

require additional research. Here, we discuss the impact of these assumptions on the applicability

of our results to real systems.

First, we scoped our work to only consider “small” microprocessors. We discuss the impact of

this simplification in Section 9.3.

Second, our model made some simplifying assumptions about the enclave-based isolation mech-

anism. We did not model support for cryptographic operations and for attestation. This means

that we assume that loading and initializing an enclave can be done as securely in SancusL as

it can be done in Sancus
H
. Our choice separates concerns, and it is independent of the security

criterion adopted. Modelling both memory access control and cryptography would only increase

the complexity of the model, as two security mechanisms rather than one would be in order. Also

their interactions should be considered to prevent, e.g., leaks of cryptographic keys unveiling secrets

protected by memory access control, and viceversa. Also, we assumed the simple setting where

only a single enclave is supported. We believe these simplifications are acceptable, as they reduce

the complexity of the model significantly, and as none of the known interrupt-driven attacks rely

on these features. It is also important to emphasize that these are model-limitations, and that an

implementation can easily support attestation and multiple enclaves. However, for implementations

that do this, our current proof does not rule out the presence of attacks that rely on these features.

A more fundamental limitation of the model is that it forbids reentering an enclave that has been

interrupted, via ⊢mac . Allowing reentrancy essentially causes the same complications as allowing

multi-threaded enclaves, and these are substantial complications that also lead to new kinds of

attacks [59]. We leave investigation of these issues to future work.

Third, our model and implementation make other simplifications that we believe to be non-

essential and that could be removed with additional work but without providing important new

insights. For instance, we assumed that enclaves have no read/write access to untrusted memory.

A straightforward alternative is to allow these accesses, but to also make them observable to the

untrusted context in Sancus
H
. Essentially, this alternative forces the enclave developer to be aware

of the fact that accessing untrusted memory is an interaction with the attacker. A better alternative

(putting less security responsibility with the enclave developer) is to rely on a trusted runtime that

can access unprotected memory to copy in/out parameters and results, and then turn off access to

unprotected memory before calling enclaved code. This is very similar to how Supervisor Mode

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 41

Access Prevention prevents the kernel from the security risks of accessing user memory. Our model

could easily be extended to deal with such a trusted runtime by considering memory copied in/out

as a large CPU register. It is important to emphasize, however, that the implementation of such

trusted enclave runtime environments has been shown to be error-prone [10]. A further alternative

is considering the secure compartmentalizing compilation proposed by Juglaret et al. [31], who

also use full abstraction to prove security.

Another non-essential limitation is the fact that we do not support nested interrupts, or interrupt

priority. It is straightforward to extend our model with the possibility of multiple pending interrupts

and a policy to select which of these pending interrupts to handle. One only has to take care that

the interrupt arrival time used to compute padding is the arrival time of the interrupt that will be

handled first.

In summary, to provide hard mathematical security guarantees, one often abstracts from some

details and provable security only provides assurance to the extent that the assumptions made are

valid and the simplifications non-essential. The discussion above shows that this is the case for

a relevant class of attacks and systems, and hence that our countermeasure for these attacks is

well-designed. Since there is no 100% security, attacks remain possible for more complex systems

(e.g., including caches and speculation), or for more powerful attackers (e.g., with physical access

to the system).

9.3 Extending to more complex processors
Both our formal models, as well as the design and security proof of our interrupt padding counter-

measure focus very much on enclaved execution on small microprocessors, like the Sancus system.

An interesting question is to what extent the insights of our countermeasure design can be applied

to more complex enclaved execution platforms like Intel SGX. While the designs of Intel SGX and

Sancus are similar at a very high level, there are also major differences. The two most important

differences that are not captured by our model are:

(1) The execution time of instructions on a high-end processor is not deterministic. The use

of caches, and the use of processor optimization techniques like pipelining, speculative

execution, micro-coding and so forth implies that the execution time of instructions can vary

widely, both in terms of wall-clock time and in the number of processor cycles (or at least,

modelling the processor with sufficient detail to make execution time deterministic would

make the model very complex, as it would need to model state of the cache, the pipeline, the

branch predictor, and so forth).

(2) These high-end processor optimizations also typically imply that attackers have many more

ways to observe side effects of enclaved execution. In our model, the only thing a context

(attacker) learns about enclaved execution is timing, either end-to-end timing of an enclave

call or resume, or interrupt latency time. On higher-end enclaved execution systems, like

Intel SGX, enclaved execution has other side effects visible to attackers, like the occurrence

of page faults, or contention for other shared micro-architectural resources [60]. Such side

effects could even be caused by transient enclaved execution, i.e., by instructions that are

executed speculatively but never committed [14].

The first aspect, the fact that execution times are non-deterministic is to some extent a disad-

vantage for the attacker. Since interrupt latency attacks rely on measuring execution times, the

fact that these measurements become non-deterministic will make it harder for the attacker to

draw conclusions. However, even on high-end Intel x86 processors, it has been shown [56] that

averaging interrupt latency measurements over multiple runs still leak significant information

about the instruction being executed and about the micro-architectural state of the processor at the

, Vol. 1, No. 1, Article . Publication date: March 2022.



42 Busi et al.

point of the interrupt. So it is just a matter for the attacker to improve his measurement techniques,

and some form of padding on handling of (and resuming from) interrupts would still be useful. On

the one hand, the non-deterministic nature of instruction execution time makes it hard to choose a

good value for MAX_TIME. Especially since the worst-case execution time on a complex processor can

be quite high, choosing MAX_TIME to be higher than any possible instruction may be prohibitively

expensive.
7
On the other hand, it might be fine to choose MAX_TIME to be smaller than the actual

worst-case longest instruction execution time. In this case, one can think of the choice of MAX_TIME

as a trade-off between performance and security against the leakage through interrupt latency. The

higher MAX_TIME, the less an attacker can learn from a specific interrupt latency measurement: only

in the (presumably very few) cases where interrupt latency exceeds MAX_TIME the attacker does learn

something. However, in cases where the attacker can influence the execution time of instructions

(for instance, by flushing caches), the precise security gains are hard to estimate.

Alternatively, one could consider adding random padding to interrupt handling and resume,

together with measures to make it impossible for the attacker to execute the same measurement

many times (thus making it impossible to do statistical analysis).

Our current formal model and proof obviously do not apply to these more complex settings, and

it is unclear whether the strong guarantees that full abstraction provides are compatible with the

pragmatic or heuristic solutions suggested above.

The second aspect, the existence of other side effects visible to attackers of the enclaved execu-

tion, is even trickier. For instance, by spying on page table accesses [12, 42, 60] or via cache-based

side channels [23], an attacker can reliably observe enclave memory accesses at some granularity.

This is an important disadvantage for the defender, as it is less obvious that a padding counter-

measure would provide a substantial benefit in the presence of such observable side effects. For

instance, if the attacker can distinguish padding from regular instructions by observing side effects,

the countermeasure becomes useless. Making such a distinction could for instance be done by

monitoring accesses to code memory: if the processor is just padding, no instruction load needs

to happen. So an implementation of our countermeasure on a complex processor would have to

make sure that padding is not distinguishable from instruction execution through any kind of

side effect that instructions might have, which we consider to be a significant challenge. From a

security point of view, the ideal scenario would be to remove all the possible side effects through

which enclaved executions leak information. However, just like the end-to-end timing side channel,

closing other side channels completely will likely be too expensive, if not entirely impossible. So

instead, the question is whether we can accept some bounded side-channel leakage, i.e., leave it up

to the software developer to deal with the remaining channels (for instance by means of orthogonal

defenses or by using some form of constant-time programming, like we did for the end-to-end

timing channel), but at the same time guarantee that the power to precisely schedule and handle

interrupts does not increase the power of these attacks. For instance, we might accept the fact that

memory accesses leak at the granularity of pages, while at the same time making sure that the

precision or bandwidth of that channel does not get amplified for interrupt adversaries, as has been

shown repeatedly in the case of Intel SGX [11, 42]. It is again an open question for future work

whether this could be formulated usefully as a full abstraction theorem, where we model the side

channels that we accept in the high model, similarly to how we modeled end-to-end timing attacks

in the high model in this paper.

7
To give an idea of the complexity involved, consider that on modern Intel x86 processors with hardware virtualization

extensions, a single address translation can in itself already require up to 20 memory accesses, which in the worst-case

would all miss the cache hierarchy and have to be served from slow DRAM memory [17].

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 43

10 RELATEDWORK
Our work is motivated by the recent wave of software-based side-channel attacks and controlled-

channel attacks that rely on architectural or micro-architectural processor features. The area is

too large to survey here, but good recent surveys include Ge et al. [23] for timing attacks, Gruss’

PhD thesis [26] for software-based micro-architectural attacks before Spectre/Meltdown, Canella et

al. [14] for transient execution based attacks, and Van Bulck’s PhD thesis [55] for Intel SGX attacks.

The attacks most relevant to this paper are the pure interrupt-based attacks. Van Bulck et al. [56]

were the first to show how just measuring interrupt latency can be a powerful attack vector against

both high-end enclaved execution systems like Intel SGX, and against low-end systems like the

Sancus system that we based our work on. Independently, He et al. [29] developed a similar attack

for Intel SGX.

There is an extensive body of work on defenses against software-based side-channel attacks.

The four surveys mentioned above ([14, 23, 26, 55]) also survey defenses, including both software-

based defenses like the constant-time programming model and hardware-based defenses such as

cache-partitioning. To the best of our knowledge, our work proposes the first defense specifically

designed and proved to protect against pure interrupt-based side-channel attacks. De Clercq et

al. [18] have proposed a design for secure interruptibility of enclaved execution, but they have not

considered side channels – their main concern is to make sure that there are no direct leaks of,

e.g., register contents on interrupts. Most closely related to ours is the work on SecVerilog [62]

that also aims for formal assurances. To guarantee timing-sensitive non-interference properties,

SecVerilog uses a security-typed hardware description language. However, this approach has not

yet been applied to the issue of interrupt-based attacks. Similarly, Zagieboylo et al. [61] describe an

ISA with information-flow labels and use it to guarantee timing-insensitive information flow at the

architectural level.

An alternative approach to interruptible secure remote computation is pursued by VRASED [46].

In contrast to enclaved execution, their design only relies on memory access control for the

attestation key, not for the software modules being attested. They prove that a carefully designed

hardware/software co-design can securely do remote attestation.

Our security criterion is directly influenced by a long line of work that considers full abstraction

as a criterion for secure compilation. The idea was first coined by Abadi [1], and has been applied in

many settings, including compilation to JavaScript [22], various intermediate compiler passes [5, 6],

and compilation to platforms that support enclaved execution [4, 47, 49]. But none of these works

consider timing-sensitivity or interrupts: they study compilations higher up the software stack

than what we consider in this paper. Patrignani et al. [48] have provided a good survey of this

entire line of work on secure compilation.

Still higher up in the computational stack, Tomé Cortiñas et al. [16] extended theMAC library [58]

– a Haskell information-flow control library – with asynchronous exceptions. Akin to interrupts in

our setting, asynchronous exceptions can be raised at any time and may break security properties of

the running code. To ensure that this never happens, they introduced a variant of non-interference

and proved that it is satisfied by their extension of the MAC library.

Other authors applied secure compilation techniques to prove security against side-channel

attacks. For instance, Barthe et al. [7] proved that a suitably modified version of the CompCert

compiler [37] preserves the constant-time policy. For that, they identified the passes of CompCert

that did not preserve constant-time and modified them accordingly; afterwards, they proved

them to be constant-time preserving using variants of the proof techniques proposed in [8]. Very

recently, Patrignani and Guarnieri [51] proved secure a couple of mitigations against Spectre

, Vol. 1, No. 1, Article . Publication date: March 2022.



44 Busi et al.

v1 [34] by specializing hyperproperty preservation principles of [3] to preserve speculative non-

interference [28].

One could consider the addition of speculation and out-of-order execution as a new processor

feature, similar to how our work considers extending a processor with the feature of interrupts.

It would be reasonable to investigate under what conditions this new feature does not introduce

new information leaks. To apply our approach to this problem seems to require a relatively precise

model of how these features work. Existing work on dealing with speculative leaks using program-

ming language techniques instead works with more abstract models of speculation. For example,

Spectector [28] is a symbolic execution tool that analyses x86_64 assembly programs and detects

the presence of possible speculative leaks or proves their absence. Guanciale et al. [27] present a

formal model capturing out-of-order execution and speculation in single core processors. Using

this model they discover three new (possible) vulnerabilities and assess the security of existing

countermeasures. Vassena et al. [57] define a static type system that labels each expression of their

language as either transient or stable (i.e., that may include transient values or not, respectively).

Crucially, their type system rejects programs that possibly contain speculative leaks. Also, they

introduce the protect construct that ensures that assignments containing it are performed only

once their right-hand side is stable. Furthermore, the same paper proposes an algorithm that

automatically synthesizes the minimal number of protects to be inserted in given program to fix

all the potential speculative leaks.

11 CONCLUSIONS AND FUTUREWORK
We have proposed an approach to formally assure that extending a microprocessor with a new

feature does not weaken the isolation mechanisms that the processor offers. More precisely, we

advocate full abstraction as a formal criterion of what it means to maintain the security of isolation

mechanisms under processor extensions. We have applied our approach to an IoT-scale micropro-

cessor: first we have designed an extension of Sancus with interruptible enclaves (SancusL) and
then we have proved it fully abstract with respect to the original Sancus without them (Sancus

H
).

Remarkably, the full abstraction proof relies on the strong power of our attacker that controls the

unprotected memory, which is limited to 64 KB, and the I/O device which instead has unlimited

memory. Indeed, the backtranslation encodes the attack logic within the I/O device that then drives

a fixed piece of code in unprotected memory, namely the software component of the attacker.

To further assess our full abstraction-based security criterion we have compared its guarantees

with those of some notions of non-interference preservation presented in the literature: we have

proved that they are implied by our full abstraction theorem. We have also outlined how to prove

that our results preserve hyperproperties, thus ensuring that modules executed in interruptible

Sancus enjoy the same hyperproperties as they would when executed by the uninterruptible one.

Despite this successful case study, some limitations of the approach remain. A first challenging

issue to be addressed in the future concerns the formal treatment of the extensions discussed

Section 9.3. As a matter of fact, our model and full abstraction result seem to be a good starting

point, although they currently apply only to “small” microprocessors for which we can define a

cycle-accurate operational semantics. While this obviously makes it possible to rigorously reason

about timing-based side channels, scaling our approach to larger processors is however not trivial.

Indeed, to handle larger processors, we need models that can abstract away many details of the

processor implementation, yet keeping enough details to model micro-architectural attacks of

interest. A promising example of model with such features was proposed by Disselkoen et al. [20]

that could replace our cycle-accurate model.

In our proposal, the security criterion is binary: an extension is either secure, or it is not. Therefore

low bandwidth side channels are not kept apart from high-bandwidth side channels. An important

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 45

challenge for future work is to introduce some kind of measure on the weakening of security, so as

to allow security policies that consider some bounded amount of leakage acceptable.

ACKNOWLEDGMENTS
The authors warmly thank the anonymous referees for their extremely careful comments and

helpful suggestions.

Matteo Busi has been partially supported by the research grant on Incremental type systems for

secure compilation from the Department of Computer Science of the University of Pisa. Jo Van

Bulck is supported by a grant of the Research Foundation – Flanders (FWO). Letterio Galletta has

been partially supported by EU Horizon 2020 project No 830892 SPARTA and by MIUR project PRIN

2017FTXR7S IT MATTERS (Methods and Tools for Trustworthy Smart Systems). Pierpaolo Degano

has been partially supported by the MIUR project PRIN 2017FTXR7S IT MATTERS (Methods and

Tools for Trustworthy Smart Systems). This research is partially funded by the Research Fund KU

Leuven, by the Agency for Innovation and Entrepreneurship (Flanders), and by a gift from Intel

Corporation.

REFERENCES
[1] Martín Abadi. 1999. Protection in Programming-Language Translations. In Secure Internet Programming, Security

Issues for Mobile and Distributed Objects (Lecture Notes in Computer Science), Jan Vitek and Christian Damsgaard Jensen

(Eds.), Vol. 1603. Springer, 19–34.

[2] Carmine Abate, Roberto Blanco, Ştefan Ciobâcă, Adrien Durier, Deepak Garg, Catalin Hritcu, Marco Patrignani, Éric

Tanter, and Jérémy Thibault. 2020. Trace-Relating Compiler Correctness and Secure Compilation. In Programming

Languages and Systems - 29th European Symposium on Programming, ESOP 2020, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings. Springer,

Dublin, Ireland, 1–28. https://doi.org/10.1007/978-3-030-44914-8_1

[3] Carmine Abate, Roberto Blanco, Deepak Garg, Catalin Hritcu, Marco Patrignani, and Jérémy Thibault. 2019. Journey

Beyond Full Abstraction: Exploring Robust Property Preservation for Secure Compilation. In 32nd IEEE Computer

Security Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019. IEEE, Hoboken, NJ, USA, 256–271.

[4] Pieter Agten, Raoul Strackx, Bart Jacobs, and Frank Piessens. 2012. Secure Compilation to Modern Processors. In 25th

IEEE Computer Security Foundations Symposium, CSF 2012, Cambridge, MA, USA, June 25-27, 2012, Stephen Chong (Ed.).

IEEE Computer Society, Cambridge, MA, USA, 171–185.

[5] Amal Ahmed andMatthias Blume. 2008. Typed closure conversion preserves observational equivalence. In Proceeding of

the 13th ACM SIGPLAN international conference on Functional programming, ICFP 2008, Victoria, BC, Canada, September

20-28, 2008. Association for Computing Machinery, Victoria, BC, Canada, 157–168.

[6] Amal Ahmed and Matthias Blume. 2011. An equivalence-preserving CPS translation via multi-language semantics. In

Proceeding of the 16th ACM SIGPLAN international conference on Functional Programming, ICFP 2011, Tokyo, Japan,

September 19-21, 2011. Association for Computing Machinery, Tokyo, Japan, 431–444.

[7] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte, David Pichardie, and Alix Trieu. 2020.

Formal verification of a constant-time preserving C compiler. Proc. ACM Program. Lang. 4, POPL (2020), 7:1–7:30.

https://doi.org/10.1145/3371075

[8] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. 2018. Secure Compilation of Side-Channel Countermeasures:

The Case of Cryptographic "Constant-Time". In 31st IEEE Computer Security Foundations Symposium, CSF 2018, Oxford,

United Kingdom, July 9-12, 2018. IEEE, Oxford, United Kingdom, 328–343.

[9] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F.

Wenisch, Yuval Yarom, and Raoul Strackx. 2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with

Transient Out-of-Order Execution. In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA,

August 15-17, 2018., William Enck and Adrienne Porter Felt (Eds.). USENIX Association, Baltimore, MD, USA, 991–1008.

https://www.usenix.org/conference/usenixsecurity18/presentation/bulck

[10] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D. Garcia, and Frank Piessens. 2019. A Tale

of Two Worlds: Assessing the Vulnerability of Enclave Shielding Runtimes. In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security, CCS 2019, London, UK, November 11-15, 2019. Association for

Computing Machinery, London, UK, 1741–1758. https://doi.org/10.1145/3319535.3363206

[11] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step: A Practical Attack Framework for Precise Enclave

Execution Control. In Proceedings of the 2nd Workshop on System Software for Trusted Execution, SysTEX@SOSP 2017,

, Vol. 1, No. 1, Article . Publication date: March 2022.

https://doi.org/10.1007/978-3-030-44914-8_1
https://doi.org/10.1145/3371075
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1145/3319535.3363206


46 Busi et al.

Shanghai, China, October 28, 2017. ACM, Shanghai, China, 4:1–4:6. https://doi.org/10.1145/3152701.3152706

[12] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx. 2017. Telling Your Secrets

without Page Faults: Stealthy Page Table-Based Attacks on Enclaved Execution. In 26th USENIX Security Symposium,

USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017., Engin Kirda and Thomas Ristenpart (Eds.). USENIX

Association, Vancouver, BC, Canada, 1041–1056. https://www.usenix.org/conference/usenixsecurity17/technical-

sessions/presentation/van-bulck

[13] Matteo Busi, Job Noorman, Jo Van Bulck, Letterio Galletta, Pierpaolo Degano, Jan Tobias Mühlberg, and Frank Piessens.

2020. Provably Secure Isolation for interruptible Enclaved Execution on Small Microprocessors. In 33rd IEEE Computer

Security Foundations Symposium, CSF 2020, Boston, MA, USA, June 22-26, 2020. IEEE, Boston, MA, USA, 262–276.

[14] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens,

Dmitry Evtyushkin, and Daniel Gruss. 2019. A Systematic Evaluation of Transient Execution Attacks and Defenses. In

28th USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019, Nadia Heninger and

Patrick Traynor (Eds.). USENIX Association, Santa Clara, CA, USA, 249–266. https://www.usenix.org/conference/

usenixsecurity19/presentation/canella

[15] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and Ten H. Lai. 2019. SgxPectre Attacks:

Stealing Intel Secrets from SGX Enclaves via Speculative Execution. In 2019 IEEE European Symposium on Security and

Privacy (EuroS&P). IEEE, Stockholm, Sweden, 142–157.

[16] Carlos Tomé Cortiñas, Marco Vassena, and Alejandro Russo. 2020. Securing Asynchronous Exceptions. In 33rd IEEE

Computer Security Foundations Symposium, CSF 2020, Boston, MA, USA, June 22-26, 2020. IEEE, Boston, MA, USA,

214–229. https://doi.org/10.1109/CSF49147.2020.00023

[17] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology ePrint Archive 2016 (2016), 86.

http://eprint.iacr.org/2016/086

[18] Ruan de Clercq, Frank Piessens, Dries Schellekens, and Ingrid Verbauwhede. 2014. Secure interrupts on low-end

microcontrollers. In IEEE 25th International Conference on Application-Specific Systems, Architectures and Processors,

ASAP 2014, Zurich, Switzerland, June 18-20, 2014. IEEE Computer Society, Zurich, Switzerland, 147–152. https:

//doi.org/10.1109/ASAP.2014.6868649

[19] Dominique Devriese and Frank Piessens. 2010. Noninterference through Secure Multi-execution. In 31st IEEE Sympo-

sium on Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA. IEEE Computer Society,

Berleley/Oakland, California, USA, 109–124. https://doi.org/10.1109/SP.2010.15

[20] Craig Disselkoen, Radha Jagadeesan, Alan Jeffrey, and James Riely. 2019. The Code That Never Ran: Modeling Attacks

on Speculative Evaluation. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23,

2019. IEEE, San Francisco, CA, USA, 1238–1255. https://doi.org/10.1109/SP.2019.00047

[21] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. 2017. Komodo: Using verification to

disentangle secure-enclave hardware from software. In Proceedings of the 26th Symposium on Operating Systems

Principles, Shanghai, China, October 28-31, 2017. ACM, Shanghai, China, 287–305. https://doi.org/10.1145/3132747.

3132782

[22] Cédric Fournet, Nikhil Swamy, Juan Chen, Pierre-Évariste Dagand, Pierre-Yves Strub, and Benjamin Livshits. 2013. Fully

abstract compilation to JavaScript. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, Roberto Giacobazzi and Radhia Cousot (Eds.). ACM, Rome,

Italy, 371–384.

[23] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A survey of microarchitectural timing attacks and

countermeasures on contemporary hardware. J. Cryptographic Engineering 8, 1 (2018), 1–27. https://doi.org/10.1007/

s13389-016-0141-6

[24] Travis Goodspeed. 2008. Practical attacks against the MSP430 BSL. In Twenty-Fifth Chaos Communications Congress.

Verlag Art d’Ameublement, Bielefeld, Berlin, Germany, 6.

[25] Johannes Götzfried, Tilo Müller, Ruan de Clercq, Pieter Maene, Felix Freiling, and Ingrid Verbauwhede. 2015. Soteria:

Offline Software Protection Within Low-cost Embedded Devices. In Proceedings of the 31st Annual Computer Security

Applications Conference (Los Angeles, CA, USA) (ACSAC 2015). ACM, New York, NY, USA, 241–250. https://doi.org/10.

1145/2818000.2856129

[26] Daniel Gruss. 2017. Software-based Microarchitectural Attacks. Ph.D. Dissertation. Graz University of Technology.

[27] Roberto Guanciale, Musard Balliu, and Mads Dam. 2020. InSpectre: Breaking and Fixing Microarchitectural Vulnerabil-

ities by Formal Analysis. In CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual

Event, USA, November 9-13, 2020. IEEE, Virtual Event, USA, 1853–1869. https://doi.org/10.1145/3372297.3417246

[28] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés Sánchez. 2020. Spectector: Principled Detection

of Speculative Information Flows. In 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA,

May 18-21, 2020. IEEE, San Francisco, CA, USA, 1–19. https://doi.org/10.1109/SP40000.2020.00011

, Vol. 1, No. 1, Article . Publication date: March 2022.

https://doi.org/10.1145/3152701.3152706
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://doi.org/10.1109/CSF49147.2020.00023
http://eprint.iacr.org/2016/086
https://doi.org/10.1109/ASAP.2014.6868649
https://doi.org/10.1109/ASAP.2014.6868649
https://doi.org/10.1109/SP.2010.15
https://doi.org/10.1109/SP.2019.00047
https://doi.org/10.1145/3132747.3132782
https://doi.org/10.1145/3132747.3132782
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1145/2818000.2856129
https://doi.org/10.1145/2818000.2856129
https://doi.org/10.1145/3372297.3417246
https://doi.org/10.1109/SP40000.2020.00011


Securing Interruptible Enclaved Execution on Small Microprocessors 47

[29] Wenjian He, Wei Zhang, Sanjeev Das, and Yang Liu. 2018. SGXlinger: A New Side-Channel Attack Vector Based on

Interrupt Latency Against Enclave Execution. In 36th IEEE International Conference on Computer Design, ICCD 2018,

Orlando, FL, USA, October 7-10, 2018. IEEE Computer Society, Orlando, FL, USA, 108–114. https://doi.org/10.1109/

ICCD.2018.00025

[30] Texas Instruments. 2016. MSP430x1xx Family: User Guide. http://www.ti.com/lit/ug/slau049f/slau049f.pdf.

[31] Yannis Juglaret, Catalin Hritcu, Arthur Azevedo de Amorim, Boris Eng, and Benjamin C. Pierce. 2016. Beyond

Good and Evil: Formalizing the Security Guarantees of Compartmentalizing Compilation. In IEEE 29th Computer

Security Foundations Symposium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016. IEEE, Lisbon, Portugal, 45–60.

https://doi.org/10.1109/CSF.2016.11

[32] Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf. 2011. Timing- and Termination-Sensitive Secure Information

Flow: Exploring a New Approach. In 32nd IEEE Symposium on Security and Privacy, S&P 2011, 22-25 May 2011, Berkeley,

California, USA. IEEE Computer Society, Berkeley, California, USA, 413–428. https://doi.org/10.1109/SP.2011.19

[33] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur

Mutlu. 2014. Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors. In

ACM/IEEE 41st International Symposium on Computer Architecture, ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014.

IEEE Computer Society, Minneapolis, MN, USA, 361–372. https://doi.org/10.1109/ISCA.2014.6853210

[34] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,

Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative

Execution. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019. IEEE,

San Francisco, CA, USA, 1–19. https://doi.org/10.1109/SP.2019.00002

[35] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan. 2014. TrustLite: a security architecture

for tiny embedded devices. In Ninth Eurosys Conference 2014, EuroSys 2014, Amsterdam, The Netherlands, April 13-16,

2014, Dick C. A. Bulterman, Herbert Bos, Antony I. T. Rowstron, and Peter Druschel (Eds.). ACM, Amsterdam, The

Netherlands, 10:1–10:14. https://doi.org/10.1145/2592798.2592824

[36] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus Peinado. 2017. Inferring Fine-grained

Control Flow Inside SGX Enclaves with Branch Shadowing. In 26th USENIX Security Symposium, USENIX Security 2017,

Vancouver, BC, Canada, August 16-18, 2017., Engin Kirda and Thomas Ristenpart (Eds.). USENIX Association, Vancouver,

BC, Canada, 557–574. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-

sangho

[37] Xavier Leroy. 2009. A Formally Verified Compiler Back-end. J. Autom. Reason. 43, 4 (2009), 363–446. https:

//doi.org/10.1007/s10817-009-9155-4

[38] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard,

Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User

Space. In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018., William

Enck and Adrienne Porter Felt (Eds.). USENIX Association, Baltimore, MD, USA, 973–990. https://www.usenix.org/

conference/usenixsecurity18/presentation/lipp

[39] Nancy A. Lynch and Mark R. Tuttle. 1989. An introduction to input/output automata. CWI Quarterly 2 (1989), 219–246.

[40] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil D. Gligor, and Adrian Perrig. 2010.

TrustVisor: Efficient TCB Reduction and Attestation. In 31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19

May 2010, Berleley/Oakland, California, USA. IEEE Computer Society, Berleley/Oakland, California, USA, 143–158.

https://doi.org/10.1109/SP.2010.17

[41] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi, Vedvyas Shanbhogue, and Uday R.

Savagaonkar. 2013. Innovative instructions and software model for isolated execution. In HASP 2013, The Second

Workshop on Hardware and Architectural Support for Security and Privacy, Tel-Aviv, Israel, June 23-24, 2013, Ruby B. Lee

and Weidong Shi (Eds.). ACM, Tel-Aviv, Israel, 10. https://doi.org/10.1145/2487726.2488368

[42] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk Sunar. 2020. CopyCat: Controlled Instruction-

Level Attacks on Enclaves. In 29th USENIX Security Symposium (USENIX Security 20). USENIX Association, Boston,

MA, 469 – 486.

[43] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss, and Frank Piessens. 2020. Plundervolt:

Software-based Fault Injection Attacks against Intel SGX. In Proceedings of the 41st IEEE Symposium on Security and

Privacy (S&P’20). IEEE, Virtual event, USA, 1466–1482.

[44] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Herrewege, Christophe Huygens, Bart

Preneel, Ingrid Verbauwhede, and Frank Piessens. 2013. Sancus: Low-cost Trustworthy Extensible Networked Devices

with a Zero-software Trusted Computing Base. In Proceedings of the 22th USENIX Security Symposium, Washington,

DC, USA, August 14-16, 2013, Samuel T. King (Ed.). USENIX Association, Washington, DC, USA, 479–494. https:

//www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman

, Vol. 1, No. 1, Article . Publication date: March 2022.

https://doi.org/10.1109/ICCD.2018.00025
https://doi.org/10.1109/ICCD.2018.00025
http://www.ti.com/lit/ug/slau049f/slau049f.pdf
https://doi.org/10.1109/CSF.2016.11
https://doi.org/10.1109/SP.2011.19
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1145/2592798.2592824
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1109/SP.2010.17
https://doi.org/10.1145/2487726.2488368
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman


48 Busi et al.

[45] Job Noorman, Jo Van Bulck, Jan Tobias Mühlberg, Frank Piessens, Pieter Maene, Bart Preneel, Ingrid Verbauwhede,

Johannes Götzfried, Tilo Müller, and Felix Freiling. 2017. Sancus 2.0: A Low-Cost Security Architecture for IoT Devices.

ACM Trans. Priv. Secur. 20, 3, Article 7 (July 2017), 33 pages. https://doi.org/10.1145/3079763

[46] Ivan Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, Michael Steiner, and Gene Tsudik. 2019. VRASED:

A Verified Hardware/Software Co-Design for Remote Attestation. In 28th USENIX Security Symposium, USENIX Security

2019. USENIX Association, Santa Clara, CA, USA, 1429–1446.

[47] Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke, and Frank Piessens. 2015. Secure Compilation

to Protected Module Architectures. ACM Trans. Program. Lang. Syst. 37, 2 (2015), 6:1–6:50.

[48] Marco Patrignani, Amal Ahmed, and Dave Clarke. 2019. Formal Approaches to Secure Compilation: A Survey

of Fully Abstract Compilation and Related Work. ACM Comput. Surv. 51, 6, Article 125 (2019), 36 pages. https:

//doi.org/10.1145/3280984

[49] Marco Patrignani and Dave Clarke. 2015. Fully abstract trace semantics for protected module architectures. Computer

Languages, Systems & Structures 42 (2015), 22–45.

[50] Marco Patrignani and Deepak Garg. 2017. Secure Compilation and Hyperproperty Preservation. In 30th IEEE Computer

Security Foundations Symposium, CSF 2017, Santa Barbara, CA, USA, August 21-25, 2017. IEEE Computer Society, Santa

Barbara, CA, USA, 392–404.

[51] Marco Patrignani and Marco Guarnieri. 2019. Exorcising Spectres with Secure Compilers. CoRR abs/1910.08607 (2019),

82. arXiv:1910.08607 http://arxiv.org/abs/1910.08607

[52] Michael Schwarz, Samuel Weiser, and Daniel Gruss. 2019. Practical Enclave Malware with Intel SGX. CoRR

abs/1902.03256 (2019), 20. arXiv:1902.03256 http://arxiv.org/abs/1902.03256

[53] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2017. Malware guard

extension: Using SGX to conceal cache attacks. In International Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment. Springer, Bonn, Germany, 3–24.

[54] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo. 2017. CLKSCREW: Exposing the Perils of Security-

Oblivious Energy Management. In 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada,

August 16-18, 2017., Engin Kirda and Thomas Ristenpart (Eds.). USENIX Association, Vancouver, BC, Canada, 1057–1074.

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang

[55] Jo Van Bulck. 2020. Microarchitectural Side-Channel Attacks for Privileged Software Adversaries. Ph.D. Dissertation. KU

Leuven, Leuven, Belgium. https://lirias.kuleuven.be/3047121

[56] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Nemesis: Studying Microarchitectural Timing Leaks in

Rudimentary CPU Interrupt Logic. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security (Toronto, Canada) (CCS ’18). ACM, New York, NY, USA, 178–195. https://doi.org/10.1145/3243734.3243822

[57] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi, Rami Gökhan Kıcı, Ranjit Jhala, Dean

Tullsen, and Deian Stefan. 2021. Automatically Eliminating Speculative Leaks from Cryptographic Code with Blade.

Proc. ACM Program. Lang. 5, POPL, Article 49 (Jan. 2021), 30 pages. https://doi.org/10.1145/3434330

[58] Marco Vassena, Alejandro Russo, Pablo Buiras, and Lucas Waye. 2018. Mac a verified static information-flow control

library. Journal of logical and algebraic methods in programming 95 (2018), 148–180.

[59] Nico Weichbrodt, Anil Kurmus, Peter R. Pietzuch, and Rüdiger Kapitza. 2016. AsyncShock: Exploiting Synchronisation

Bugs in Intel SGX Enclaves. In Computer Security - ESORICS 2016 - 21st European Symposium on Research in Computer

Security, Heraklion, Greece, September 26-30, 2016, Proceedings, Part I. Springer, Heraklion, Greece, 440–457. https:

//doi.org/10.1007/978-3-319-45744-4_22

[60] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel Attacks: Deterministic Side Channels

for Untrusted Operating Systems. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May

17-21, 2015. IEEE Computer Society, San Jose, CA, USA, 640–656. https://doi.org/10.1109/SP.2015.45

[61] Drew Zagieboylo, G. Edward Suh, and Andrew C. Myers. 2019. Using Information Flow to Design an ISA that Controls

Timing Channels. In 32nd IEEE Computer Security Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28,

2019. IEEE, Hoboken, NJ, USA, 272–287. https://doi.org/10.1109/CSF.2019.00026

[62] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. 2015. A Hardware Design Language for Timing-

Sensitive Information-Flow Security. In Proceedings of the Twentieth International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS ’15, Istanbul, Turkey, March 14-18, 2015, Özcan Özturk, Kemal

Ebcioglu, and Sandhya Dwarkadas (Eds.). ACM, Istanbul, Turkey, 503–516. https://doi.org/10.1145/2694344.2694372

, Vol. 1, No. 1, Article . Publication date: March 2022.

https://doi.org/10.1145/3079763
https://doi.org/10.1145/3280984
https://doi.org/10.1145/3280984
https://arxiv.org/abs/1910.08607
http://arxiv.org/abs/1910.08607
https://arxiv.org/abs/1902.03256
http://arxiv.org/abs/1902.03256
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://lirias.kuleuven.be/3047121
https://doi.org/10.1145/3243734.3243822
https://doi.org/10.1145/3434330
https://doi.org/10.1007/978-3-319-45744-4_22
https://doi.org/10.1007/978-3-319-45744-4_22
https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1109/CSF.2019.00026
https://doi.org/10.1145/2694344.2694372


Securing Interruptible Enclaved Execution on Small Microprocessors 49

A ADDITIONAL DEFINITIONS AND RESULTS
A.1 The device of Section 4.6.1 is deterministic
Property A.1. If D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷𝑘

𝐷
𝛿 ′, 𝑡 ′, 𝑡 ′𝑎 and D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷𝑘

𝐷
𝛿 ′′, 𝑡 ′′, 𝑡 ′′𝑎 , then 𝛿

′ = 𝛿 ′′, 𝑡 ′ = 𝑡 ′′

and 𝑡 ′𝑎 = 𝑡
′′
𝑎 .

Proof. Trivial. □

A.2 Complete operational semantics rules of SancusH (Section 5.1)

INT

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ ↩→I ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩

(CPU-HLT-UM)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ ⊢mode UM

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → HALT

decode (M, R[pc]) = HLT

(CPU-NoIN)

𝛿 ̸
rd (w)
{𝐷

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → HALT

decode (M, R[pc]) = IN r

(CPU-NoOUT)

𝛿 ̸
wr (R [r])
{𝐷

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → HALT

decode (M, R[pc]) = OUT r

(CPU-HLT-PM)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ ⊢mode PM

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → EXC⟨𝛿,𝑡+cycles (𝑖 ),𝑡𝑎,M,R,pc

old
,B⟩

𝑖 = decode (M, R[pc]) = HLT

(CPU-Decode-Fail)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ decode (M, R[pc]) = ⊥
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → EXC⟨𝛿,𝑡,𝑡𝑎,M,R,pc

old
,B⟩

(CPU-Violation-PM)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊬mac OK

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → EXC⟨𝛿,𝑡+cycles (𝑖 ),𝑡𝑎,M,R,pc

old
,B⟩

𝑖 = decode (M, R[pc]) ≠ ⊥

(CPU-MovL)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

R′ = R[pc ↦→ R [pc] + 2] [r2 ↦→ M[R [r1 ] ] ] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = MOV @r1 r2

(CPU-MovS)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK R′ = R[pc ↦→ R [pc] + 4]

M′ = M[R[r2 ] ↦→ R [r1 ] ] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M′, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = MOV r1 0(r2)

(CPU-Mov)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

R′ = R[pc ↦→ R [pc] + 2] [r2 ↦→ R [r1 ] ] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = MOV r1 r2

Fig. 13. Rules of the main transition system for Sancus
H
incl. interrupt logic. (part I)

, Vol. 1, No. 1, Article . Publication date: March 2022.



50 Busi et al.

(CPU-MovI)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

R′ = R[pc ↦→ R [pc] + 4] [r ↦→ 𝑤 ] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = MOV #𝑤 r

(CPU-Cmp) 𝑖 = decode (M, R[pc]) = CMP r1 r2
B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc

old
, B ⊢mac OK R′ = R[pc ↦→ R [pc] + 2] [r2 ↦→ R [r1 ] − R [r2 ] ]

R′′ = R′ [sr.N ↦→ (R′ [r2 ] < 0), sr.Z ↦→ (R′ [r2 ] == 0), sr.C ↦→ (R′ [r2 ] ≠ 0), sr.V ↦→ overflow (R [r1 ] − R [r2 ]) ]
D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎 D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′′, R[pc], B′⟩

(CPU-Nop)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩
𝑖, R, pc

old
, B ⊢mac OK R′ = R[pc ↦→ R [pc] + 2] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎

D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = NOP

(CPU-Reti-Chain)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩
B ≠ ⊥ 𝑖, R, pc

old
, B ⊢mac OK D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎 R[sr.GIE] = 1

𝑡 ′𝑎 ≠ ⊥ D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′, R[pc], B⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′, R[pc], B⟩

𝑖 = decode (M, R[pc]) = RETI

(CPU-Reti-PrePad)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ B ≠ ⊥
𝑖, R, pc

old
, B ⊢mac OK D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎 (R [sr.GIE] = 0 ∨ 𝑡 ′𝑎 = ⊥)

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, B.R, B.pc

old
, ⟨⊥,⊥, B.𝑡pad ⟩⟩

𝑖 = decode (M, R[pc]) = RETI

(CPU-Reti-Pad)

B = ⟨⊥,⊥, 𝑡pad ⟩ D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷
𝑡
pad

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎 D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R, pc

old
,⊥⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M, R′, pc

old
, B′⟩

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M, R′, pc

old
, B′⟩

(CPU-Reti)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩
𝑖, R, pc

old
,⊥ ⊢mac OK R′ = R[pc ↦→ M[R [sp] + 2], sr ↦→ M[R [sp] ], sp ↦→ R [sp] + 4]

D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
,⊥⟩ → ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc],⊥⟩ 𝑖 = decode (M, R[pc]) = RETI

Fig. 14. Rules of the main transition system for Sancus
H
incl. interrupt logic. (part II)

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 51

(CPU-Jz0)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

R′ = R[pc ↦→ R [pc] + 2] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = JZ &r ∧ R[sr] .𝑍 = 0

(CPU-Jz1)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

R′ = R[pc ↦→ R [r] ] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = JZ &r ∧ R[sr] .𝑍 = 1

(CPU-Jmp)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩
𝑖, R, pc

old
, B ⊢mac OK R′ = R[pc ↦→ R [r] ] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎

D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = JMP &r

(CPU-In)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

𝛿
rd (w)
{ 𝐷 𝛿′ R′ = R[pc ↦→ R [pc] + 2] [r ↦→ 𝑤 ] D ⊢ 𝛿′, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )−1

𝐷
𝛿′′, 𝑡 ′, 𝑡 ′𝑎

D ⊢ ⟨𝛿′′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = IN r

(CPU-Out)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

R′ = R[pc ↦→ R [pc] + 2] 𝛿
wr (R [r])
{ 𝐷 𝛿′ D ⊢ 𝛿′, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )−1

𝐷
𝛿′′, 𝑡 ′, 𝑡 ′𝑎

D ⊢ ⟨𝛿′′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = OUT r

(CPU-Not)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

R′ = R[pc ↦→ R [pc] + 2] [r ↦→ ¬R [r] ] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = NOT r

(CPU-And)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩
𝑖, R, pc

old
, B ⊢mac OK R′ = R[pc ↦→ R [pc] + 2] [r2 ↦→ R [r1 ]&R[r2 ] ]

R′′ = R′ [sr.N ↦→ R′ [r2 ]&0x8000, sr.Z ↦→ (R′ [r2 ] == 0), sr.C ↦→ (R′ [r2 ] ≠ 0), sr.V ↦→ 0]
D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎

D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = AND r1 r2

(CPU-Add) 𝑖 = decode (M, R[pc]) = ADD r1 r2
B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc

old
, B ⊢mac OK R′ = R[pc ↦→ R [pc] + 2] [r2 ↦→ R [r1 ] + R [r2 ] ]

R′′ = R′ [sr.N ↦→ (R′ [r2 ] < 0), sr.Z ↦→ (R′ [r2 ] == 0), sr.C ↦→ (R′ [r2 ] ≠ 0), sr.V ↦→ overflow (R [r1 ] + R [r2 ]) ]
D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎 D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′′, R[pc], B′⟩

(CPU-Sub) 𝑖 = decode (M, R[pc]) = SUB r1 r2
B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc

old
, B ⊢mac OK R′ = R[pc ↦→ R [pc] + 2] [r2 ↦→ R [r1 ] − R [r2 ] ]

R′′ = R′ [sr.N ↦→ (R′ [r2 ] < 0), sr.Z ↦→ (R′ [r2 ] == 0), sr.C ↦→ (R′ [r2 ] ≠ 0), sr.V ↦→ overflow (R [r1 ] − R [r2 ]) ]
D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎 D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′′, R[pc], B′⟩

Fig. 15. Rules of the main transition system for Sancus
H
incl. interrupt logic. (part III)

, Vol. 1, No. 1, Article . Publication date: March 2022.



52 Busi et al.

A.3 Complete operational semantics rules of SancusL (Section 5.2)

(INT-UM-P)

pc
old
⊢mode UM R[sr] .GIE = 1 𝑡𝑎 ≠ ⊥ R′ = R[pc ↦→ isr, sr ↦→ 0, sp ↦→ R [sp] − 4]
M′ = M[R[sp] − 2 ↦→ R [pc], R[sp] − 4 ↦→ R [sr] ] D ⊢ 𝛿, 𝑡,⊥↷6

𝐷 𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ ↩→I ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M′, R′, pcold , B⟩

(INT-UM-NP)

pc
old
⊢mode UM (R [sr] .GIE = 0 ∨ 𝑡𝑎 = ⊥)

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ ↩→I ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩

(INT-PM-P)

𝑘 = MAX_TIME − (𝑡 − 𝑡𝑎)
pc

old
⊢mode PM R[sr] .GIE = 1 𝑡𝑎 ≠ ⊥ R′ = R0 [pc ↦→ isr ] D ⊢ 𝛿, 𝑡,⊥↷6+𝑘

𝐷 𝛿′, 𝑡 ′, 𝑡 ′𝑎 B′ = ⟨R, pc
old
, 𝑡 − 𝑡𝑎 ⟩

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ ↩→I ⟨𝛿′, 𝑡 ′,⊥,M, R′, pc

old
, B′⟩

(INT-PM-NP)

pc
old
⊢mode PM (R [sr] .GIE = 0 ∨ 𝑡𝑎 = ⊥)

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ ↩→I ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩

(CPU-HLT-UM)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ ⊢mode UM

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → HALT

decode (M, R[pc]) = HLT

(CPU-NoIN)

𝛿 ̸
rd (w)
{𝐷

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → HALT

decode (M, R[pc]) = IN r

(CPU-NoOUT)

𝛿 ̸
wr (R [r])
{𝐷

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → HALT

decode (M, R[pc]) = OUT r

(CPU-HLT-PM)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ ⊢mode PM

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → EXC⟨𝛿,𝑡+cycles (𝑖 ),𝑡𝑎,M,R,pc

old
,B⟩

𝑖 = decode (M, R[pc]) = HLT

(CPU-Decode-Fail)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ decode (M, R[pc]) = ⊥
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → EXC⟨𝛿,𝑡,𝑡𝑎,M,R,pc

old
,B⟩

(CPU-Violation-PM)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊬mac OK

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → EXC⟨𝛿,𝑡+cycles (𝑖 ),𝑡𝑎,M,R,pc

old
,B⟩

𝑖 = decode (M, R[pc]) ≠ ⊥

(CPU-MovL)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

R′ = R[pc ↦→ R [pc] + 2] [r2 ↦→ M[R [r1 ] ] ] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = MOV @r1 r2

(CPU-MovS)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK R′ = R[pc ↦→ R [pc] + 4]

M′ = M[R[r2 ] ↦→ R [r1 ] ] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M′, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = MOV r1 0(r2)

Fig. 16. Rules of the main transition system for SancusL incl. interrupt logic. (part I)

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 53

(CPU-Mov)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

R′ = R[pc ↦→ R [pc] + 2] [r2 ↦→ R [r1 ] ] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = MOV r1 r2

(CPU-MovI)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

R′ = R[pc ↦→ R [pc] + 4] [r ↦→ 𝑤 ] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = MOV #𝑤 r

(CPU-Cmp) 𝑖 = decode (M, R[pc]) = CMP r1 r2
B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc

old
, B ⊢mac OK R′ = R[pc ↦→ R [pc] + 2] [r2 ↦→ R [r1 ] − R [r2 ] ]

R′′ = R′ [sr.N ↦→ (R′ [r2 ] < 0), sr.Z ↦→ (R′ [r2 ] == 0), sr.C ↦→ (R′ [r2 ] ≠ 0), sr.V ↦→ overflow (R [r1 ] − R [r2 ]) ]
D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎 D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′′, R[pc], B′⟩

(CPU-Nop)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩
𝑖, R, pc

old
, B ⊢mac OK R′ = R[pc ↦→ R [pc] + 2] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎

D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = NOP

(CPU-Reti-Chain)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩
B ≠ ⊥ 𝑖, R, pc

old
, B ⊢mac OK D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎 R[sr.GIE] = 1

𝑡 ′𝑎 ≠ ⊥ D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′, R[pc], B⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′, R[pc], B⟩

𝑖 = decode (M, R[pc]) = RETI

(CPU-Reti-PrePad)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ B ≠ ⊥
𝑖, R, pc

old
, B ⊢mac OK D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎 (R [sr.GIE] = 0 ∨ 𝑡 ′𝑎 = ⊥)

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, B.R, B.pc

old
, ⟨⊥,⊥, B.𝑡pad ⟩⟩

𝑖 = decode (M, R[pc]) = RETI

(CPU-Reti-Pad)

B = ⟨⊥,⊥, 𝑡pad ⟩ D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷
𝑡
pad

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎 D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R, pc

old
,⊥⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M, R′, pc

old
, B′⟩

D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc
old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M, R′, pc

old
, B′⟩

(CPU-Reti)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩
𝑖, R, pc

old
,⊥ ⊢mac OK R′ = R[pc ↦→ M[R [sp] + 2], sr ↦→ M[R [sp] ], sp ↦→ R [sp] + 4]

D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
,⊥⟩ → ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc],⊥⟩ 𝑖 = decode (M, R[pc]) = RETI

(CPU-Jz0)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

R′ = R[pc ↦→ R [pc] + 2] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = JZ &r ∧ R[sr] .𝑍 = 0

(CPU-Jz1)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

R′ = R[pc ↦→ R [r] ] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = JZ &r ∧ R[sr] .𝑍 = 1

Fig. 17. Rules of the main transition system for SancusL incl. interrupt logic. (part II)

, Vol. 1, No. 1, Article . Publication date: March 2022.



54 Busi et al.

(CPU-Jmp)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩
𝑖, R, pc

old
, B ⊢mac OK R′ = R[pc ↦→ R [r] ] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎

D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = JMP &r

(CPU-In)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

𝛿
rd (w)
{ 𝐷 𝛿′ R′ = R[pc ↦→ R [pc] + 2] [r ↦→ 𝑤 ] D ⊢ 𝛿′, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )−1

𝐷
𝛿′′, 𝑡 ′, 𝑡 ′𝑎

D ⊢ ⟨𝛿′′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = IN r

(CPU-Out)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

R′ = R[pc ↦→ R [pc] + 2] 𝛿
wr (R [r])
{ 𝐷 𝛿′ D ⊢ 𝛿′, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )−1

𝐷
𝛿′′, 𝑡 ′, 𝑡 ′𝑎

D ⊢ ⟨𝛿′′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = OUT r

(CPU-Not)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc
old
, B ⊢mac OK

R′ = R[pc ↦→ R [pc] + 2] [r ↦→ ¬R [r] ] D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )
𝐷

𝛿′, 𝑡 ′, 𝑡 ′𝑎
D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = NOT r

(CPU-And)

B ≠ ⟨⊥,⊥, 𝑡pad ⟩
𝑖, R, pc

old
, B ⊢mac OK R′ = R[pc ↦→ R [pc] + 2] [r2 ↦→ R [r1 ]&R[r2 ] ]

R′′ = R′ [sr.N ↦→ R′ [r2 ]&0x8000, sr.Z ↦→ (R′ [r2 ] == 0), sr.C ↦→ (R′ [r2 ] ≠ 0), sr.V ↦→ 0]
D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎

D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′′, R[pc], B′⟩

𝑖 = decode (M, R[pc]) = AND r1 r2

(CPU-Add) 𝑖 = decode (M, R[pc]) = ADD r1 r2
B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc

old
, B ⊢mac OK R′ = R[pc ↦→ R [pc] + 2] [r2 ↦→ R [r1 ] + R [r2 ] ]

R′′ = R′ [sr.N ↦→ (R′ [r2 ] < 0), sr.Z ↦→ (R′ [r2 ] == 0), sr.C ↦→ (R′ [r2 ] ≠ 0), sr.V ↦→ overflow (R [r1 ] + R [r2 ]) ]
D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎 D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′′, R[pc], B′⟩

(CPU-Sub) 𝑖 = decode (M, R[pc]) = SUB r1 r2
B ≠ ⟨⊥,⊥, 𝑡pad ⟩ 𝑖, R, pc

old
, B ⊢mac OK R′ = R[pc ↦→ R [pc] + 2] [r2 ↦→ R [r1 ] − R [r2 ] ]

R′′ = R′ [sr.N ↦→ (R′ [r2 ] < 0), sr.Z ↦→ (R′ [r2 ] == 0), sr.C ↦→ (R′ [r2 ] ≠ 0), sr.V ↦→ overflow (R [r1 ] − R [r2 ]) ]
D ⊢ 𝛿, 𝑡, 𝑡𝑎 ↷cycles (𝑖 )

𝐷
𝛿′, 𝑡 ′, 𝑡 ′𝑎 D ⊢ ⟨𝛿′, 𝑡 ′, 𝑡 ′𝑎,M, R′′, R[pc], B⟩ ↩→I ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′′, R[pc], B′⟩
D ⊢ ⟨𝛿, 𝑡, 𝑡𝑎,M, R, pc

old
, B⟩ → ⟨𝛿′′, 𝑡 ′′, 𝑡 ′′𝑎 ,M′, R′′′, R[pc], B′⟩

Fig. 18. Rules of the main transition system for SancusL incl. interrupt logic. (part III)

A.4 Proof of progress of Section 5.3
Theorem 5.1 (Progress). For all 𝐶 = ⟨M𝐶 ,D⟩,M𝑀 and configuration 𝑐

D ⊢ INIT𝐶 [M𝑀 ] →∗ 𝑐 ↛ =⇒ 𝑐 = HALT and D ⊢ INIT𝐶 [M𝑀 ] →∗ 𝑐 ↛ =⇒ 𝑐 = HALT.

Proof. Since no conclusion of the Sancus
H
and SancusL semantic rules has HALT as starting

configuration, this distinguished configuration is trivially stuck.

Also, HALT is the only stuck configuration because any configuration 𝑐 = ⟨𝛿, 𝑡, 𝑡𝑎,M,R, pc
old
,B⟩ ≠

HALT can progress. We show this for Sancus
H
; for SancusL just substitute→ for→.

If B ≠ ⟨⊥,⊥, 𝑡pad⟩, the following three cases arise:
(1) If decode(M,R[pc]) = ⊥, then (CPU-Decode-Fail) applies.

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 55

(2) If decode(M,R[pc]) ≠ ⊥ ∧ 𝑖,R, pc
old
,B ⊬mac OK, then (CPU-Violation-PM) applies.

(3) If the device is notwilling to synchronizewith the CPU, either rule (CPU-NoIN) or rule (CPU-NoOUT)

applies.

(4) Otherwise, there is a rule for each 𝑖 = decode(M,R[pc]) leading to a target configuration.

Indeed, all the cases that may arise are covered by the premises that:

• check well-formedness of 𝑖 and non-violation of MAC; and

• are all mutually exclusive (e.g., B ≠ ⊥ in (CPU-Reti-Chain) and (CPU-Reti-PrePad) is dealt with

in rule (CPU-Reti) or the requirements of the values of R[sr.GIE] and 𝑡 ′𝑎 in (CPU-Reti-Chain)

appear negated in (CPU-Reti-PrePad)); and

• require the existence of values either built explicitly (e.g., the value of sr.N in (CPU-And)) or

through relations that are always defined (e.g., through the transition system for interrupts).

Otherwise, B = ⟨⊥,⊥, 𝑡pad⟩ and the rule (CPU-Reti-Pad) applies. □

A.5 Proofs and additional definition for Section 6.1
Lemma 6.5. For any moduleM𝑀 , context 𝐶 , and corresponding interrupt-less context 𝐶̸𝐼 :

𝐶̸𝐼 [M𝑀 ]⇓L ⇐⇒ 𝐶 [M𝑀 ]⇓H

Proof. By definition of D ⊢ · ↷𝑘
𝐷
·, the value 𝑡𝑎 in the CPU configuration (that signals the

presence of an unhandled interrupt) is changed only when an interrupt has been raised since the

last time it was checked.

Since any int? action has been substituted with an 𝜖 , 𝑡𝑎 is never changed from its initial ⊥ value.

Since the only difference in behavior between the two levels is in the interrupt logic, and since

the ISR in 𝐶̸𝐼 is never invoked (thus, it does not affect the program behavior), D ⊢ · ↩→I · behaves
exactly as D ⊢ · ↩→I ·. So, 𝐶̸𝐼 [M𝑀 ]⇓L implies 𝐶 [M𝑀 ]⇓H and vice versa. □

Lemma 6.6 (Reflection). ∀M𝑀 ,M𝑀′ . (M𝑀 ≃L M𝑀′ =⇒ M𝑀 ≃H M𝑀′).

Proof. We can expand the hypothesis using the definition of ≃L and ≃H as follows:

(∀𝐶.𝐶 [M𝑀 ]⇓L ⇐⇒ 𝐶 [M𝑀′]⇓L) =⇒ (∀𝐶 ′.𝐶 ′[M𝑀 ]⇓H ⇐⇒ 𝐶 ′[M𝑀′]⇓H).

For any 𝐶 ′ we can build the corresponding interrupt-less context 𝐶 ′̸ 𝐼 .
Since interrupt-less contexts are a (strict) subset of all the contexts, by hypothesis:

𝐶 ′̸ 𝐼 [M𝑀 ]⇓L ⇐⇒ 𝐶 ′̸ 𝐼 [M𝑀′]⇓L.

But from Lemma 6.5 it follows that

𝐶 ′[M𝑀 ]⇓H ⇐⇒ 𝐶 ′[M𝑀′]⇓H .

□

Definition A.1 (Complete interrupt segments). Let 𝛼 = 𝛼0 · · · 𝛼𝑛 be a fine-grained trace. The set

I𝛼 of complete interrupt segments of 𝛼 is defined as follows:

I𝛼 ≜ {(𝑖, 𝑗) | 𝛼𝑖 = handle!(𝑘) ∧ 𝛼 𝑗 = reti?(𝑘 ′) ∧ 𝑖 < 𝑗 ∧ ∀𝑖 < 𝑙 < 𝑗 . 𝛼𝑙 = 𝜉}.

A.6 Preliminary definitions and proofs for Lemmata 6.9 and 6.10
Roughly, we define two configurations be P-equivalent (U-equivalent, resp.) if they cannot be kept

apart by looking at those parts that can be inspected when the CPU is operating in protected

(unprotected, resp.) mode.

, Vol. 1, No. 1, Article . Publication date: March 2022.



56 Busi et al.

Definition A.2. We say that two configurations are 𝑃-equivalent (written 𝑐
𝑃≈ 𝑐 ′) iff

(𝑐 = 𝑐 ′ = HALT) ∨

(𝑐 = ⟨𝛿, 𝑡, 𝑡𝑎,M,R, pc
old
,B⟩ ∧ 𝑐 ′ = ⟨𝛿 ′, 𝑡 ′, 𝑡 ′𝑎,M ′,R ′, pc′old,B

′⟩ ∧ M 𝑃
=M ′ ∧

pc
old
⊢mode m ∧ pc

′
old
⊢mode m ∧ R

PM≍m R ′ ∧ B ⊲⊳ B ′)
where

• M 𝑃
=M ′ iff ∀𝑙 ∈ [ts, te) ∪ [ds, de).M[𝑙] =M ′[𝑙].

• R PM≍m R ′ iff (m = PM =⇒ R = R ′)
• B ⊲⊳ B ′ iff (B = ⊥ ⇐⇒ B ′ = ⊥).

Definition A.3. We say that two configurations are𝑈 -equivalent (written 𝑐
𝑈≈ 𝑐 ′) iff

(𝑐 = 𝑐 ′ = HALT) ∨

(𝑐 = ⟨𝛿, 𝑡, 𝑡𝑎,M,R, pc
old
,B⟩ ∧ 𝑐 ′ = ⟨𝛿 ′, 𝑡 ′, 𝑡 ′𝑎,M ′,R ′, pc′old,B

′⟩ ∧ M 𝑈
=M ′ ∧

𝑐 ⊢mode m ∧ 𝑐 ′ ⊢mode m ∧ 𝛿 = 𝛿 ′ ∧ 𝑡 = 𝑡 ′ ∧ 𝑡𝑎 = 𝑡
′
𝑎 ∧ R

UM≍m R ′ ∧ B ⊲⊳ B ′)
where

• M 𝑈
=M ′ iff ∀𝑙 ∉ [ts, te) ∪ [ds, de).M[𝑙] =M ′[𝑙]

• R UM≍m R ′ iff (m = UM =⇒ R = R ′) ∧ R[sr.GIE] = R ′[sr.GIE]
• B ⊲⊳ B ′ iff (B = ⊥ ⇐⇒ B ′ = ⊥)

The following property easily follows from the above definitions:

Property A.2. Both

𝑃≈ and

𝑈≈ are equivalence relations.

Proof. Trivial. □

A.6.1 Properties of Definition A.2. The first property says that if a configuration can take a step,

also another P-equivalent configuration can.

PropertyA.3. If 𝑐1
𝑃≈ 𝑐2, 𝑐1 ⊢mode PM,D ′ ⊢ 𝑐1 → 𝑐 ′

1
then decode(M1,R1 [pc]) = decode(M2,R2 [pc])

and D ′ ⊢ 𝑐2 → 𝑐 ′
2
.

Proof. Since 𝑐1
𝑃≈ 𝑐2 and 𝑐1 ⊢mode PM, it also holds that 𝑐2 ⊢mode PM. Also, the instruction

decode(M1,R1 [pc]) is decoded in bothM1 andM2 at the same protected address, hence

decode(M1,R1 [pc]) = decode(M2,R2 [pc]), and D ′ ⊢ 𝑐2 → 𝑐 ′
2
. □

Property A.4. If 𝑐1
𝑃≈ 𝑐2, 𝑐1 ⊢mode PM, D ⊢ 𝑐1 → 𝑐 ′

1
, D ′ ⊢ 𝑐2 → 𝑐 ′

2
and B ′

1
⊲⊳ B ′

2
then 𝑐 ′

1

𝑃≈ 𝑐 ′
2
.

Proof. Since 𝑐1
𝑃≈ 𝑐2, 𝑐1 ⊢mode PM and D ⊢ 𝑐1 → 𝑐 ′

1
, by Property A.3, 𝑖 = decode(M1,R1 [pc]) =

decode(M2,R2 [pc]) and D ′ ⊢ 𝑐2 → 𝑐 ′
2
.

Since B ′
1
⊲⊳ B ′

2
, we have two cases:

(1) Case B ′
1
= B ′

2
= ⊥. In this case we know that no interrupt handling started during the step,

and by exhaustive cases on 𝑖 we can show 𝑐 ′
1

𝑃≈ 𝑐 ′
2
:

• Case 𝑖 ∈ {HLT, IN r, OUT r}. In both cases we have 𝑐 ′
1
= EXC𝑐1

𝑃≈ EXC𝑐2 = 𝑐
′
2
.

• Otherwise. The relevant values in 𝑐 ′
1
and 𝑐 ′

2
just depend on values that coincide also in 𝑐1

and 𝑐2. Hence, by determinism of the rules, we get 𝑐 ′
1

𝑃≈ 𝑐 ′
2
.

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 57

(2) Case B ′
1
≠ ⊥ and B ′

2
≠ ⊥. In this case an interrupt was handled, but the same instruction

was indeed executed in protected mode, henceM ′
1

𝑃
=M ′

2
. Also, R ′

1

PM≍UM R ′2 holds trivially,
B ′
1
⊲⊳ B ′

2
by hypothesis and pc

′
old1
⊢mode UM and pc

′
old2
⊢mode UM. Thus, 𝑐

′
1

𝑃≈ 𝑐 ′
2
.

□

Some sequences of fine-grained traces preserve 𝑃-equivalence.

Property A.5. If 𝑐1
𝑃≈ 𝑐2, D ⊢ 𝑐1

ℓ
1︷︸︸︷

𝜉 · · · 𝜉
=========⇒∗ 𝑐 ′

1

jmpIn?(R)
===========⇒ 𝑐 ′′

1
, D ′ ⊢ 𝑐2

ℓ
2︷︸︸︷

𝜉 · · · 𝜉
=========⇒∗ 𝑐 ′

2

jmpIn?(R)
===========⇒ 𝑐 ′′

2
,

then 𝑐 ′′
1

𝑃≈ 𝑐 ′′
2
.

Proof. We show by Noetherian induction over (ℓ1, ℓ2) thatM ′1
𝑃
= M ′

2
. For that, we use well-

founded relation (ℓ1, ℓ2) ≺ (ℓ ′1, ℓ ′2) iff ℓ1 < ℓ ′
1
∧ ℓ2 < ℓ ′

2
.

• Case (0, 0). Trivial.
• Case (0, ℓ2), with ℓ2 > 0. (and symmetrically (ℓ1, 0), with ℓ1 > 0) We have to show that

D ⊢ 𝑐1
𝜀
===⇒∗ 𝑐 ′

1
∧ D ′ ⊢ 𝑐2

ℓ
2︷︸︸︷

𝜉 · · · 𝜉
=========⇒∗ 𝑐 ′

2
⇒M ′

1

𝑃
=M ′

2

Since from 𝑐1 there is no step, 𝑐1 = 𝑐
′
1
. Moreover a sequence of 𝜉 was observed starting from

𝑐2, and since both configurations are in unprotected mode and no violation occurred (see

Table 2) the protected memory is unchanged. Thus, by transitivity of

𝑃
=, we haveM ′

1
=M1

𝑃
=

M2

𝑃
=M ′

2
.

• Case (ℓ1, ℓ2) = (ℓ ′1 + 1, ℓ ′2 + 1). If

D ⊢ 𝑐1

ℓ′
1︷︸︸︷

𝜉 · · · 𝜉
=========⇒∗ 𝑐 ′′′

1
∧ D ′ ⊢ 𝑐2

ℓ′
2︷︸︸︷

𝜉 · · · 𝜉
=========⇒∗ 𝑐 ′′′

2
⇒M ′′′

1

𝑃
=M ′′′

2
(IHP)

then

D ⊢ 𝑐1

ℓ′
1︷︸︸︷

𝜉 · · · 𝜉
=========⇒∗ 𝑐 ′′′

1

𝜉
===⇒ 𝑐 ′

1
∧ D ′ ⊢ 𝑐2

ℓ′
2︷︸︸︷

𝜉 · · · 𝜉
=========⇒∗ 𝑐 ′′′

2

𝜉
===⇒ 𝑐 ′

2
⇒M ′

1

𝑃
=M ′

2
.

By (IHP) we know thatM ′′′
1

𝑃
=M ′′′

2
. Indeed, since we observed 𝜉 it means that pc

old

′
1
⊢mode

m ∧ pc
old

′
2
⊢mode m. Moreover (see Figure 8) since 𝜉 was observed starting from 𝑐 ′′′

1
and from

𝑐 ′′′
2

and since both configurations are in unprotected mode, protected memory is unchanged.

Thus,M ′
1

𝑃
=M ′′′

1

𝑃
=M ′′′

2

𝑃
=M ′

2
.

Since the instruction generating 𝛼 = jmpIn?(R) was executed in unprotected mode, we have

thatM ′′
1

𝑃
=M ′′

2
. Also R ′′

1
= R PM≍PM R = R ′′

2
, pc
′
old

′′
1
⊢mode UM, pc

′
old

′′
2
⊢mode UM and B ′′1 ⊲⊳ B ′′

2
. □

Property A.6. If 𝑐1
𝑃≈ 𝑐2, D ⊢ 𝑐1

handle!(k1)
============⇒∗ 𝑐 ′

1

ℓ
1︷︸︸︷

𝜉 · · · 𝜉
=========⇒∗ 𝑐 ′′

1

reti?(k′
1
)

===========⇒ 𝑐 ′′′
1
,

D ′ ⊢ 𝑐2
handle!(k2)
============⇒∗ 𝑐 ′

2

ℓ
2︷︸︸︷

𝜉 · · · 𝜉
=========⇒∗ 𝑐 ′′

2

reti?(k′
2
)

===========⇒ 𝑐 ′′′
2
, then 𝑐 ′′′

1

𝑃≈ 𝑐 ′′′
2
.

, Vol. 1, No. 1, Article . Publication date: March 2022.



58 Busi et al.

Proof. Since upon observation of handle!(𝑘𝑥 ) the protected memory cannot be modified, we

know thatM ′
1

𝑃
=M ′

2
.

We show by Noetherian induction over (ℓ1, ℓ2) thatM ′′1
𝑃
=M ′′

2
. For that, we use well-founded

relation (ℓ1, ℓ2) ≺ (ℓ ′1, ℓ ′2) iff ℓ1 < ℓ ′
1
∧ ℓ2 < ℓ ′

2
.

• Case (0, 0). Trivial.
• Case (0, ℓ2), with ℓ2 > 0 (and symmetrically (ℓ1, 0), with ℓ1 > 0). We have to show that

D ⊢ 𝑐 ′
1

𝜀
===⇒∗ 𝑐 ′′

1
∧ D ′ ⊢ 𝑐 ′

2

ℓ
2︷︸︸︷

𝜉 · · · 𝜉
=========⇒∗ 𝑐 ′′

2
⇒M ′′

1

𝑃
=M ′′

2

Since from 𝑐 ′
1
there is no step, 𝑐 ′′

1
= 𝑐 ′

1
. Moreover a sequence of 𝜉 was observed starting from

𝑐 ′
2
, and since both configurations are in unprotected mode and no violation occurred (see

Table 2) the protected memory is unchanged. Thus, by transitivity of

𝑃
=, we haveM ′′

1
=M ′

1

𝑃
=

M ′
2

𝑃
=M ′′

2
.

• Case (ℓ1, ℓ2) = (ℓ ′1 + 1, ℓ ′2 + 1). If

D ⊢ 𝑐 ′
1

ℓ′
1︷︸︸︷

𝜉 · · · 𝜉
=========⇒∗ 𝑐𝑖𝑣

1
∧ D ′ ⊢ 𝑐 ′

2

ℓ′
2︷︸︸︷

𝜉 · · · 𝜉
=========⇒∗ 𝑐𝑖𝑣

2
⇒M𝑖𝑣

1

𝑃
=M𝑖𝑣

2
(IHP)

then

D ⊢ 𝑐 ′
1

ℓ′
1︷︸︸︷

𝜉 · · · 𝜉
=========⇒∗ 𝑐𝑖𝑣

1

𝜉
===⇒ 𝑐 ′′

1
∧ D ′ ⊢ 𝑐 ′

2

ℓ′
2︷︸︸︷

𝜉 · · · 𝜉
=========⇒∗ 𝑐𝑖𝑣

2

𝜉
===⇒ 𝑐 ′′

2
⇒M ′′

1

𝑃
=M ′′

2
.

By (IHP) we know thatM𝑖𝑣
1

𝑃
=M𝑖𝑣

2
. Indeed, since we observed 𝜉 it means that pc

old

′′
1
⊢mode

UM ∧ ⊢mode UMpcold
′′
2
. Moreover (see Figure 8) since 𝜉 was observed starting from 𝑐𝑖𝑣

1
and

from 𝑐𝑖𝑣
2
and since both configurations are in unprotected mode, no violation occurred and

by Table 2 protected memory is unchanged. Thus, by transitivity of

𝑃
=, we haveM ′′

1

𝑃
=M𝑖𝑣

1

𝑃
=

M𝑖𝑣
2

𝑃
=M ′′

2
.

Thus, we have thatM ′′′
1

𝑃
=M ′′′

2
, since 𝛼 = reti?(·) does not modify protected memory. Also

R ′′′
1

PM≍UM R ′′′2 , B ′′′
1

⊲⊳ B ′′′
2
, pc
′
old1
⊢mode UM and pc

′
old2
⊢mode UM, by definition of 𝛼 = reti?(·). □

Property A.7. If 𝑐1
𝑃≈ 𝑐2, 𝑐1 ⊢mode PM, D ⊢ 𝑐1

𝛼1
====⇒ 𝑐 ′

1
, D ′ ⊢ 𝑐2

𝛼2
====⇒ 𝑐 ′

2
, 𝛼1, 𝛼2 ≠ handle!(·) then

𝛼1 = 𝛼2 and 𝑐
′
1

𝑃≈ 𝑐 ′
2
.

Proof. By definition of fine-grained traces we know that the transition leading to the observation

of 𝛼1 happens upon the execution of an instruction that must also be executed starting from 𝑐2

(by Property A.3) and that 𝑐 ′
1

𝑃≈ 𝑐 ′
2
(by Property A.4). Also, since 𝑐1 ⊢mode PM, we know that

𝛼1 ∈ {𝜏 (𝑘1), jmpOut!(𝑘1;R1)}. Thus, in both cases and since by hypothesis 𝛼2 ≠ handle!(·), it must

be that 𝛼2 = 𝛼1. □

Property A.8. If 𝑐1
𝑃≈ 𝑐2, D ⊢ 𝑐1

𝜏 (k (0)
1
) ·· ·𝜏 (k (n1−1)

1
) ·𝛼1

======================⇒∗ 𝑐 ′
1
, D ′ ⊢ 𝑐2

𝜏 (k (0)
2
) ·· ·𝜏 (k (n2−1)

2
) ·𝛼2

======================⇒∗ 𝑐 ′
2
, and

𝛼1, 𝛼2 ≠ handle!(·) then 𝜏 (𝑘 (0)
1
) · · · 𝜏 (𝑘 (𝑛1−1)

1
) · 𝛼1 = 𝜏 (𝑘 (0)

2
) · · · 𝜏 (𝑘 (𝑛2−1)

2
) · 𝛼2 and 𝑐 ′1

𝑃≈ 𝑐 ′
2
.

Proof. Corollary of Property A.7. □

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 59

𝑃-equivalence is preserved by complete interrupt segments (recall Definition A.1). Indeed, from

now onwards denote

𝛼𝑥 ∈ {𝜀} ∪

{𝛼 (0)𝑥 · · ·𝛼 (𝑛𝑥−1)𝑥 | 𝑛𝑥 ≥ 1 ∧ 𝛼 (𝑛𝑥−1)𝑥 = reti?(𝑘 (𝑛𝑥−1)𝑥 ) ∧

∀𝑖 . 0 ≤ 𝑖 ≤ 𝑛𝑥 − 1. 𝛼 (𝑖)𝑥 ∉ {•, jmpIn?(R (𝑖)𝑥 ), jmpOut!(𝑘 (𝑖)𝑥 ;R (𝑖)𝑥 )}}.

Property A.9. Let D and D ′ be two devices.
If 𝑐
(0)
1

𝑃≈ 𝑐
(0)
2

, D ⊢ 𝑐1
jmpIn?(R)
===========⇒ 𝑐

(0)
1

𝛼1

====⇒∗ 𝑐 (𝑛1)
1

and D ′ ⊢ 𝑐2
jmpIn?(R)
===========⇒ 𝑐

(0)
2

𝛼2

====⇒∗ 𝑐 (𝑛2)
2

then

𝑐
(𝑛1)
1

𝑃≈ 𝑐 (𝑛2)
2

.

Proof. We first show by induction on |I𝛼1
| (see Definition A.1) that

D ⊢ 𝑐 (0)
1

𝛼1

====⇒∗ 𝑐 (𝑛1)
1
∧ D ′ ⊢ 𝑐 (0)

2

𝛼2

====⇒∗ 𝑐 (𝑛2)
1
⇒ 𝑐

(𝑛1)
1

𝑃≈ 𝑐 (𝑛2)
2

assuming wlog that |I𝛼2
| ≤ |I𝛼1

|.
• Case |I𝛼1

| = 0. Trivial.

• Case |I𝛼1
| = |I𝛼′

1

| + 1. If

D ⊢ 𝑐 (0)
1

𝛼′
1

====⇒∗ 𝑐 (𝑛
′
1
)

1
∧ D ′ ⊢ 𝑐 (0)

2

𝛼′
2

====⇒∗ 𝑐 (𝑛
′
2
)

2
⇒ 𝑐

(𝑛′
1
)

1

𝑃≈ 𝑐 (𝑛
′
2
)

2
(IHP)

then

D ⊢ 𝑐 (0)
1

𝛼1

====⇒∗ 𝑐 (𝑛1)
1
∧ D ′ ⊢ 𝑐 (0)

2

𝛼2

====⇒∗ 𝑐 (𝑛2)
2
⇒ 𝑐

(𝑛1)
1

𝑃≈ 𝑐 (𝑛2)
2

Now let (𝑖1, 𝑗1) be the new interrupt segment of 𝛼1 that we split it as follows:

𝛼1 = 𝛼 ′
1
· 𝜏 (𝑘 (𝑛

′
1
)

1
) · · · 𝜏 (𝑘 (𝑖1−1)

1
) · handle!(𝑘 (𝑖1)

1
) · · · reti?(𝑘 ( 𝑗1)

1
)

The following two exhaustive cases may arise.

(1) Case |I𝛼1
| = |I𝛼2

|. For some (𝑖2, 𝑗2) we then have:

𝛼2 = 𝛼 ′
2
· 𝜏 (𝑘 (𝑛

′
2
)

2
) · · · 𝜏 (𝑘 (𝑖2−1)

2
) · handle!(𝑘 (𝑖2)

2
) · · · reti?(𝑘 ( 𝑗2)

2
)

By Properties A.8 and A.6 we know that 𝑐
(𝑛1)
1

𝑃≈ 𝑐 (𝑛2)
2

, being reached through 𝛼
( 𝑗1)
1

and

𝛼
( 𝑗2)
2

.

(2) Case |I𝛼2
| < |I𝛼1

|. In this case we have

𝛼2 = 𝛼 ′
2
· 𝜏 (𝑘 (𝑛

′
2
)

2
) · · · 𝜏 (𝑘 (𝑛2−2)

2
) · 𝜏 (𝑘 (𝑛2−1)

2
)

with 𝑐ℓ
1

𝑃≈ 𝑐ℓ
2
for 𝑛′

2
≤ ℓ ≤ 𝑛2 − 2 = 𝑖1 − 1, where the last equality holds because the module

is executing from configurations that are 𝑃-equivalent. As soon as the interrupt arrives, the

same instruction is executed (Property A.3) that causes the same changes in the registers,

the old program counter and the protected memory. In turn the first two are stored in the

backup before handling the interrupt. They are then restored by the RETI, observed as 𝛼 ( 𝑗1)
1

,

while the protected memory is left untouched. Consequently, we have that 𝑐
(𝑛1)
1

𝑃≈ 𝑐 (𝑛2)
2

,

that are the configurations reached through 𝛼
( 𝑗1)
1

and 𝜏 (𝑘 (𝑛2)−1
2

).
□

Finally, we can show that 𝑃-equivalence is preserved by coarse-grained traces:

, Vol. 1, No. 1, Article . Publication date: March 2022.



60 Busi et al.

Property A.10. If D ⊢ INIT𝐶 [M𝑀 ]
jmpIn?(R)
===========⇒⇒ 𝑐1 and D ′ ⊢ INIT𝐶′ [M𝑀 ]

jmpIn?(R)
===========⇒⇒ 𝑐2 then

𝑐1
𝑃≈ 𝑐2.

Proof. By definition of coarse-grained traces, we have that in both premises jmpIn?(R) is
preceded by a sequence of 𝜉 actions (possibly in different numbers). Since neither 𝜉 actions nor

jmpIn?(R) ever change the protected memory (by definition of memory access control) and since

the jmpIn?(R) sets the registers to the values in R, it follows that 𝑐1
𝑃≈ 𝑐2. □

The following definition gives an equality up to timings among coarse-grained traces:

Definition A.4. Let 𝛽 = 𝛽0 . . . 𝛽𝑛 and 𝛽
′
= 𝛽 ′

0
. . . 𝛽 ′

𝑛′ be two coarse-grained traces. We say that 𝛽

is equal up to timings to 𝛽
′
(written 𝛽 ≈ 𝛽 ′) iff

𝑛 = 𝑛′ ∧ (∀𝑖 ∈ {0, . . . , 𝑛}. 𝛽𝑖 = 𝛽 ′𝑖 ∨ (𝛽𝑖 = jmpOut!(Δ𝑡 ;R) ∧ 𝛽 ′𝑖 = jmpOut!(Δ𝑡 ′;R))) .

Finally, the property below shows that the traces that are equal up to timings preserve the

𝑃-equivalence:

Property A.11. If 𝑐1
𝑃≈ 𝑐2, D ⊢ 𝑐1

𝛽
====⇒⇒∗ 𝑐 ′

1
, D ′ ⊢ 𝑐2

𝛽
′

====⇒⇒∗ 𝑐 ′
2
and 𝛽 ≈ 𝛽 ′ then 𝑐 ′

1

𝑃≈ 𝑐 ′
2
.

Proof. The thesis easily follows from Property A.5 and Property A.9. □

A.6.2 Properties of Definition A.3. Also for U-equivalent configurations it holds that when one

takes a step, also the other does.

Property A.12. If 𝑐1
𝑈≈ 𝑐2, 𝑐1 ⊢mode UM then decode(M1,R1 [pc]) = decode(M2,R2 [pc]).

Proof. Since 𝑐1
𝑈≈ 𝑐2 and 𝑐1 ⊢mode UM, it also holds that 𝑐2 ⊢mode UM. Also, the instruction

decode(M1,R1 [pc]) is decoded in both M1 and M2 at the same unprotected address, hence

decode(M1,R1 [pc]) = decode(M2,R2 [pc]). □

Next we prove that

𝑈≈ is preserved by unprotected-mode steps of the SancusL operational seman-

tics:

Property A.13. If 𝑐1
𝑈≈ 𝑐2, 𝑐1 ⊢mode UM and D ⊢ 𝑐1 → 𝑐 ′

1
, then D ⊢ 𝑐2 → 𝑐 ′

2
∧ 𝑐 ′

1

𝑈≈ 𝑐 ′
2
.

Proof. Since 𝑐1
𝑈≈ 𝑐2, 𝑐1 ⊢mode UM andD ⊢ 𝑐1 → 𝑐 ′

1
, by Property A.12, 𝑖 = decode(M1,R1 [pc]) =

decode(M2,R2 [pc]).
To show that 𝑐 ′

1

𝑈≈ 𝑐 ′
2
, we consider the following exhaustive cases:

• Case 𝑖 = ⊥. Since 𝑐1
𝑈≈ 𝑐2 we get 𝑐2 ⊢mode UM and by definition of · ⊢ · → · we get 𝑐 ′

1
= EXC𝑐1

and 𝑐 ′
2
= EXC𝑐2 . However, by definition of EXC·, we have that M ′

1

𝑈
= M ′

2
, 𝑐 ′

1
⊢mode UM,

𝑐 ′
2
⊢mode UM, 𝛿 ′

1
= 𝛿1 = 𝛿2 = 𝛿 ′

2
, 𝑡 ′

1
= 𝑡1 = 𝑡2 = 𝑡 ′

2
, 𝑡 ′𝑎1 = 𝑡𝑎1 = 𝑡𝑎2 = 𝑡 ′𝑎2 , R

′
1

UM≍m R ′2, and
⊥ = B ′

1
⊲⊳ B ′

2
= ⊥, i.e., 𝑐 ′

1

𝑈≈ 𝑐 ′
2
.

• Case 𝑖 = HLT. Trivial, since 𝑐 ′
1
= HALT = 𝑐 ′

2
.

• Case 𝑖 ≠ ⊥.We have the following exhaustive sub-cases, depending on 𝑐 ′
1
:

– Case 𝑐 ′
1
= EXC𝑐1 . In this case a violation occurred, i.e., 𝑖,R1, pcold1,B1 ⊬mac OK. However,

the same violation also occurs for 𝑐2, since the only parts that may keep 𝑐1 apart from 𝑐2

are pc
old

and B, and thus 𝑐 ′
1

𝑈≈ 𝑐 ′
2
because:

∗ pc
old2

≠ pc
old1

, cannot cause a failure since unprotected code is executable from anywhere,

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 61

∗ B1 = ⟨R1, pcold1, 𝑡pad1⟩ ≠ ⟨R2, pcold2, 𝑡pad2⟩ = B2, cannot cause a failure since the ad-

ditional conditions on the configuration imposed by the memory access control only

concern values that are the same in both configurations.

– Case 𝑐 ′
1
≠ EXC𝑐1 and 𝑖 = RETI. If B1 = ⊥, then B1 = B2 = B ′

1
= B ′

2
= ⊥, hence

rule (CPU-Reti) applies and we get 𝑐 ′
1

𝑈≈ 𝑐 ′
2
since R ′

1
= R ′

2
andD ⊢ ·↷·

𝐷
· is a deterministic

relation (Property A.1). If B1 ≠ ⊥ it must also be that B2 ≠ ⊥ by𝑈 -equivalence, so either

rule (CPU-Reti-Chain) or rule (CPU-Reti-PrePad) applies. In the first case we get 𝑐 ′
1

𝑈≈ 𝑐 ′
2

because 𝑐1
𝑈≈ 𝑐2 and by determinism of D ⊢ · ↷·

𝐷
· and D ⊢ · ↩→I ·. In the second case

we get 𝑐 ′
1

𝑈≈ 𝑐 ′
2
since ⟨⊥,⊥, 𝑡 ′

pad
1

⟩ = B ′
1
⊲⊳ B ′

2
= ⟨⊥,⊥, 𝑡 ′

pad
2

⟩ and R ′
1

UM≍PM R ′2 holds since we
restored the register files from backups in which the interrupts were enabled (otherwise

the CPU would not have handled the interrupt it is returning from).

– Case 𝑐 ′
1
≠ EXC𝑐1 and 𝑖 ∉ {⊥, HLT, RETI}. All the other rules depend on both (𝑖) parts of the

configurations that are equal due to 𝑐1
𝑈≈ 𝑐2, and on (𝑖𝑖) D ⊢ ·↷5

𝐷
· andD ⊢ · ↩→I · which

are deterministic and have the same inputs (since 𝑐1
𝑈≈ 𝑐2). Hence, 𝑐 ′1

𝑈≈ 𝑐 ′
2
as requested.

□

The above property carries on fine-grained traces, provided that the computation is carried on

in unprotected mode:

Property A.14. If 𝑐1
𝑈≈ 𝑐2, 𝑐1 ⊢mode UM, D ⊢ 𝑐1

𝛼
====⇒ 𝑐 ′

1
then D ⊢ 𝑐2

𝛼
====⇒ 𝑐 ′

2
and 𝑐 ′

1

𝑈≈ 𝑐 ′
2
.

Proof. By Properties A.12 and A.13, 𝑐 ′
1

𝑈≈ 𝑐 ′
2
and 𝑖 = decode(M1,R1 [pc]) = decode(M2,R2 [pc]).

Thus, since the same 𝑖 is executed under𝑈 -equivalent configurations and since 𝑐 ′
1

𝑈≈ 𝑐 ′
2
, we have

that D ⊢ 𝑐2
𝛼
====⇒ 𝑐 ′

2
. □

Property A.15. If 𝑐1
𝑈≈ 𝑐2, 𝑐1 ⊢mode UM, D ⊢ 𝑐1

𝜉 · · ·𝜉 ·𝛼
========⇒∗ 𝑐 ′

1
and 𝛼 ∈ {𝜉, •, jmpIn?(R), reti?(𝑘)}

then D ⊢ 𝑐2
𝜉 · · ·𝜉 ·𝛼
========⇒∗ 𝑐 ′

2
and 𝑐 ′

1

𝑈≈ 𝑐 ′
2
.

Proof. The proof goes by induction on the length 𝑛 of 𝜉 · · · 𝜉 .
• Case 𝑛 = 0. Property A.14 applies.

• Case 𝑛′ = 𝑛 + 1. By induction hypothesis for some 𝑐 ′′′
1
, 𝑐 ′′′

2
, 𝑐 ′′

1
and 𝑐 ′′

2
we haveD ⊢ 𝑐1

n
′︷︸︸︷

𝜉 · · ·𝜉
=========⇒

𝑐 ′′′
1

𝛼
====⇒ 𝑐 ′′

1
,D ⊢ 𝑐2

n
′︷︸︸︷

𝜉 · · ·𝜉
=========⇒ 𝑐 ′′′

2

𝛼
====⇒ 𝑐 ′′

2
and 𝑐 ′′

1

𝑈≈ 𝑐 ′′
2
. Thus, ifD ⊢ 𝑐 ′′′

1

𝜉
===⇒ 𝑐𝑖𝑣

1
(i.e., we observe

a further 𝜉 starting from 𝑐1), by Property A.14 we get D ⊢ 𝑐 ′′′
2

𝜉
===⇒ 𝑐𝑖𝑣

2
and 𝑐𝑖𝑣

1

𝑈≈ 𝑐𝑖𝑣
2
. Finally,

by Property A.14 applies on 𝑐𝑖𝑣
1
and 𝑐𝑖𝑣

2
we get the thesis.

□

Now we move our attention to handle!(·).

Property A.16. If 𝑐
(0)
1

𝑈≈ 𝑐 (0)
2

, D ⊢ 𝑐 (0)
1

𝜏 (k (0)
1
) ·· · 𝜏 (k (n1−1)

1
) ·handle!(k (n1 )

1
)

=================================⇒∗ 𝑐 (𝑛1+1)
1

and

D ⊢ 𝑐 (0)
2

𝜏 (k (0)
2
) ·· · 𝜏 (k (n2−1)

2
) ·handle!(k (n2 )

2
)

=================================⇒∗ 𝑐 (𝑛2+1)
2

then 𝑐
(𝑛1+1)
1

𝑈≈ 𝑐 (𝑛2+1)
2

.

, Vol. 1, No. 1, Article . Publication date: March 2022.



62 Busi et al.

Proof. • By definition of fine-grained semantics, handle!(𝑘 (𝑛𝑥 )𝑥 ) only happens when an

interrupt is handled with 𝑐
(𝑛𝑥 )
𝑥 in protected mode.

• By definition of D ⊢ · ↩→I ·, R (𝑛1+1)
1

= R (𝑛2+1)
2

= R0 [pc ↦→ isr].
• Since unprotected memory cannot be changed by protected mode actions without causing

a violation (that would cause the observation of a jmpOut!(·; ·)) and is not changed upon

RETIwhen it happens in a configuration with backup different from ⊥ (cf. rules (CPU-Reti-*)),

M (𝑛1+1)
1

𝑈
=M (𝑛2+1)

2
.

• Since we observe handle!(𝑘 (𝑛𝑥 )𝑥 ) it must be that GIE = 1 and it had to be such also in 𝑐
(0)
𝑥

(because by definition the operations on registers cannot modified this flag in protected

mode). Hence, 𝑡𝑖𝑎𝑥 = ⊥ for 0 ≤ 𝑖 ≤ 𝑛𝑥 . Let 𝑡 int𝑎1 and 𝑡 int𝑎2 be the arrival times of the interrupt

that originated the observations handle!(𝑘 (𝑛1)
1
) and handle!(𝑘 (𝑛2)

2
), resp. By definition of

D ⊢ ·↷·
𝐷
·, 𝑡 int𝑎1 and 𝑡 int𝑎2 are the first absolute times after 𝑡

(𝑛1)
1

and 𝑡
(𝑛2)
2

in which an interrupt

was raised and, since D is deterministic and 𝑡
(𝑖)
𝑎𝑥 = ⊥ for 0 ≤ 𝑖 ≤ 𝑛𝑥 , it must be that

𝑡 int𝑎1 = 𝑡 int𝑎2 = 𝑡 int (recall that 𝑐
(0)
1

𝑈≈ 𝑐
(0)
2

and that IN or OUT instructions are forbidden in

protected mode).

Assume now that the instruction during which the interrupt occurred ended at time 𝑡
𝑓
𝑥 . Then

we can write 𝑡 (𝑛𝑥+1) as:

𝑡 (𝑛𝑥+1) = 𝑡 (𝑛𝑥 ) + 𝑘 (𝑛𝑥 )𝑥 = 𝑡 (𝑛𝑥 ) + 𝑡 int − 𝑡 (𝑛𝑥 ) + 𝑡 𝑓𝑥 − 𝑡 int︸                     ︷︷                     ︸
Duration of the instruction

+ MAX_TIME − 𝑡 𝑓𝑥 + 𝑡 int︸                 ︷︷                 ︸
Mitigation from (INT-PM-P)

+6

= ���
𝑡 (𝑛𝑥 ) + 𝑡 int −���

𝑡 (𝑛𝑥 ) +��𝑡
𝑓
𝑥 −��𝑡 int + MAX_TIME −��𝑡

𝑓
𝑥 +��𝑡 int + 6

= 𝑡 int + MAX_TIME + 6

and therefore 𝑡 (𝑛1+1) = 𝑡 (𝑛2+1) .

• Since 𝑡 (𝑛1+1) = 𝑡 (𝑛2+1) , 𝑐 (0)
1

𝑈≈ 𝑐
(0)
2

and no interaction with D via IN or OUT can occur in

protected mode, the deterministic device D performed the same number of steps in both

computations, and then 𝑡
(𝑛1+1)
𝑎1 = 𝑡

(𝑛2+1)
𝑎2 and 𝛿

(𝑛1+1)
1

= 𝛿
(𝑛2+1)
2

.

Hence, 𝑐
(𝑛1+1)
1

𝑈≈ 𝑐 (𝑛2+1)
2

as requested. □

The following properties show that the combination of 𝑈 -equivalence and trace equivalence

induces some useful properties of modules and sequences of complete interrupt segments. Before

doing that we define the (𝑎, 𝑛)-interrupt-limited version of a context 𝐶 as the context that behaves

as 𝐶 but such that (𝑖) the transition relation of its device results from unrolling at most 𝑛 steps of

its transition relation and (𝑖𝑖) its device never raises interrupts after observing the sequence of

actions 𝑎:

Definition A.5. Let D = ⟨Δ, 𝛿init,
𝑎
{𝐷⟩ be an I/O device. Let 𝑎 be a string over the signature 𝐴

of I/O devices and denote ℓ as the function that associates to each string over 𝐴 a unique natural

number (e.g., its position in a suitable lexicographic order). Given a context 𝐶 = ⟨M𝐶 ,D⟩, we
define its corresponding (𝑎, 𝑛)-interrupt-limited context as 𝐶≤𝑎,𝑛 = ⟨M𝐶 ,D≤𝑎,𝑛⟩ where D≤𝑎,𝑛 =

⟨img( 𝑎{𝐷 ≤𝑎,𝑛) ∪ dom(
𝑎
{𝐷 ≤𝑎,𝑛), 0,

𝑎
{𝐷 ≤𝑎,𝑛⟩ and

𝑎
{𝐷 ≤𝑎,𝑛 ≜

(
{(𝑝, 𝑎, 𝑝 ′) | ∀𝑎′. 𝑝 = ℓ (𝑎′) ∧ 𝑝 ′ = ℓ (𝑎′ · 𝑎) ∧ 𝛿init

𝑎′
{∗𝐷 𝛿

𝑎
{𝐷 𝛿

′ ∧ |𝑎′ · 𝑎 | ≤ 𝑛} \
{(𝑝, int?, 𝑝 ′) | ∀𝑎′. 𝑝 = ℓ (𝑎 · 𝑎′) ∧ 𝑝 ′ = ℓ (𝑎 · 𝑎′ · int?)}

)
∪

{(𝑝, 𝜖, 𝑝 ′) | ∀𝑎′. 𝑝 = ℓ (𝑎 · 𝑎′) ∧ 𝑝 ′ = ℓ (𝑎 · 𝑎′ · int?) ∧ 𝛿init
𝑎 ·𝑎′
{∗𝐷 𝛿

int?

{𝐷 𝛿
′ ∧ |𝑎 · 𝑎′ · int?| ≤ 𝑛}.

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 63

(Note that any (𝑎, 𝑛)-interrupt-limited context is actually a device, due to the constraint on its

transition function).

Now, let

𝛼𝑥 ∈ {𝜀} ∪ {𝛼 (0)𝑥 · · ·𝛼 (𝑛𝑥−1)𝑥 | 𝑛𝑥 ≥ 1 ∧ 𝛼 (𝑛𝑥−1)𝑥 = reti?(𝑘 (𝑛𝑥−1)𝑥 ) ∧

∀𝑖 . 0 ≤ 𝑖 ≤ 𝑛𝑥 − 1. 𝛼 (𝑖)𝑥 ∉ {•, jmpIn?(R (𝑖)𝑥 ), jmpOut!(𝑘 (𝑖)𝑥 ;R (𝑖)𝑥 )}}.

Property A.17. If

• M𝑀
𝑇
=M𝑀′

• D ⊢ INIT𝐶 [𝑀𝑀 ]
𝛽 ·jmpIn?(R)
=============⇒⇒∗ 𝑐 (0)

1

• D ⊢ INIT𝐶 [𝑀𝑀′ ]
𝛽 ·jmpIn?(R)
=============⇒⇒∗ 𝑐 (0)

2

• 𝑐 (0)
1

𝑈≈ 𝑐 (0)
2

• for some𝑚1 ≥ 0, D ⊢ 𝑐 (0)
1

𝛼1 ·𝜏 (k (n1 )
1
) ·· ·𝜏 (k (n1+m1

−1)
1

) ·jmpOut!(k (n1+m1
)

1
;R′)

===========================================⇒∗ 𝑐 (𝑛1+𝑚1+1)
1

• for some𝑚2 ≥ 0, D ⊢ 𝑐 (0)
2

𝛼2 ·𝜏 (k (n2 )
2
) ·· ·𝜏 (k (n2+m2

−1)
2

) ·jmpOut!(k (n2+m2
)

2
;R′)

============================================⇒∗ 𝑐 (𝑛2+𝑚2+1)
2

then

∑𝑛1+𝑚1

𝑖=0
𝛾 (𝑐 (𝑖)

1
) = ∑𝑛2+𝑚2

𝑖=0
𝛾 (𝑐 (𝑖)

2
).

Proof. We show this property by contraposition, by showing that

∑𝑛1+𝑚1

𝑖=0
𝛾 (𝑐 (𝑖)

1
) ≠ ∑𝑛2+𝑚2

𝑖=0
𝛾 (𝑐 (𝑖)

2
)

thenM𝑀

𝑇
≠M𝑀′ . For that it suffices to show that

∃𝐶 ′.D ′ ⊢ INIT𝐶′ [M𝑀 ]
𝛽 ·jmpIn?(R)
=============⇒⇒∗ 𝑐 (0)

3

jmpOut!(Δ𝑡3;R
(𝑛

3
+𝑚

3
)

3
)

======================⇒⇒ 𝑐
(𝑛3+𝑚3+1)
3

(i.e., D ⊢ 𝑐 (0)
3

𝛼3 ·𝜏 (k
(n
3
)

3
) ·· ·𝜏 (k (n3+m3

−1)
3

) ·jmpOut!(k (n3+m3
)

3
;R (n3+m3

)
3

)
=================================================⇒∗ 𝑐 (𝑛3+𝑚3+1)

3
)

such that

∀𝐶 ′′.D ′′ ⊢ INIT𝐶′′ [M𝑀′ ]
𝛽 ·jmpIn?(R)
=============⇒⇒∗ 𝑐 (0)

4

jmpOut!(Δ𝑡4;R (𝑛4+𝑚4
+1)

4
)

========================⇒⇒ 𝑐
(𝑛4+𝑚4+1)
4

with Δ𝑡3 ≠ Δ𝑡4

(i.e., D ⊢ 𝑐 (0)
4

𝛼4 ·𝜏 (k (n4 )
4
) ·· ·𝜏 (k (n4+m4

−1)
4

) ·jmpOut!(k (n4+m4
)

4
;R (n4+m4

)
4

)
=================================================⇒∗ 𝑐 (𝑛4+𝑚4+1)

4
).

Assume wlog that

∑𝑛1+𝑚1

𝑖=0
𝛾 (𝑐 (𝑖)

1
) <

∑𝑛2+𝑚2

𝑖=0
𝛾 (𝑐 (𝑖)

2
). Noting that the first observable of 𝛽 ·

jmpIn?(R) must be a jmpIn?(·), by Properties A.10 and A.11, we have that 𝑐 (0)
1

𝑃≈ 𝑐 (0)
3

and, similarly,

𝑐
(0)
2

𝑃≈ 𝑐 (0)
4

. Thus, as a consequence of Properties A.3, A.9 and A.8,

∑𝑛1+𝑚1

𝑖=0
𝛾 (𝑐 (𝑖)

1
) = ∑𝑛3+𝑚3

𝑖=0
𝛾 (𝑐 (𝑖)

3
)

and

∑𝑛2+𝑚2

𝑖=0
𝛾 (𝑐 (𝑖)

2
) = ∑𝑛4+𝑚4

𝑖=0
𝛾 (𝑐 (𝑖)

4
).

Let 𝑛 ∈ N be greater than the number of steps over the relation

·
{𝐷 in the computation

D ⊢ INIT𝐶 [M𝑀 ] →∗ 𝑐
(𝑛1+𝑚1+1)
1

and let 𝑎 be the sequence of actions over
·
{𝐷 in the computation

D ⊢ INIT𝐶 [M𝑀 ] →∗ 𝑐
(0)
1

. Choosing 𝐶 ′ = 𝐶≤𝑎,𝑛 we get Δ𝑡3 =
∑𝑛1+𝑚1

𝑖=0
𝛾 (𝑐 (𝑖)

1
) = ∑𝑛3+𝑚3

𝑖=0
𝛾 (𝑐 (𝑖)

3
).

Any other context 𝐶 ′′ that allows to observe the same 𝛽 · jmpIn?(R) from INIT𝐶′′ [M𝑀′ ] raises
0 or more interrupts “after” 𝑐0

4
, hence taking additional 𝑆 ≥ 0 cycles on top of those required

for the instructions to be executed. ThusM𝑀

𝑇
≠M𝑀′ , since

∑𝑛1+𝑚1

𝑖=0
𝛾 (𝑐 (𝑖)

1
) < ∑𝑛2+𝑚2

𝑖=0
𝛾 (𝑐 (𝑖)

2
) and∑𝑛1+𝑚1

𝑖=0
𝛾 (𝑐 (𝑖)

1
) = Δ𝑡3 < Δ𝑡4 =

∑𝑛2+𝑚2

𝑖=0
𝛾 (𝑐 (𝑖)

2
) + 𝑆 . □

Property A.18. If

, Vol. 1, No. 1, Article . Publication date: March 2022.



64 Busi et al.

• D ⊢ INIT𝐶 [𝑀𝑀 ]
𝛽 ·jmpIn?(R)
=============⇒⇒∗ 𝑐 (0)

1

• D ⊢ INIT𝐶 [𝑀𝑀′ ]
𝛽
′ ·jmpIn?(R)

==============⇒⇒∗ 𝑐 (0)
2

• 𝑐 (0)
1

𝑈≈ 𝑐 (0)
2

• D ⊢ 𝑐 (0)
1

𝛼1 ·𝜏 (k (n1 )
1
) ·· ·𝜏 (k (n1+m1

−1)
1

) ·𝛼1
============================⇒∗ 𝑐 (𝑛1+𝑚1+1)

1
for some𝑚1 ≥ 0 and𝛼1 ∈ {jmpOut!(𝑘 (𝑛1+𝑚1)

1
;R ′),

handle!(𝑘 (𝑛1+𝑚1)
1

)}

• D ⊢ 𝑐 (0)
2

𝛼2 ·𝜏 (k (n2 )
2
) ·· ·𝜏 (k (n2+m2

−1)
2

) ·𝛼2
============================⇒∗ 𝑐 (𝑛2+𝑚2+1)

2
for some𝑚2 ≥ 0 and𝛼2 ∈ {jmpOut!(𝑘 (𝑛2+𝑚2)

2
;R ′),

handle!(𝑘 (𝑛2+𝑚2)
2

)}
then

(1) |I𝛼1
| = |I𝛼2

|
(2) 𝑐

(𝑛1)
1

𝑈≈ 𝑐 (𝑛2)
2

.

Proof. Assume wlog that

∑𝑛1+𝑚1

𝑖=0
𝛾 (𝑐 (𝑖)

1
) ≤ ∑𝑛2+𝑚2

𝑖=0
𝛾 (𝑐 (𝑖)

2
), and we prove by induction on |I𝛼1

|
that

D ⊢ 𝑐 (0)
1

𝛼1

====⇒∗ 𝑐 (𝑛1)
1
∧ D ⊢ 𝑐 (0)

2

𝛼2

====⇒∗ 𝑐 (𝑛2)
1

imply 𝑐
(𝑛1)
1

𝑈≈ 𝑐 (𝑛2)
2
∧ |I𝛼1

| = |I𝛼2
|

• Case |I𝛼1
| = 0. Since no complete interrupt segment was observed it means that 𝛼1 cannot

end with a reti?(·), so it must be 𝛼1 = 𝜀. Moreover, since 𝑐
(0)
1

𝑈≈ 𝑐 (0)
2

and the value of the

GIE bit cannot be changed in protected mode, we know that:

– Case R (0)
1
[sr.GIE] = R (0)

2
[sr.GIE] = 0. Then no handle!(·) can be observed in 𝛼2, hence

it must be that 𝛼2 = 𝜀 and the two thesis easily follow.

– Case R (0)
1
[sr.GIE] = R (0)

2
[sr.GIE] = 1. Then it means that no interrupt was raised by the

device in the computation starting with 𝑐
(0)
1

and the same must happen in 𝑐
(0)
2

because of

𝑈 -equivalence and
∑𝑛1+𝑚1

𝑖=0
𝛾 (𝑐 (𝑖)

1
) ≤ ∑𝑛2+𝑚2

𝑖=0
𝛾 (𝑐 (𝑖)

2
). Hence it must be that 𝛼2 = 𝜀 and the

two thesis easily follow.

• Case |I𝛼1
| = |I𝛼′

1

| + 1. If

D ⊢ 𝑐 (0)
1

𝛼′
1

====⇒∗ 𝑐 (𝑛
′
1
)

1
∧ D ⊢ 𝑐 (0)

2

𝛼′
2

====⇒∗ 𝑐 (𝑛
′
2
)

2
imply 𝑐

(𝑛′
1
)

1

𝑈≈ 𝑐 (𝑛
′
2
)

2
∧ |I𝛼′

1

| = |I𝛼′
2

| (IHP)
then

D ⊢ 𝑐 (0)
1

𝛼1

====⇒∗ 𝑐 (𝑛1)
1
∧ D ⊢ 𝑐 (0)

2

𝛼2

====⇒∗ 𝑐 (𝑛2)
2

imply 𝑐
(𝑛1)
1

𝑈≈ 𝑐 (𝑛2)
2
∧ |I𝛼1

| = |I𝛼2
|

Now let (𝑖1, 𝑗1) be the new interrupt segment of 𝛼1, that we split as follows:

𝛼1 = 𝛼 ′
1
· 𝜏 (𝑘 (𝑛

′
1
)

1
) · · · 𝜏 (𝑘 (𝑖1−1)

1
) · handle!(𝑘 (𝑖1)

1
) · · · reti?(𝑘 ( 𝑗1)

1
).

Since by (IHP) 𝑐
(𝑛′

1
)

1

𝑈≈ 𝑐 (𝑛
′
2
)

2
andD is deterministic and no successfully I/O ever happens in pro-

tected mode, the first new interrupt (i.e., the one leading to the observation of handle!(𝑘 (𝑖1)
1
))

is raised at the same cycle in both computations. Call 𝑐
(𝑖2)
2

the configuration at the beginning

of the step of computation in which such interrupt was raised (the choice of indexes will be

clear below). From this configuration only three cases for the fine-grained action might be

observed:

– Case 𝜏 (·) and jmpOut!(·; ·). Never happens, since B (𝑖2+1)
2

≠ ⊥.
– Case handle!(𝑘 (𝑖2)

2
). Property A.16 ensures that 𝑐

(𝑖2+1)
2

𝑈≈ 𝑐 (𝑖1+1)
1

, and Property A.15 that

at some index 𝑗2 a reti?(𝑘 ( 𝑗2)
2
) is observed in 𝛼2, i.e., a new interrupt segment (𝑖2, 𝑗2) is

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 65

observed. Thus, |I𝛼2
| = |I𝛼′

2

| +1 = |I𝛼′
1

| +1 = |I𝛼1
| (where the second equality holds by (IHP)).

Finally, by definition of 𝛼2, we have that 𝑛1 = 𝑗1 + 1 and 𝑛2 = 𝑗2 + 2, hence 𝑐 (𝑛1)
1

𝑈≈ 𝑐 (𝑛2)
2

.

□

The following property states that𝑈 -equivalent unprotected-mode configurations perform the

same single coarse-grained action:

Property A.19. If 𝑐1
𝑈≈ 𝑐2, 𝑐1 ⊢mode UM and D ⊢ 𝑐1

𝛽
====⇒⇒ 𝑐 ′

1
, then D ⊢ 𝑐2

𝛽
====⇒⇒ 𝑐 ′

2
and 𝑐 ′

1

𝑈≈ 𝑐 ′
2
.

Proof. Since 𝑐1 ⊢mode UM, the segment of fine-grained trace that originated 𝛽 (see Figure 9) is in

the form:

D ⊢ 𝑐1
𝜉 · · ·𝜉 ·𝛼
========⇒∗ 𝑐 ′

1

with either 𝛼 = • or 𝛼 = jmpIn?(R).
Property A.15 guarantees that:

D ⊢ 𝑐2
𝜉 · · ·𝜉 ·𝛼
========⇒∗ 𝑐 ′

2
∧ 𝑐 ′

1

𝑈≈ 𝑐 ′
2
.

Thus, D ⊢ 𝑐2
𝛽
====⇒⇒ 𝑐 ′

2
and 𝑐 ′

1

𝑈≈ 𝑐 ′
2
. □

Finally, we can show that𝑈 -equivalence is preserved by coarse-grained traces:

Property A.20. If 𝑐1
𝑈≈ 𝑐2, 𝑐1 ⊢mode UM, D ⊢ 𝑐1

𝛽
====⇒⇒∗ 𝑐 ′

1
, D ⊢ 𝑐2

𝛽
====⇒⇒∗ 𝑐 ′

2
, 𝑐 ′

1
⊢mode UM and

𝑐 ′
2
⊢mode UM then 𝑐

′
1

𝑈≈ 𝑐 ′
2
.

Proof. We show the property by induction on 𝑛, the length of 𝛽 :

• Case 𝑛 = 0. By definition of

𝜀
===⇒⇒∗ we know that it must be 𝑐 ′

1
= 𝑐1 and 𝑐

′
2
= 𝑐 ′

2
and the thesis

easily follows.

• Case 𝑛 = 𝑛′ + 1. The only case in which a coarse-grained trace can be extended by just

one action, while remaining in unprotected mode, is when the action is •. In this case the

hypothesis easily follows from the definition of • and𝑈 -equivalence.

• Case 𝑛 = 𝑛′ + 2. If

D ⊢ 𝑐1
𝛽
====⇒⇒∗ 𝑐 ′′

1
∧ D ⊢ 𝑐2

𝛽
====⇒⇒∗ 𝑐 ′′

2
∧ R ′′

1
[pc] ⊢mode UM ∧ R ′′2 [pc] ⊢mode UM imply 𝑐 ′′

1

𝑈≈ 𝑐 ′′
2

then

D ⊢ 𝑐1
𝛽
====⇒⇒∗ 𝑐 ′′

1

𝛽𝛽′
=====⇒⇒ 𝑐 ′

1
∧D ⊢ 𝑐2

𝛽
====⇒⇒∗ 𝑐 ′′

2

𝛽𝛽′
=====⇒⇒ 𝑐 ′

2
∧R ′

1
[pc] ⊢mode UM∧R ′2 [pc] ⊢mode UM imply 𝑐 ′

1

𝑈≈ 𝑐 ′
2
.

By cases on 𝛽𝛽 ′:

– Case 𝛽𝛽 ′ = jmpIn?(R) •. Directly follows from definition of • and 𝑈≈.
– Case 𝛽𝛽 ′ = jmpIn?(R) jmpOut!(Δ𝑡 ;R ′). By definition they are originated by

D ⊢ 𝑐 ′′
1

𝜉 · · ·𝜉 ·jmpIn?(R)
================⇒∗ 𝑐 (0)

1

𝛼
(0)
1
· · · 𝛼 (n1−1)

1

===============⇒∗ 𝑐 (𝑛1)
1

jmpOut!(k (n1 )
1

;R′)
=================⇒ 𝑐 ′

1

D ⊢ 𝑐 ′′
2

𝜉 · · ·𝜉 ·jmpIn?(R)
================⇒∗ 𝑐 (0)

2

𝛼
(0)
2
· · · 𝛼 (n2−1)

2

===============⇒∗ 𝑐 (𝑛2)
2

jmpOut!(k (n2 )
2

;R′)
=================⇒ 𝑐 ′

2
.

By (IHP) and by Property A.15 we can conclude that 𝑐
(0)
1

𝑈≈ 𝑐 (0)
2

.

Let 𝑐
(𝑀𝑥 )
𝑥 be the configuration generated by the last reti?(·) in 𝛼 (0)𝑥 · · · 𝛼 (𝑛𝑥−1)𝑥 . By Prop-

erty A.18 the number of completely handled interrupts is the same in the two traces and

𝑐
(𝑀1)
1

𝑈≈ 𝑐 (𝑀2)
2

. Also:

, Vol. 1, No. 1, Article . Publication date: March 2022.



66 Busi et al.

∗ By definition of jmpOut!(𝑘 (𝑛1)
1

;R ′) and jmpOut!(𝑘 (𝑛2)
2

;R ′) we trivially get R ′
1
= R ′

2
= R ′.

∗ Since unprotected memory cannot be changed in protected mode (see Table 2) and

𝑐
(𝑀1)
1

𝑈≈ 𝑐 (𝑀2)
2

,M ′
1

𝑈
=M ′

2
.

∗ Let 𝛼𝑥 = 𝛼
(0)
𝑥 · · · 𝛼 (𝑛𝑥−1)𝑥 · jmpOut!(𝑘 (𝑛𝑥 )𝑥 ;R ′). By definition of 𝛽 = jmpOut!(Δ𝑡 ;R ′):

𝑡 ′
1
= 𝑡
(0)
1
+ Δ𝑡 +

∑
(𝑖1, 𝑗1) ∈ |I𝛼

1
|
(𝑡 ( 𝑗1)
1
− 𝑡 (𝑖1+1)

1
)

𝑡 ′
2
= 𝑡
(0)
2
+ Δ𝑡 +

∑
(𝑖2, 𝑗2) ∈ |I𝛼

2
|
(𝑡 ( 𝑗2)
2
− 𝑡 (𝑖2+1)

2
)

But 𝑡
(0)
1

= 𝑡
(0)
2

since 𝑐
(0)
1

𝑈≈ 𝑐 (0)
2

. Also, each operand in (𝑡 ( 𝑗1)
1
− 𝑡 (𝑖1+1)

1
) equals the corre-

sponding (𝑡 ( 𝑗2)
2
− 𝑡 (𝑖2+1)

2
) because for each (𝑝𝑡ℎ element) (𝑖1, 𝑗1) ∈ I𝛼1

and corresponding

(𝑖2, 𝑗2) ∈ I𝛼2
, Property A.16 guarantees that 𝑡

(𝑖1+1)
1

= 𝑡
(𝑖2+1)
2

and Property A.15 guarantees

that 𝑡
( 𝑗1)
1

= 𝑡
( 𝑗2)
2

.

∗ Finally, since no interaction with D via INor OUToccurs in protected mode and since the

same deterministic device performed the same number of steps (starting from 𝑐
(0)
1

𝑈≈ 𝑐 (0)
2

),

it follows that 𝑡 ′𝑎1 = 𝑡
′
𝑎2

and 𝛿 ′
1
= 𝛿 ′

2
.

□

A.7 Proofs of Lemmata 6.9 and 6.10 of Section 6.2.2

Proposition A.6. Let 𝐶 = ⟨M𝐶 ,D⟩. If D ⊢ INIT𝐶 [M𝑀 ]
𝛽
====⇒⇒∗ 𝑐1 and D ⊢ INIT𝐶 [M𝑀′ ]

𝛽
====⇒⇒∗ 𝑐2,

then 𝑐1 ⊢mode m and 𝑐2 ⊢mode m.

Proof. Let 𝛽 the last observable of 𝛽 . By definition 𝑐1 and 𝑐2 are such that, for some 𝑐 ′
1
and 𝑐 ′

2
:

D ⊢ 𝑐 ′
1

𝛼
====⇒ 𝑐1 D ⊢ 𝑐 ′

2

𝛼
====⇒ 𝑐2

with 𝛼 equal to •, jmpIn?(·) or jmpOut!(·; ·) (depending on the value of 𝛽). In either case, since 𝑐 ′
1

and 𝑐 ′
1
are the configuration right after 𝛼 and by definition of fine-grained traces, we have 𝑐1 ⊢mode m

and 𝑐2 ⊢mode m. □

Proposition A.7. For any context𝐶 = ⟨M𝐶 ,D⟩ and moduleM𝑀 , ifD ⊢ INIT𝐶 [M𝑀 ]
𝛽0 · · · 𝛽𝑛
==========⇒⇒∗

𝑐 with 𝑛 ≥ 0, then the observables occurring

(i) in even positions (𝛽0, 𝛽2, . . . ) are either • or jmpIn?(R) (for some R)
(ii) in odd positions (𝛽1, 𝛽3, . . . ) are either • or jmpOut!(Δ𝑡 ;R) (for some Δ𝑡 and R)

Proof. Both easily follow from Figures 8 and 9. □

First, we show that, due to the mitigation, the behavior of the context does not depend on the

behavior of the module:

Lemma 6.9. Let 𝐶 = ⟨M𝐶 ,D⟩. If D ⊢ INIT𝐶 [M𝑀 ]
𝛽
====⇒⇒∗ 𝑐1

𝛽
====⇒⇒ 𝑐 ′

1
, D ⊢ INIT𝐶 [M𝑀′ ]

𝛽
====⇒⇒∗ 𝑐2,

𝑐1 ⊢mode UM and 𝑐2 ⊢mode UM, then there exists 𝑐 ′
2
such that D ⊢ 𝑐2

𝛽
====⇒⇒ 𝑐 ′

2
.

Proof. First, observe that INIT𝐶 [M𝑀 ]
𝑈≈ INIT𝐶 [M𝑀′ ] , because

INIT𝐶 [M𝑀 ] = ⟨𝛿init, 0,⊥,M𝐶 ⊎M𝑀 ,Rinit

M𝐶
, 0xFFFE,⊥⟩

INIT𝐶 [M𝑀′ ] = ⟨𝛿init, 0,⊥,M𝐶 ⊎M𝑀′,Rinit

M𝐶
, 0xFFFE,⊥⟩.

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 67

Since INIT𝐶 [M𝑀 ] ⊢mode UM, INIT𝐶 [M𝑀 ]
𝑈≈ INIT𝐶 [M𝑀′ ] , D ⊢ INIT𝐶 [M𝑀 ]

𝛽
====⇒⇒∗ 𝑐1,

D ⊢ INIT𝐶 [M𝑀′ ]
𝛽
====⇒⇒∗ 𝑐2, 𝑐1 ⊢mode UM and 𝑐2 ⊢mode UM, by Property A.20 we have 𝑐1

𝑈≈ 𝑐2. Finally,
since D ⊢ 𝑐1

𝛽
====⇒⇒ 𝑐 ′

1
and by Property A.19 we get D ⊢ 𝑐2

𝛽
====⇒⇒ 𝑐 ′

2
. □

Then the following lemma shows that the isolation mechanism offered by the enclave guarantees

that the behavior of the module is not influenced by the one of the context:

Lemma 6.10. Let 𝐶 = ⟨M𝐶 ,D⟩. IfM𝑀
𝑇
=M𝑀′ , D ⊢ INIT𝐶 [M𝑀 ]

𝛽
====⇒⇒∗ 𝑐 ′′

1

jmpIn?(R1)
============⇒⇒ 𝑐1

𝛽
====⇒⇒ 𝑐 ′

1

and D ⊢ INIT𝐶 [M𝑀′ ]
𝛽
====⇒⇒∗ 𝑐 ′′

2

jmpIn?(R2)
============⇒⇒ 𝑐2, then there exists 𝑐 ′

2
such that D ⊢ 𝑐2

𝛽
====⇒⇒ 𝑐 ′

2
.

Proof. Noting that 𝑐1 ⊢mode PM and that the last observable of 𝛽 is a jmpIn?(·), by definition of

coarse-grained traces (see Figure 9) we have the following fine-grained traces starting from 𝑐 ′′
1
:

D ⊢ 𝑐 ′′
1

𝜉 · · · 𝜉 ·jmpIn?(R1)
==================⇒∗ 𝑐1

𝛼1

====⇒∗ 𝑐 (𝑛1)
1

𝜏 (k (n1 )
1
) ·· · 𝜏 (k (n1+m1

−1)
1

) ·𝛼′
1

==========================⇒∗ 𝑐 ′
1

with 𝛼 ′
1
∈ {jmpOut!(𝑘1;R ′1), handle!(𝑘1) · 𝜉 · · · 𝜉 · •}.

Similarly for 𝑐2 it must be:

D ⊢ 𝑐 ′′
2

𝜉 · · · 𝜉 ·jmpIn?(R2)
==================⇒∗ 𝑐2

𝛼2

====⇒∗ 𝑐 (𝑛2)
2

𝜏 (k (n2 )
2
) ·· · 𝜏 (k (n2+m2

−1)
1

) ·𝛼′
2

===========================⇒∗ 𝑐 ′
2
.

with 𝛼 ′
2
∈ {jmpOut!(𝑘2;R ′2), handle!(𝑘2) · 𝜉 · · · 𝜉 · •}.

We have now two cases:

• Case 𝛽 = jmpOut!(Δ𝑡 ;R).M𝑀
𝑇
= M𝑀′ implies the existence of a context 𝐶 ′ = ⟨M𝐶′,D ′⟩

that allow us to observe D ′ ⊢ INIT𝐶′ [M𝑀′ ]
𝛽
====⇒⇒ 𝑐3

𝛽
====⇒⇒ 𝑐 ′

3
, i.e.,

D ′ ⊢ 𝑐3
𝛼3

====⇒∗ 𝑐 (𝑛3)
3

𝜏 (k (n3 )
3
) ·· · 𝜏 (k (n3+m3

−1)
3

) ·𝛼′
3

===========================⇒ 𝑐 ′
3

with 𝛼 ′
3
∈ {jmpOut!(𝑘3;R ′3), handle!(𝑘3) · 𝜉 · · · 𝜉 · •}.

By Properties A.10 and A.11 we have that 𝑐2
𝑃≈ 𝑐3, and by Property A.9 we conclude that

𝑐
(𝑛3)
3

𝑃≈ 𝑐 (𝑛2)
2

.

Property A.8 guarantees that

𝜏 (𝑘 (𝑛2)
2
) · · · 𝜏 (𝑘 (𝑛2+𝑚2−1)

2
) · 𝛼 ′

2
= 𝜏 (𝑘 (𝑛3)

3
) · · · 𝜏 (𝑘 (𝑛3+𝑚3−1)

3
) · 𝛼 ′

3
.

Since 𝛼 ′
2
= 𝛼 ′

3
= jmpOut!(𝑘3;R1), we know that D ⊢ 𝑐 (𝑛2)

2

jmpOut!(Δ𝑡 ′;R1)
================⇒⇒ 𝑐 ′

2
.

By Property 6.1, we have

Δ𝑡 =
𝑛1+𝑚1∑
𝑖=0

𝛾 (𝑐 (𝑖)
1
) + (11 + MAX_TIME) · |I𝛼1

|

Δ𝑡 ′ =
𝑛2+𝑚2∑
𝑖=0

𝛾 (𝑐 (𝑖)
2
) + (11 + MAX_TIME) · |I𝛼2

|.

Since by Properties A.17 and A.18 we have

∑𝑛1+𝑚1

𝑖=0
𝛾 (𝑐 (𝑖)

1
) = ∑𝑛2+𝑚2

𝑖=0
𝛾 (𝑐 (𝑖)

2
) and |I𝛼1

| = |I𝛼2
|,

we get Δ𝑡 = Δ𝑡 ′ as requested.
• Case 𝛽 = •. It must be that 𝛼 ′

1
= handle!(𝑘1) · 𝜉 · · · 𝜉 · • and 𝛼 ′2 = handle!(𝑘2) · 𝜉 · · · 𝜉 · •. If

this was not the case (i.e., if 𝛼 ′
2
= jmpOut!(𝑘2;R ′2)), then 𝑐2 could be swapped with 𝑐1 (and 𝑐1

with 𝑐2) in the the statement of this Lemma and the previous case would apply. Thus, the

thesis follows.

, Vol. 1, No. 1, Article . Publication date: March 2022.



68 Busi et al.

□

A.8 Proof of Property 6.2 and Algorithm 2 of Section 6.2.3

From now onwards, we simply write 𝛽 = 𝜀 (resp. 𝛽 ′ = 𝜀) if 𝛽 (resp. 𝛽
′
) is shorter than 𝛽

′
(resp. 𝛽).

Property 6.2. IfM𝑀 andM𝑀′ are two modules such thatM𝑀 ;
L M𝑀′ , then there always exist

𝛽 and 𝛽
′
that are distinguishing traces forM𝑀 andM𝑀′ .

Proof. From the contrapositive of Lemma 6.12 we know thatM𝑀

𝑇
≠M𝑀′ , i.e., there exist 𝛽 ∈

Tr (M𝑀 ) and 𝛽
′ ∈ Tr (M𝑀′) such that 𝛽 ∉ Tr (M𝑀′) and 𝛽 ∈ Tr (M𝑀 ). Also, sinceM𝑀 ;

L M𝑀′ ,

we have that there exists a context 𝐶𝐿 such that 𝐶𝐿 [M𝑀 ]⇓L and 𝐶𝐿 [M𝑀′] ̸⇓L (or vice versa) —

assume wlog 𝐶𝐿 [M𝑀 ]⇓L and 𝐶𝐿 [M𝑀′] ̸⇓L.
Thus, by Proposition 6.8:

D𝐿 ⊢ INIT𝐶𝐿 [M𝑀 ]
𝛽
′′

=====⇒⇒∗ HALT

D𝐿 ⊢ INIT𝐶𝐿 [M𝑀′ ]
𝛽
′′′

=====⇒⇒∗ 𝑐 ≠ HALT

for some 𝛽
′′
(ending in •), 𝑐 and for all 𝛽

′′′
that can be observed.

Indeed, we can always write that 𝛽
′′
= 𝛽𝑠 · 𝛽 · 𝛽𝑒 and 𝛽

′′′
= 𝛽𝑠 · 𝛽 ′ · 𝛽

′
𝑒 where:

• 𝛽𝑠 is the longest (possibly empty) common prefix of the two traces

• 𝛽 and 𝛽 ′ ≠ • are the first different observables – one of the two may be 𝜀 or, by Proposition 6.8,

it may be 𝛽 = •
• 𝛽𝑒 and 𝛽

′
𝑒 are the (possibly empty) remainders of the two traces

Thus, since 𝛽
′′
and 𝛽

′′′
are also observed under the same context 𝐶𝐿 , they are distinguishing

traces. □

The first two parameters of BuildDevice – joutd and joutd
′
– are differentiating jmpOut!(·; ·)

addresses (if any), as returned by the BuildMem (Algorithm 1). Parameters 𝛽 and 𝛽
′
are distin-

guishing traces forM𝑀 andM𝑀′ generated under the context𝐶
𝐿
(cf. Definition 6.13). Finally, term

(resp. term
′
) denotes whetherM𝑀 (resp.M𝑀′) converges in a context with no interrupts after the

last jump into protected mode.

The first two lines define the initial set of states, which will be a finite subset of N in the end,

and the initial empty transition function.

Line 7 defines 𝛿𝐿 that records the last state that was added to the I/O device. At the beginning it

is initialized to 0.

The algorithm then proceeds by iterating over all the observables in 𝛽𝑠 (all the steps below also

update Δ and 𝛿𝐿 , but we omit to state it explicitly):

• Case 𝛽𝑖 = 𝛽 ′𝑖 = jmpIn?(R). In this case we know that either this is the first observable or

previous one was a jmpOut!(·; ·). Since the memory is obtained following Algorithm 1, we

know that in both cases we reach the instruction IN pc (either at address A_EP or those of
jumps out of protected mode), waiting for the next program counter (sometimes before that

we perform a write, which shall be ignored). Thus, the device ignores any write operation

and replies with A_JIN (line 12). Then it starts to send the values of the registers in R, so to

simulate in Sancus
H
what happens in SancusL and to match the requests from the code. To

help the intuition Figure 11a depicts how the transition function looks after the update (the

solid black state denotes the new value of 𝛿𝐿).

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 69

Algorithm 2 Builds the device of the distinguishing context.

1: procedure BuildDevice(joutd, joutd ′, 𝛽 = 𝛽0 · · · 𝛽𝑛−1 · 𝛽 · 𝛽𝑒 , 𝛽
′

= 𝛽0 · · · 𝛽𝑛−1 · 𝛽 ′ ·
𝛽
′
𝑒 , term, term

′,𝐶𝐿)
2: ⊲ joutd, joutd ′ are differentiating jmpOut!(·; ·) addresses, if any
3: ⊲ 𝛽 and 𝛽

′
are distinguishing traces generated by the context 𝐶𝐿

4: ⊲ term (resp. term
′
) denotes whetherM𝑀 (resp.M𝑀′) converges in a context with no

interrupts after the last jump into protected mode

5: Δ = {0}
6:

·
{𝐷 = ∅

7: 𝛿𝐿 = 0 ⊲ This variable keeps track of the last added device state.

8: for 𝑖 ∈ 0..𝑛 − 1 do
9: if 𝛽𝑖 = jmpIn?(R) then
10: Δ = Δ ∪ {𝛿𝐿 + 1, . . . , 𝛿𝐿 + 17}
11:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿,𝑤𝑟 (𝑤), 𝛿𝐿) | 𝑤 ∈ Word}

12:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿, 𝑟𝑑 (A_JIN), 𝛿𝐿 + 1)}

13:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿 + 1, 𝑟𝑑 (R[sp]), 𝛿𝐿 + 2)}

14:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿 + 2, 𝑟𝑑 (R[sr]), 𝛿𝐿 + 3)}

15:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿 + 𝑖, 𝑟𝑑 (R[i]), 𝛿𝐿 + 𝑖 + 1) | 3 ≤ 𝑖 ≤ 15}

16:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿 + 16, 𝑟𝑑 (R[pc]), 𝛿𝐿 + 17)}

17:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿 + 𝑖, 𝜖, 𝛿𝐿 + 𝑖) | 0 ≤ 𝑖 ≤ 16}

18: 𝛿𝐿 = 𝛿𝐿 + 17
19: else if 𝛽𝑖 = jmpOut!(Δ𝑡 ;R) then
20:

·
{𝐷 =

·
{𝐷 ∪{(𝛿𝐿, 𝜖, 𝛿𝐿)} ∪ {(𝛿𝐿,𝑤𝑟 (𝑤), 𝛿𝐿) | 𝑤 ∈ Word}

21: end if

22: end for

23: if 𝛽 = jmpOut!(Δ𝑡 ;R) ∧ 𝛽 ′ = jmpOut!(Δ𝑡 ′;R ′) ∧ (∃r.R[r] ≠ R ′[r]) then
24: if r ≠ pc then

25: Δ = Δ ∪ {𝛿𝐿 + 1, . . . , 𝛿𝐿 + 4}
26:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿, 𝑟𝑑 (A_RDIFF), 𝛿𝐿 + 1)}

27:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿 + 1,𝑤𝑟 (R[pc]), 𝛿𝐿 + 2)}

28:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿 + 1,𝑤𝑟 (R ′[pc]), 𝛿𝐿 + 3)}

29:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿 + 2, 𝑟𝑑 (A_HALT), 𝛿𝐿 + 4)}

30:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿 + 3, 𝑟𝑑 (A_LOOP), 𝛿𝐿 + 4)}

31:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿 + 𝑖, 𝜖, 𝛿𝐿 + 𝑖) | 0 ≤ 𝑖 ≤ 3}

32: 𝛿𝐿 = 𝛿𝐿 + 4
33: else

34: Δ = Δ ∪ {𝛿𝐿 + 1, . . . , 𝛿𝐿 + 3}
35:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿,𝑤𝑟 (joutd), 𝛿𝐿 + 1)}

36:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿,𝑤𝑟 (joutd ′), 𝛿𝐿 + 2)}

37:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿 + 1, 𝑟𝑑 (A_HALT), 𝛿𝐿 + 3)}

38:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿 + 2, 𝑟𝑑 (A_LOOP), 𝛿𝐿 + 3)}

39:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿 + 𝑖, 𝜖, 𝛿𝐿 + 𝑖) | 0 ≤ 𝑖 ≤ 2}

40: 𝛿𝐿 = 𝛿𝐿 + 3
41: end if

42: continues ...

, Vol. 1, No. 1, Article . Publication date: March 2022.



70 Busi et al.

43: ... continued

44: else if 𝛽 = jmpOut!(Δ𝑡 ;R) ∧ 𝛽 ′ = jmpOut!(Δ𝑡 ′;R) ∧ Δ𝑡 ≠ Δ𝑡 ′ then

45: ⊲ Let D𝐿 ⊢ INIT𝐶 [M𝑀 ]
𝛽𝑠
====⇒⇒∗ 𝑐1 and D𝐿̸ 𝐼 ⊢ 𝑐1

jmpOut!(Δ𝑡̸ 𝐼 ;R)
================⇒⇒ 𝑐 ′

1
.

46: ⊲ Let D𝐿 ⊢ INIT𝐶 [M𝑀′ ]
𝛽𝑠
====⇒⇒∗ 𝑐2 and D𝐿̸ 𝐼 ⊢ 𝑐2

jmpOut!(Δ𝑡 ′̸𝐼 ;R)
================⇒⇒ 𝑐 ′

2
.

47: 𝑡 = 𝑡 ′
1
− 𝑡1

48: 𝑡 ′ = 𝑡 ′
2
− 𝑡2

49: Δ = Δ ∪ {𝛿𝐿 + 1, . . . , 𝛿𝐿 +max (𝑡, 𝑡 ′) + 1}
50:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿 +min(𝑡, 𝑡 ′), 𝑟𝑑 (A_HALT), 𝛿𝐿 +max (𝑡, 𝑡 ′) + 1)}

51:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿 +max (𝑡, 𝑡 ′), 𝑟𝑑 (A_LOOP), 𝛿𝐿 +max (𝑡, 𝑡 ′) + 1))}

52:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿 + 𝑘, 𝜖, 𝛿𝐿 + 𝑘 + 1) | 0 ≤ 𝑘 ≤ max (𝑖, 𝑖 ′)}

53: 𝛿𝐿 = 𝛿𝐿 +max (𝑡, 𝑡 ′) + 1
54: else if 𝛽 = • ∧ 𝛽 ′ = jmpOut!(Δ𝑡 ;R) then
55: if term then

56: Δ = Δ ∪ {𝛿𝐿 + 1, . . . , 𝛿𝐿 + 2}
57:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿,𝑤𝑟 (A_EP), 𝛿𝐿 + 1)}

58:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿 + 1, 𝑟𝑑 (A_HALT), 𝛿𝐿 + 2)}

59:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿, 𝑟𝑑 (A_LOOP), 𝛿𝐿 + 2)}

60:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿,𝑤𝑟 (𝑤), 𝛿𝐿) | 𝑤 ∈ Word \ {A_EP}}

61:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿 + 𝑖, 𝜖, 𝛿𝐿 + 𝑖) | 0 ≤ 𝑖 ≤ 1}

62: 𝛿𝐿 = 𝛿𝐿 + 2
63: else

64: Δ = Δ ∪ {𝛿𝐿 + 1}
65:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿, 𝑟𝑑 (A_HALT), 𝛿𝐿 + 1)}

66:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿,𝑤𝑟 (𝑤), 𝛿𝐿) | 𝑤 ∈ Word}

67:

·
{𝐷 =

·
{𝐷 ∪ {(𝛿𝐿, 𝜖, 𝛿𝐿)}

68: 𝛿𝐿 = 𝛿𝐿 + 2
69: end if

70: else if 𝛽 = jmpOut!(Δ𝑡 ;R) ∧ 𝛽 ′ = 𝜀 then
71: ⊲ As the previous case, with term

′
in place of term.

72: else

73: return ⊥
74: end if

75: D = ⟨Δ, 0, ·{𝐷⟩
76: return D
77: end procedure

• Case 𝛽𝑖 = 𝛽
′
𝑖 = jmpOut!(Δ𝑡 ;R). The device is simply updated with a loop on 𝛿𝐿 with action

𝜖 and ignores any write operation (so as to deal with R[pc] = joutd or R[pc] = joutd
′
).

Figure 11b pictorially represents this case.

Then, when 𝛽𝑠 ends, the algorithm analyses 𝛽 and 𝛽 ′ and sets up the device to differentiate the

two modules:

• Case 𝛽 = jmpOut!(Δ𝑡 ;R) ∧ 𝛽 ′ = jmpOut!(Δ𝑡 ′;R ′) ∧ (∃r.R[r] ≠ R ′[r]). In this case the

differentiation is due to a register, and two further sub-cases may arise, depending on whether

it is pc. If the register is pc then the device waits for the differentiating value for the context

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 71

(that is executing code at joutd and joutd
′
by construction) and based on that value, it replies

with either A_HALT (line 37) or A_LOOP (line 38). Instead, if the differentiation register is not pc
then the code of the context is waiting for the next program counter and the context replies

with A_RDIFF. From this address we find the code that sends the differentiating register

and, based on that value, the device replies with either A_HALT (line 29) or A_LOOP (line 30).
Figures 12a and 12b may help the intuition.

• Case 𝛽 = jmpOut!(Δ𝑡 ;R) ∧ 𝛽 ′ = jmpOut!(Δ𝑡 ′;R) ∧ Δ𝑡 ≠ Δ𝑡 ′. This case is probably the

most interesting since differentiation happens in SancusL due to timings. However, different

timings in SancusL correspond to different timings in Sancus
H
(as observed in proof of

Property A.22), and the device is programmed to reply with either A_HALT (line 50) or A_LOOP
(line 51) depending on the time value. Figure 12c intuitively depicts this situation.

• Case 𝛽 = • ∧ 𝛽 ′ = jmpOut!(Δ𝑡 ;R). In this case • may occur during an interrupt service

routine. We then have two sub-cases, depending on whether the first module terminates

when executed in a context with no interrupts after the last jump into protected mode or not

(i.e., encoded by the value of term). When term holds, the first module makes the CPU go

through an exception handling configuration that jumps to A_EP and the device instructs the

code to jump to A_HALT (line 58), while for the second module the CPU jumps to any other

location (A_EP is chosen to be different from any other jump out address!) and is instructed

to jump to A_LOOP (line 59). When term does not hold, the first module diverges, while for

the second module the CPU jumps to a location in unprotected code and it is instructed to

jump to A_HALT (line 65). Figures 12d and 12e may help the intuition.

• Case 𝛽 = jmpOut!(Δ𝑡 ;R) ∧ 𝛽 ′ = 𝜀. Analogous to the previous case.

• Otherwise. No other cases may arise, as noted in Property A.21.

Finally, the algorithm returns a device with the set of states Δ, the initial state 0 and the transition
function built as just explained.

Property A.21. LetM𝑀

𝑇
≠M𝑀′ , 𝛽, 𝛽

′
be distinguishing traces ofM𝑀 andM𝑀′ originated by

some context 𝐶𝐿 and let term and term
′
be any pair of booleans, then

D = BuildDevice(𝛽, 𝛽 ′, joutd, joutd ′, term, term′,𝐶𝐿) ≠ ⊥ and D is an I/O device.

Proof. We first show that BuildDevice never returns⊥when 𝛽 and 𝛽
′
are distinguishing traces.

For that, let 𝛽 = 𝛽𝑠 · 𝛽 · 𝛽𝑒 and 𝛽
′
= 𝛽𝑠 · 𝛽 ′ · 𝛽

′
𝑒 , and note that the only cases for which ⊥ is returned

are the following:

• Case 𝛽 = 𝛽 ′ = •. Since 𝛽 ≠ 𝛽 ′ by hypothesis, this case never happens.

• Case 𝛽 = jmpOut!(Δ𝑡 ;R) and 𝛽 ′ = jmpIn?(R ′) (or vice versa). This case never happens due
to Proposition A.7.

• Case {•, jmpIn?(R)} ∋ 𝛽 ≠ 𝛽 ′ ∈ {•, jmpIn?(R ′)}. Roughly, this means that the same context

performed two different actions upon observation of the same trace (𝛽𝑠 ). Formally, we know

by hypothesis that for the context 𝐶𝐿 = ⟨M𝐶 ,D𝐿⟩

D𝐿 ⊢ INIT𝐶𝐿 [M𝑀 ]
𝛽𝑠
====⇒⇒∗ 𝑐1

D𝐿 ⊢ INIT𝐶𝐿 [M𝑀′ ]
𝛽𝑠
====⇒⇒∗ 𝑐2.

with 𝑐1 ⊢mode UM and 𝑐2 ⊢mode UM. Property A.20 guarantees that 𝑐1
𝑈≈ 𝑐2, thus by Property A.19

the same observable must originate from both 𝑐1 and 𝑐2, but that is against the hypothesis

that 𝛽 ≠ 𝛽 ′.

, Vol. 1, No. 1, Article . Publication date: March 2022.



72 Busi et al.

Finally, it is easy to see thatD returned by BuildDevice is an actual device. Indeed, its set of states

Δ is finite (the algorithm always terminates in a finite number of steps and each step adds a finite

number of state); its initial state 0 belongs to Δ; no int? transitions are ever added and a single

rd (𝑤) transition outgoes from any given state: thus the transition relation respects the definition

of I/O devices. □

The following property states that the context built by joining together the results of the two

algorithms above is a distinguishing one:

Property A.22. LetM𝑀

𝑇
≠M𝑀′ ; let 𝐶

𝐿 = ⟨M𝐶 ,D𝐿⟩; let

D𝐿 ⊢ INIT𝐶𝐿 [M𝑀 ]
𝛽𝑠
====⇒⇒∗ 𝑐 ′

1

𝛽
====⇒⇒ 𝑐1

D𝐿 ⊢ INIT𝐶𝐿 [M𝑀′ ]
𝛽𝑠
====⇒⇒∗ 𝑐 ′

2

𝛽′
====⇒⇒ 𝑐2

be such that 𝛽 = 𝛽𝑠 · 𝛽 · 𝛽𝑒 and 𝛽
′
= 𝛽𝑠 · 𝛽 ′ · 𝛽𝑒 distinguishing traces ofM𝑀 andM𝑀′ ; and let

term ⇐⇒ D𝐿
̸ 𝐼 ⊢ 𝑐 ′1 →∗ HALT

term
′ ⇐⇒ D𝐿

̸ 𝐼 ⊢ 𝑐 ′2 →∗ HALT.

If (M𝐶 , joutd, joutd
′) = BuildMem(𝛽, 𝛽 ′), D = BuildDevice(𝛽, 𝛽 ′, joutd, joutd ′, term, term′) and

𝐶𝐻 = ⟨M𝐶 ,D⟩, then 𝐶𝐻 [M𝑀 ]⇓H and 𝐶𝐻 [M𝑀′] ̸⇓H (or vice versa).

Proof. Assume wlog that 𝐶𝐿 [M𝑀 ]⇓L and 𝐶𝐿 [M𝑀′] ̸⇓L. By Lemma 6.5

𝐶𝐻 [M𝑀 ]⇓H ⇐⇒ 𝐶𝐻 ̸ 𝐼 [M𝑀 ]⇓L and 𝐶𝐻 [M𝑀′]⇓H ⇐⇒ 𝐶𝐻 ̸ 𝐼 [M𝑀′]⇓L

It suffices thus proving that 𝐶𝐻 ̸ 𝐼 distinguishesM𝑀 andM𝑀′ , i.e., 𝐶
𝐻 ̸ 𝐼 [M𝑀 ]⇓L and 𝐶𝐻 ̸ 𝐼 [M𝑀′] ̸⇓L

or vice versa.

We show by induction on the length 2𝑛 + 1 of 𝛽𝑠 that if

D𝐿 ⊢ INIT𝐶𝐿 [M𝑀 ]
𝛽𝑠
====⇒⇒∗ 𝑐 ′

1

D𝐿 ⊢ INIT𝐶𝐿 [M𝑀′ ]
𝛽𝑠
====⇒⇒∗ 𝑐 ′

2

then ∃𝛽 ′𝑠 s.t.

𝐷𝐻 ̸ 𝐼 ⊢ INIT𝐶𝐻 ̸ 𝐼 [M𝑀 ]
𝛽
′
𝑠

====⇒⇒∗ 𝑐3 and

𝐷𝐻 ̸ 𝐼 ⊢ INIT𝐶𝐻 ̸ 𝐼 [M𝑀′ ]
𝛽
′
𝑠

====⇒⇒∗ 𝑐4 with 𝛽
′
𝑠 ≈ 𝛽𝑠 (see Definition A.4).

Note that the length of 𝛽𝑠 must be odd as a consequence of Properties A.20 and A.19 and no •
appears in it since otherwise it would mean that 𝛽 = 𝛽

′
.

• Case 𝑛 = 0. Then, 𝛽𝑠 is jmpIn?(R). Thus, Algorithm 1 guarantees that the current instruction

is IN pc (at address A_EP) and its execution leads to address A_JIN (by Algorithm 2) and the

same jmpIn?(R) is observed starting from both INIT𝐶𝐻 ̸ 𝐼 [M𝑀 ] and INIT𝐶𝐻 ̸ 𝐼 [M𝑀′ ] and also

𝛽
′
𝑠 ≈ 𝛽𝑠 .

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 73

• Case 𝑛 = 𝑛′ + 1. If

D𝐿 ⊢ INIT𝐶𝐿 [M𝑀 ]
𝛽
′′
𝑠

=====⇒⇒∗ 𝑐 ′′
1
∧ D𝐿 ⊢ INIT𝐶𝐿 [M𝑀′ ]

𝛽
′′
𝑠

=====⇒⇒∗ 𝑐 ′′′
2

⇓

𝐷𝐻 ̸ 𝐼 ⊢ INIT𝐶𝐻 ̸ 𝐼 [M𝑀 ]
𝛽
′′′
𝑠

=====⇒⇒∗ 𝑐 ′
3
∧ 𝐷𝐻 ̸ 𝐼 ⊢ INIT𝐶𝐻 ̸ 𝐼 [M𝑀′ ]

𝛽
′′′
𝑠

=====⇒⇒∗ 𝑐 ′
4
∧ 𝛽 ′′′𝑠 ≈ 𝛽

′′
𝑠 (IHP)

then

D𝐿 ⊢ INIT𝐶𝐿 [M𝑀 ]
𝛽
′′
𝑠

=====⇒⇒∗ 𝑐 ′′
1

𝛽
′′

=====⇒⇒∗ 𝑐 ′
1
∧ D𝐿 ⊢ INIT𝐶𝐿 [M𝑀′ ]

𝛽
′′

=====⇒⇒∗ 𝑐 ′′
2

𝛽
′′

=====⇒⇒∗ 𝑐 ′
2

⇓

𝐷𝐻 ̸ 𝐼 ⊢ INIT𝐶𝐻 ̸ 𝐼 [M𝑀 ]
𝛽
′′′
𝑠

=====⇒⇒∗ 𝑐 ′
3

𝛽
′′′

=====⇒⇒∗ 𝑐3 ∧ 𝐷𝐻 ̸ 𝐼 ⊢ INIT𝐶𝐻 ̸ 𝐼 [M𝑀′ ]
𝛽
′′′
𝑠

=====⇒⇒∗ 𝑐 ′
4

𝛽
′′′

=====⇒⇒∗ 𝑐4 ∧ 𝛽
′′′
𝑠 · 𝛽

′′′ ≈ 𝛽 ′′𝑠 · 𝛽
′′
.

Note that it must be that 𝛽
′′
= jmpOut!(Δ𝑡 ;R) · jmpIn?(R ′) by Proposition A.7 and because

we never observe • in the common prefix. By (IHP) and Property A.11 we have 𝑐 ′′
1

𝑃≈ 𝑐 ′
3
and

𝑐 ′′
2

𝑃≈ 𝑐 ′
4
. Thus, by Properties A.9 and A.8, it must be that jmpOut!(Δ𝑡 ′;R) is observed when

starting in 𝑐 ′
3
and jmpOut!(Δ𝑡 ′′;R) is observed when starting in 𝑐 ′

4
(for some Δ𝑡 ′ and Δ𝑡 ′′).

By definition of coarse-grained traces, each of the computations above is generated by

fine-grained trace in the form (we write _ to denote a generic configuration):

D𝐿 ⊢ _ jmpIn?(R′′)
=============⇒ 𝑐 ′′

1
= 𝑐
(0)
1

𝛼
(0)
1

======⇒ · · ·
𝛼
(n
1
−1)

1

========⇒ 𝑐
(𝑛1)
1

jmpOut!(k (n1 )
1

;R)
=================⇒ 𝑐 (𝑛1)+1

𝜉 · · ·𝜉jmpIn?(R′)
================⇒∗ 𝑐 ′

1

D𝐿 ⊢ _ jmpIn?(R′′)
=============⇒ 𝑐 ′′

2
= 𝑐
(0)
2

𝛼
(0)
2

======⇒ · · ·
𝛼
(n
2
−1)

2

========⇒ 𝑐
(𝑛2)
2

jmpOut!(k (n2 )
2

;R)
=================⇒ 𝑐 (𝑛2)+1

𝜉 · · ·𝜉jmpIn?(R′)
================⇒∗ 𝑐 ′

2

𝐷𝐻 ̸ 𝐼 ⊢ _
jmpIn?(R′′)
=============⇒ 𝑐 ′

3
= 𝑐
(0)
3

𝛼
(0)
3

======⇒ · · ·
𝛼
(n
3
−1)

3

========⇒ 𝑐
(𝑛3)
3

jmpOut!(k (n3 )
3

;R)
=================⇒ 𝑐

(𝑛3+1)
3

𝐷𝐻 ̸ 𝐼 ⊢ _
jmpIn?(R′′)
=============⇒ 𝑐 ′

4
= 𝑐
(0)
4

𝛼
(0)
4

======⇒ · · ·
𝛼
(n
4
−1)

4

========⇒ 𝑐
(𝑛4)
4

jmpOut!(k (n4 )
4

;R)
=================⇒ 𝑐

(𝑛4+1)
4

.

Thus, due to Property 6.1 and by hypothesis, it holds that Δ𝑡 =
∑𝑛1
𝑖=0
𝛾 (𝑐 (𝑖)

1
) + (11 + MAX_TIME) ·

|I
𝛼
(0)
1
· · ·𝛼 (𝑛1 )

1

| = ∑𝑛2
𝑖=0
𝛾 (𝑐 (𝑖)

2
) + (11 + MAX_TIME) · |I

𝛼
(0)
2
· · ·𝛼 (𝑛2 )

2

|. Also, since by (IHP) and Proper-

ties A.20 and A.19 it follows that 𝑐
(0)
1

= 𝑐 ′′
1

𝑈≈ 𝑐 ′′
2
= 𝑐
(0)
2

, we know |I
𝛼
(0)
1
· · ·𝛼 (𝑛1 )

1

| = |I
𝛼
(0)
2
· · ·𝛼 (𝑛2 )

2

|

(by Property A.18) and thus

∑𝑛1
𝑖=0
𝛾 (𝑐 (𝑖)

1
) = ∑𝑛2

𝑖=0
𝛾 (𝑐 (𝑖)

2
). Moreover, by (IHP) and Property A.11,

we get 𝑐
(0)
1

= 𝑐 ′′
1

𝑃≈ 𝑐 ′
3
= 𝑐
(0)
3

and 𝑐
(0)
2

= 𝑐 ′′
2

𝑃≈ 𝑐 ′
4
= 𝑐
(0)
4

. Now, as a consequence of Proper-

ties A.3, A.9 and A.8 we know that Δ𝑡 ′ =
∑𝑛3
𝑖=0
𝛾 (𝑐 (𝑖)

3
) =

∑𝑛1
𝑖=0
𝛾 (𝑐 (𝑖)

1
) =

∑𝑛2
𝑖=0
𝛾 (𝑐 (𝑖)

2
) =∑𝑛3

𝑖=0
𝛾 (𝑐 (𝑖)

3
) = Δ𝑡 ′′. By (IHP) and since the first observable after 𝑐 ′

3
and 𝑐 ′

4
is the same, by

Property A.20 it follows 𝑐
(𝑛3+1)
3

𝑈≈ 𝑐 (𝑛4+1)
4

. Thus, due to Property A.19, we get that the same

coarse-grained observable jmpIn?(R ′′′) is observed after 𝑐
(𝑛3+1)
3

and 𝑐
(𝑛4+1)
4

. Finally, R ′′′ is
equal to R ′ since after any jmpOut!(·; ·) a IN pc instruction is executed and its execution

leads to address A_JIN (by Algorithm 2) that performs jmpIn?(R), and the thesis follows.

, Vol. 1, No. 1, Article . Publication date: March 2022.



74 Busi et al.

Since we proved that

𝐷𝐻 ̸ 𝐼 ⊢ INIT𝐶𝐻 ̸ 𝐼 [M𝑀 ]
𝛽
′
𝑠

====⇒⇒∗ 𝑐3 and

𝐷𝐻 ̸ 𝐼 ⊢ INIT𝐶𝐻 ̸ 𝐼 [M𝑀′ ]
𝛽
′
𝑠

====⇒⇒∗ 𝑐4

we also have that 𝑐3
𝑈≈ 𝑐4 by Properties A.20 and A.19.

Let 𝐷𝐻 ̸ 𝐼 ⊢ 𝑐3
𝛽
3

====⇒⇒∗ 𝑐 ′′
3
and 𝐷𝐻 ̸ 𝐼 ⊢ 𝑐4

𝛽
4

====⇒⇒∗ 𝑐 ′′
4
, with 𝛽

3
and 𝛽

4
either empty or made of a single

observable (either • or jmpOut!(·; ·), since no difference cannot be observed upon jmpIn?(·) as
observed above). By exhaustive cases on 𝛽 and 𝛽 ′ we have:

• Case 𝛽 = • and 𝛽 ′ = jmpOut!(Δ𝑡 ′′′;R ′′). Note that, since term ⇐⇒ D𝐿̸ 𝐼 ⊢ 𝑐 ′1 →∗ HALT
and 𝑐 ′

1

𝑃≈ 𝑐3 (by Properties A.10 and A.11), we get term ⇐⇒ D𝐻 ̸ 𝐼 ⊢ 𝑐3 →∗ HALT by

Property A.8 and since neither D𝐿̸ 𝐼 nor D𝐻 ̸ 𝐼 raise any interrupt. Thus, by definition of D𝐿

(cf. Algorithm 2) the context 𝐶𝐻 distinguishes the two modules.

• Case 𝛽 = jmpOut!(Δ𝑡 ′′′;R ′′) and 𝛽 ′ = 𝜀. Similar to the previous case (with term
′
in place of

term).

• Case 𝛽 = jmpOut!(Δ𝑡 ′′′;R ′′) and 𝛽 ′ = jmpOut!(Δ𝑡 ′′′;R ′′′) with R ′′ ≠ R ′′′. Since 𝑐 ′
1

𝑃≈ 𝑐3
and 𝑐 ′

2

𝑃≈ 𝑐4, it must be that 𝛽
3
= jmpOut!(Δ𝑡 𝑣 ;R ′′) and 𝛽

4
= jmpOut!(Δ𝑡 𝑣𝑖 ;R ′′). Thus, by

Algorithms 1 and 2, 𝐶𝐻 distinguishes the two modules.

• Case 𝛽 = jmpOut!(Δ𝑡 ′′′;R ′′) and 𝛽 ′ = jmpOut!(Δ𝑡𝑖𝑣 ;R ′′). In this case it holds that 𝛽
3
=

jmpOut!(Δ𝑡 𝑣 ;R ′′) and 𝛽
4
= jmpOut!(Δ𝑡 𝑣𝑖 ;R ′′) with the same timings of the instructions (by

Property 6.1). Since 𝑐3
𝑈≈ 𝑐4, the two times must differ one from each other otherwise, by

the counterpositive of Property A.17, we would getM𝑀
𝑇
= M𝑀′ . Again, by definition of

Algorithms 1 and 2, one computation converges and one diverges, hence 𝐶𝐻 distinguishes

the two modules.

□

A.9 Proofs and additional definitions of Section 7

Property A.23. Let 𝑐 and 𝑐 ′ be configurations such that 𝑐, 𝑐 ′ ⊢mode UM. If 𝑐
𝑈≈ 𝑐 ′ then 𝑐 𝐿

= 𝑐 ′.

Proof. Since 𝑐, 𝑐 ′ ⊢mode UM, the property follows directly from Definitions A.3 and 7.1. □

Lemma 7.3. IfM𝑀 ≃L M𝑀′ thenM𝑀 ≈ISM𝑀′ .

Proof. Assuming contextual equivalence in SancusL and that:

D ⊢ INIT𝐶 [M𝑀 ] →∗ 𝑐 → HALT ∧ D ⊢ INIT𝐶 [M𝑀′ ] →
∗ 𝑐 ′→ HALT,

our goal is to prove that 𝑐
𝐿
= 𝑐 ′. From contextual equivalence it follows that M𝑀

𝑇
= M𝑀′ . By

Lemma 6.11 we also know that for some 𝑐 ′′:

D ⊢ INIT𝐶 [M𝑀 ]
𝛽
====⇒⇒∗ 𝑐 ∧ D ⊢ INIT𝐶 [M𝑀′ ]

𝛽
====⇒⇒∗ 𝑐 ′′.

Proposition A.6 and Property A.20 guarantee that 𝑐
𝑈≈ 𝑐 ′′. Then, since 𝑐 → HALT, it must be

𝑐 ′′→ HALT. For that and by determinism of the operational semantics of SancusL we have that

𝑐 ′ = 𝑐 ′′ and 𝑐
𝑈≈ 𝑐 ′, which by Property A.23 implies 𝑐

𝐿
= 𝑐 ′. □

, Vol. 1, No. 1, Article . Publication date: March 2022.



Securing Interruptible Enclaved Execution on Small Microprocessors 75

Theorem 7.4. IfM𝑀 ≃H M𝑀′ thenM𝑀 ≈ISM𝑀′ .

Proof. SinceM𝑀 ≃H M𝑀′ , by Theorem 6.3 we also have thatM𝑀 ≃L M𝑀′ and Lemma 7.3

concludes the proof. □

Theorem 7.6.

(1) IfM𝑀 ≃L M𝑀′, thenM𝑀 ≈SSM𝑀′ and (2) ifM𝑀 ≈SSM𝑀′, thenM𝑀 ≃H M𝑀′

Proof.

(1) Lemma 7.3 guarantees thatM𝑀 ≈IS M𝑀′ . We now set out to show thatM𝑀 ≈SS M𝑀′ is

implied byM𝑀 ≈ISM𝑀′ in our setting. Indeed, by definition of SSNI we can assume (wlog)

that D ⊢ INIT𝐶 [M𝑀 ] →∗ 𝑐 → HALT, i.e., 𝐶 [M𝑀 ]⇓L. By hypothesis it also follows that

𝐶 [M𝑀′]⇓L. For that and by definition of ISNI, it then followsM𝑀 ≈SSM𝑀′ .

(2) By definition of SSNI it follows that for any 𝐶 if 𝐶 [M𝑀 ]⇓H, then 𝐶 [M𝑀′]⇓H and viceversa,

i.e., 𝐶 [M𝑀 ]⇓H ⇐⇒ 𝐶 [M𝑀′]⇓H which coincides with the definition ofM𝑀 ≃H M𝑀′ . □

Theorem 7.10. LetM𝑃 be a module program, then

(1) if ∀M𝐷 ,M𝐷′ . (M𝑃 ◀M𝐷 ) ≃L (M𝑃 ◀M𝐷′), then ⊢LUSSNI M𝑃 ; and

(2) if ⊢H
USSNI

M𝑃 , then ∀M𝐷 ,M𝐷′ . (M𝑃 ◀M𝐷 ) ≃H (M𝑃 ◀M𝐷′).

Proof.

(1) From the hypothesis and by definition of ≃L, for any 𝑐:
D ⊢ INIT𝐶 [M𝑃◀M𝐷 ] →∗ 𝑐 → HALT⇒ ∃𝑐 ′. D ⊢ INIT𝐶 [M𝑃◀M𝐷′ ] →

∗ 𝑐 ′→ HALT

and vice versa.

Now let 𝑐 and 𝑐 ′ be a pair of configurations respecting the implication above. Note that both

𝑐 ⊢mode UM and 𝑐 ′ ⊢mode UM hold, since unprotected mode configurations are the only ones

from which HALT is reachable in a single step. For the thesis to hold, it suffices to show

that 𝑐
𝐿
= 𝑐 ′. Since INIT𝐶 [M𝑃◀M𝐷 ] ⊢mode UM, INIT𝐶 [M𝑃◀M𝐷 ]

𝑈≈ INIT𝐶 [M𝑃◀M𝐷′ ] , repeated
applications of Property A.19 guarantee that

D ⊢ INIT𝐶 [M𝑃◀M𝐷 ]
𝛽
====⇒⇒∗ 𝑐 → HALT ∧ D ⊢ INIT𝐶 [M𝑃◀M𝐷′ ]

𝛽
====⇒⇒∗ 𝑐 ′→ HALT.

By Property A.20 it holds that 𝑐
𝑈≈ 𝑐 ′, thus easily 𝑐 𝐿

= 𝑐 ′ because of Property A.23.

(2) By definition of USSNI it follows that for any 𝐶 if 𝐶 [M𝑃 ◀M𝐷 ]⇓H, then 𝐶 [M𝑃 ◀M𝐷′]⇓H
and viceversa by symmetry, i.e., 𝐶 [M𝑀 ]⇓H ⇐⇒ 𝐶 [M𝑀′]⇓H which coincides with the

definition ofM𝑀 ≃H M𝑀′ . □

Property A.24.

(1) If D ⊢ 𝑐 𝛽
====⇒⇒∗ 𝑐 ′ then ∃!𝑡, 𝐾 . D ⊢ 𝑐 ↠𝑡

𝐾
𝑐 ′ ∧ 𝛽 ∝ 𝐾 .

(2) If D ⊢ 𝑐 ↠𝑡
𝐾
𝑐 ′ then ∃𝛽. D ⊢ 𝑐 𝛽

====⇒⇒∗ 𝑐 ′ ∧ 𝛽 ∝ 𝐾 .
where

𝛽 ∝ 𝐾 iff |𝛽 | =
{
𝐾 𝛽 ≠ 𝛽

′ · •
𝐾 + 1 o.w.

Proof.

(1) By determinism, there is a single computation 𝜒 from 𝑐 to 𝑐 ′ generating 𝛽 . From uniqueness

of 𝜒 and by Definition 7.12, one gets existence and uniqueness of 𝑡 and 𝐾 .

, Vol. 1, No. 1, Article . Publication date: March 2022.



76 Busi et al.

(2) Directly follows from Definition 7.12 and Figure 9. □

Lemma 7.14.

(1) ifM𝑀 ≃L M𝑀′, thenM𝑀 ≈SSSM𝑀′ and (2) ifM𝑀 ≈SSSM𝑀′, thenM𝑀 ≃H M𝑀′

Proof.

(1) Assuming contextual equivalence in SancusL and that:

D ⊢ INIT𝐶 [M𝑀 ] ↠
𝑡
𝐾 𝑐,

our goal is to prove that 𝑐
𝐿
= 𝑐 ′. From contextual equivalence it follows thatM𝑀

𝑇
=M𝑀′ . By

Lemma 6.11 we also know that for some 𝑐 ′′:

D ⊢ INIT𝐶 [M𝑀 ]
𝛽
====⇒⇒∗ 𝑐 =⇒ D ⊢ INIT𝐶 [M𝑀 ]

𝛽
====⇒⇒∗ 𝑐 ′′.

Proposition A.6 and Property A.20 guarantee that 𝑐
𝑈≈ 𝑐 ′′. By Property A.24.(1) there exist

unique 𝑡 and 𝐾 such that

D ⊢ INIT𝐶 [M𝑀 ] ↠
𝑡
𝐾 𝑐

and

D ⊢ INIT𝐶 [M𝑀′ ] ↠
𝑡
𝐾 𝑐
′′

thus by determinism of operational semantics of SancusL, we have that 𝑐 ′′ = 𝑐 ′ and 𝑐
𝑈≈ 𝑐 ′,

which by Property A.23 implies 𝑐
𝐿
= 𝑐 ′.

(2) Suppose that 𝐶 [M𝑀 ]⇓H and 𝐶 [M𝑀′] ̸⇓H. But then they cannot beM𝑀 ≈SSS M𝑀′ (since

HALT is in relation just with itself), which contradicts the hypothesis. □

Theorem 7.17. The following relations are equivalent:

(1)M𝑀
𝑊𝑇
= M𝑀′ (2)M𝑀

𝑇
=M𝑀′ (3)M𝑀 ≃L M𝑀′ (4)M𝑀 ≃H M𝑀′

Proof. We only prove (1) ⇐⇒ (2); The other equivalences follow from Theorem 6.3.

• (1) ⇐ (2). SinceM𝑀
𝑇
=M𝑀′ , by Lemma 6.11 we know that:

D ⊢ INIT𝐶 [M𝑀 ]
𝛽
====⇒⇒∗ 𝑐 ⇐⇒ D ⊢ INIT𝐶 [M𝑀′ ]

𝛽
====⇒⇒∗ 𝑐 ′.

Thus, ∀𝐶.WTr (𝐶 [M𝑀 ]) = WTr (𝐶 [M𝑀′]) as requested.
• (1) ⇒ (2). Easy. □

, Vol. 1, No. 1, Article . Publication date: March 2022.


	Abstract
	1 Introduction
	2 Background
	2.1 Enclaved execution
	2.2 Interrupt-based attacks

	3 Overview of our approach
	3.1 Sancus model
	3.2 Security definitions
	3.3 Secure interruptible Sancus

	4 The formal model of the architecture
	4.1 Memory and memory layout
	4.2 Register files
	4.3 I/O Devices
	4.4 Software modules, contexts and whole programs
	4.5 Instruction set
	4.6 Configurations
	4.7 CPU mode
	4.8 Memory access control

	5 The semantics of SancusHand SancusLand their interrupt logic
	5.1 The Operational Semantics of SancusH
	5.2 The Operational Semantics of SancusL
	5.3 A progress property

	6 The security theorem
	6.1 Reflection of behaviors
	6.2 Preservation of behaviors

	7 Preservation of hyperproperties
	7.1 Take one: termination-insensitive, time-sensitive non-interference
	7.2 Take two: termination- and time-sensitive non-interference
	7.3 Take three: stepwise termination- and time-sensitive non-interference
	7.4 Take five: hypersafety

	8 Implementation and evaluation
	9 Discussion
	9.1 On the use of full abstraction as a security objective
	9.2 The impact of our simplifications
	9.3 Extending to more complex processors

	10 Related Work
	11 Conclusions and future work
	Acknowledgments
	References
	A Additional definitions and results
	A.1 The device of Section 4.6.1 is deterministic
	A.2 Complete operational semantics rules of SancusH(Section 5.1)
	A.3 Complete operational semantics rules of SancusL(Section 5.2)
	A.4 Proof of progress of Section 5.3
	A.5 Proofs and additional definition for Section 6.1
	A.6 Preliminary definitions and proofs for Lemmata 6.9 and 6.10
	A.7 Proofs of Lemmata 6.9 and 6.10 of Section 6.2.2
	A.8 Proof of Property 6.2 and Algorithm 2 of Section 6.2.3
	A.9 Proofs and additional definitions of Section 7


