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Evolution of “side-channel attack” occurrences in Google Scholar
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Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/
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Security in a post-Meltdown world

Classic attacker-defender race

Exploit and patch application-level vulnerabilities (memory safety, side-channels)
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Security in a post-Meltdown world

Game changer Meltdown

Free universal read primitive → kernel page-table isolation
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Rumors: Meltdown immunity for SGX enclaves?

“[enclaves] remain protected and completely secure”

— International Business Times, February 2018

“[enclave memory accesses] redirected to an abort page, which has no value”

— Anjuna Security, Inc., March 2018
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https://web.archive.org/web/20180617022540/https://www.ibtimes.co.uk/meltdown-melted-down-everything-except-one-thing-1663785
https://web.archive.org/web/20180720144203/https://www.anjuna.io/blog/2018/2/7/meltdown-spectre-sgx


Rumors: Meltdown immunity for SGX enclaves?

https://wired.com and https://arstechnica.com
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Intel SGX promise: Hardware-level isolation and attestation

Mem HDD

OS kernel

Trusted Untrusted

CPU

AppApp

TPM

Hypervisor

Enclave app

4 / 17



Intel SGX promise: Hardware-level isolation and attestation

Mem HDD

OS kernel

Trusted Untrusted

CPU

AppApp

TPM

Hypervisor

Enclave app

4 / 17





Road map

1 Introduction

2 The Foreshadow attack

3 Demo

4 Dismantling Intel SGX security objectives

5 Foreshadow-NG implications

6 Mitigations and conclusion



Building Foreshadow
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Building Foreshadow

L1 terminal fault challenges
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Meltdown recap: Transiently encoding unauthorized memory

Unauthorized access
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Meltdown recap: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array
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Meltdown recap: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window Exception

(discard architectural state)
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Meltdown recap: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

cache hit

Exception handler
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Challenge #1: Intel SGX abort page semantics
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Challenge #1: Intel SGX abort page semantics

Untrusted world view

Enclaved memory reads 0xFF

Meltdown “bounces back” (∼ mirror)

Intra-enclave view

Access enclaved + unprotected memory

SGXpectre in-enclave code abuse
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Building Foreshadow: Evade the abort page

Note: SGX MMU sanitizes untrusted address translation

SGX?

Abort page semantics:
An attempt to read from a non-existent or disallowed resource returns all ones for data
(abort page). An attempt to write to a non-existent or disallowed physical resource is
dropped. This behavior is unrelated to exception type abort (the others being Fault and Trap).

https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-development-basics
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Building Foreshadow: Evade the abort page

Note: SGX MMU sanitizes untrusted address translation

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX Security 2017
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Building Foreshadow: Evade the abort page

Straw man: (Speculative) accesses in non-enclave mode are dropped

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX Security 2017
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Building Foreshadow: Evade the abort page

Stone man: Bypass abort page via untrusted page table

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX Security 2017
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Building Foreshadow: Evade the abort page

Stone man: Bypass abort page via untrusted page table

Unprivileged system call

mprotect( secret_ptr & 0xFFF, 0x1000, PROT_NONE );

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX Security 2017
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Challenge #2: Strict caching requirements
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Challenge #2: Strict caching requirements

L1 terminal fault

Only enclave loads served from L1 reach transient out-of-order execution

https://twitter.com/lavados/status/951066835310534656

Foreshadow present bit ↔ Meltdown supervisor bit
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Challenge #2: Strict caching requirements

Intel micro-architecture

Address translation abort in parallel with L1 lookup (tag comparison)

SGX?
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walk?
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walk?

L1D

vadrs
guest
padrs

host
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Tag? Pass to out-of-order

CPU micro-architecture

EPCM fail

1 2 3

3a

Weisse et al. “Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient Out-of-Order Execution”

Foreshadow present bit ↔ Meltdown supervisor bit
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Building Foreshadow: Loading enclave secrets in L1

SGX-Step

1. Preemptive extraction

Interrupt victim enclave at page or instruction-level granularity

→ Memory operands + CPU registers (SSA)

2. Concurrent extraction

Intel HyperThreading: co-resident logical CPUs share L1

→ Real time memory accesses

3. Uncached extraction

Forcibly reload 4 KiB enclave page: ewb + eldu

→ Reliably dump entire enclave address space

Van Bulck et al. “SGX-Step: A practical attack framework for precise enclave execution control”, SysTEX 2017
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Building Foreshadow: Loading enclave secrets in L1

Many more optimization techniques + microbenchmarks → see paper!
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Demo time!

Based on xkcd.com/285/
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Establishing trust: Remote attestation and secret provisioning

Binding secrets to enclave identity

Goal: Secure end-to-end communication channel + local storage

App enclave
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Establishing trust: Remote attestation and secret provisioning

CPU-level key derivation

Intel == trusted 3th party (shared CPU master secret)

App enclave

EGETKEY

EREPORT

Quoting
enclave

Genuine attestation flow
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Eroding trust: Remote attestation and secret provisioning

Foreshadow adversary

Extract long-term platform attestation key → forge Intel signatures

App enclave

Quoting
enclave

Bogus attestation flow

EGETKEY

13 / 17



Eroding trust: Remote attestation and secret provisioning

Foreshadow domino effects

Active man-in-the-middle: read + modify all local and remote secrets (!)

App enclave
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Foreshadow-NG: Breaking the virtual memory abstraction

L1 terminal fault [Int18]

Unmap page → read arbitrary cached physical memory

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault

Weisse et al. “Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient Out-of-Order Execution”
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Foreshadow-NG: Breaking the virtual memory abstraction
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Weisse et al. “Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient Out-of-Order Execution”

15 / 17



Road map

1 Introduction

2 The Foreshadow attack

3 Demo

4 Dismantling Intel SGX security objectives

5 Foreshadow-NG implications

6 Mitigations and conclusion



Mitigating Foreshadow
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Mitigating Foreshadow

Future CPUs

(silicon-based changes)

https://newsroom.intel.com/editorials/advancing-security-silicon-level/
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Mitigating Foreshadow

OS kernel updates

(sanitize page frame bits)

Intel SGX: untrusted OS → no software-only mitigations
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Mitigating Foreshadow

Intel microcode updates

⇒ Flush L1 cache on enclave/VMM exit + disable HyperThreading

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
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Conclusions and lessons learned

Take-away message

Foreshadow == L1 cache read primitive → collapse CPU protection

↔ Intel µ-code patches for TCB recovery (+ disable HyperThreading!)

⇒ Importance of fundamental side-channel research (e.g., page table attack surface)

⇒ TEE design: avoid single point of failure (domino effects)
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Thank you! Questions?

https://foreshadowattack.eu

https://foreshadowattack.eu
https://foreshadowattack.eu
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Appendix: Remote attestation

Intel
Provisioning Service
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Appendix: Key derivation

do_egetkey(&tmp);
memcpy(&key, &tmp);

memset(&tmp, 0x0);
free(&tmp);

do_egetkey (0x02658)

...
enclu[EGETKEY]
...
ret

sgx_get_key (0x11760)

selib (trusted runtime)

tmp (0xc6400)

3

key (0xe87b0)

le_get_launch_token

5

1

2

sgx_get_key(&key, keyid);

sgx_cmac128(&key, token);   memset(&key, 0x0);6 7

return;

4
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