
Foreshadow: Extracting the Keys to the Intel SGX Kingdom

with Transient Out-of-Order Execution

Jo Van Bulck 1 Marina Minkin 2 Ofir Weisse 3 Daniel Genkin 3 Baris Kasikci 3

Frank Piessens 1 Mark Silberstein 2 Thomas F. Wenisch 3 Yuval Yarom 4 Raoul Strackx 1

1imec-DistriNet, KU Leuven 2Technion 3University of Michigan 4University of Adelaide and Data61

USENIX Security, August 2018

Road map

1 Introduction

2 The Foreshadow attack

3 Demo

4 Dismantling Intel SGX security objectives

5 Foreshadow-NG implications

6 Mitigations and conclusion

Evolution of “side-channel attack” occurrences in Google Scholar

1990 1994 1998 2002 2006 2010 2014 2018

3000

4000

2000

1000

DO WE JUST SUCK
AT... COMPUTERS?

YUP. ESPECIALLY SHARED ONES.

Based on github.com/Pold87/academic-keyword-occurrence and xkcd.com/1938/
1 / 17

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

Security in a post-Meltdown world

Classic attacker-defender race

Exploit and patch application-level vulnerabilities (memory safety, side-channels)

App

OS

CPU

2 / 17

Security in a post-Meltdown world

Game changer Meltdown

Free universal read primitive → kernel page-table isolation

App

OS

CPU

!?

2 / 17

Rumors: Meltdown immunity for SGX enclaves?

“[enclaves] remain protected and completely secure”

— International Business Times, February 2018

“[enclave memory accesses] redirected to an abort page, which has no value”

— Anjuna Security, Inc., March 2018

3 / 17

https://web.archive.org/web/20180617022540/https://www.ibtimes.co.uk/meltdown-melted-down-everything-except-one-thing-1663785
https://web.archive.org/web/20180720144203/https://www.anjuna.io/blog/2018/2/7/meltdown-spectre-sgx

Rumors: Meltdown immunity for SGX enclaves?

https://wired.com and https://arstechnica.com

3 / 17

https://wired.com
https://arstechnica.com

Intel SGX promise: Hardware-level isolation and attestation

Mem HDD

OS kernel

Trusted Untrusted

CPU

AppApp

TPM

Hypervisor

Enclave app

4 / 17

Intel SGX promise: Hardware-level isolation and attestation

Mem HDD

OS kernel

Trusted Untrusted

CPU

AppApp

TPM

Hypervisor

Enclave app

4 / 17

Road map

1 Introduction

2 The Foreshadow attack

3 Demo

4 Dismantling Intel SGX security objectives

5 Foreshadow-NG implications

6 Mitigations and conclusion

Building Foreshadow

5 / 17

Building Foreshadow

L1 terminal fault challenges

5 / 17

Meltdown recap: Transiently encoding unauthorized memory

Unauthorized access

6 / 17

Meltdown recap: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

s
e
c
re

t
id

x

6 / 17

Meltdown recap: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window Exception

(discard architectural state)

6 / 17

Meltdown recap: Transiently encoding unauthorized memory

Unauthorized access Transient out-of-order window

oracle array

cache hit

Exception handler

6 / 17

Challenge #1: Intel SGX abort page semantics

7 / 17

Challenge #1: Intel SGX abort page semantics

Untrusted world view

Enclaved memory reads 0xFF

Meltdown “bounces back” (∼ mirror)

Intra-enclave view

Access enclaved + unprotected memory

SGXpectre in-enclave code abuse

7 / 17

Challenge #1: Intel SGX abort page semantics

Untrusted world view

Enclaved memory reads 0xFF

Meltdown “bounces back” (∼ mirror)

Intra-enclave view

Access enclaved + unprotected memory

SGXpectre in-enclave code abuse
7 / 17

Challenge #1: Intel SGX abort page semantics

Untrusted world view

Enclaved memory reads 0xFF

Meltdown “bounces back” (∼ mirror)

Intra-enclave view

Access enclaved + unprotected memory

SGXpectre in-enclave code abuse
7 / 17

Building Foreshadow: Evade the abort page

Note: SGX MMU sanitizes untrusted address translation

SGX?

Abort page semantics:
An attempt to read from a non-existent or disallowed resource returns all ones for data
(abort page). An attempt to write to a non-existent or disallowed physical resource is
dropped. This behavior is unrelated to exception type abort (the others being Fault and Trap).

https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-development-basics
8 / 17

https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-development-basics

Building Foreshadow: Evade the abort page

Note: SGX MMU sanitizes untrusted address translation

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX Security 2017
8 / 17

Building Foreshadow: Evade the abort page

Straw man: (Speculative) accesses in non-enclave mode are dropped

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX Security 2017
8 / 17

Building Foreshadow: Evade the abort page

Stone man: Bypass abort page via untrusted page table

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX Security 2017
8 / 17

Building Foreshadow: Evade the abort page

Stone man: Bypass abort page via untrusted page table

Unprivileged system call

mprotect(secret_ptr & 0xFFF, 0x1000, PROT_NONE);

Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX Security 2017
8 / 17

Challenge #2: Strict caching requirements

9 / 17

Challenge #2: Strict caching requirements

L1 terminal fault

Only enclave loads served from L1 reach transient out-of-order execution

https://twitter.com/lavados/status/951066835310534656

Foreshadow present bit ↔ Meltdown supervisor bit

9 / 17

https://twitter.com/lavados/status/951066835310534656

Challenge #2: Strict caching requirements

L1 terminal fault

Only enclave loads served from L1 reach transient out-of-order execution

Foreshadow present bit ↔ Meltdown supervisor bit

9 / 17

Challenge #2: Strict caching requirements

Intel micro-architecture

Address translation abort in parallel with L1 lookup (tag comparison)

SGX?
EPT

walk?
PT

walk?

L1D

vadrs
guest
padrs

host
padrs

Tag? Pass to out-of-order

CPU micro-architecture

EPCM fail

1 2 3

3a

Weisse et al. “Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient Out-of-Order Execution”

Foreshadow present bit ↔ Meltdown supervisor bit

9 / 17

Building Foreshadow: Loading enclave secrets in L1

SGX-Step

1. Preemptive extraction

Interrupt victim enclave at page or instruction-level granularity

→ Memory operands + CPU registers (SSA)

2. Concurrent extraction

Intel HyperThreading: co-resident logical CPUs share L1

→ Real time memory accesses

3. Uncached extraction

Forcibly reload 4 KiB enclave page: ewb + eldu

→ Reliably dump entire enclave address space

Van Bulck et al. “SGX-Step: A practical attack framework for precise enclave execution control”, SysTEX 2017
10 / 17

Building Foreshadow: Loading enclave secrets in L1

SGX-Step

1. Preemptive extraction

Interrupt victim enclave at page or instruction-level granularity

→ Memory operands + CPU registers (SSA)

2. Concurrent extraction

Intel HyperThreading: co-resident logical CPUs share L1

→ Real time memory accesses

3. Uncached extraction

Forcibly reload 4 KiB enclave page: ewb + eldu

→ Reliably dump entire enclave address space

Van Bulck et al. “SGX-Step: A practical attack framework for precise enclave execution control”, SysTEX 2017

10 / 17

Building Foreshadow: Loading enclave secrets in L1

SGX-Step

1. Preemptive extraction

Interrupt victim enclave at page or instruction-level granularity

→ Memory operands + CPU registers (SSA)

2. Concurrent extraction

Intel HyperThreading: co-resident logical CPUs share L1

→ Real time memory accesses

3. Uncached extraction

Forcibly reload 4 KiB enclave page: ewb + eldu

→ Reliably dump entire enclave address space

Van Bulck et al. “SGX-Step: A practical attack framework for precise enclave execution control”, SysTEX 2017

10 / 17

Building Foreshadow: Loading enclave secrets in L1

Many more optimization techniques + microbenchmarks → see paper!

10 / 17

Road map

1 Introduction

2 The Foreshadow attack

3 Demo

4 Dismantling Intel SGX security objectives

5 Foreshadow-NG implications

6 Mitigations and conclusion

Demo time!

Based on xkcd.com/285/
11 / 17

xkcd.com/285/

Road map

1 Introduction

2 The Foreshadow attack

3 Demo

4 Dismantling Intel SGX security objectives

5 Foreshadow-NG implications

6 Mitigations and conclusion

Establishing trust: Remote attestation and secret provisioning

Binding secrets to enclave identity

Goal: Secure end-to-end communication channel + local storage

App enclave

12 / 17

Establishing trust: Remote attestation and secret provisioning

CPU-level key derivation

Intel == trusted 3th party (shared CPU master secret)

App enclave

EGETKEY

EREPORT

Quoting
enclave

Genuine attestation flow

12 / 17

Eroding trust: Remote attestation and secret provisioning

Foreshadow adversary

Extract long-term platform attestation key → forge Intel signatures

App enclave

Quoting
enclave

Bogus attestation flow

EGETKEY

13 / 17

Eroding trust: Remote attestation and secret provisioning

Foreshadow domino effects

Active man-in-the-middle: read + modify all local and remote secrets (!)

App enclave

13 / 17

Road map

1 Introduction

2 The Foreshadow attack

3 Demo

4 Dismantling Intel SGX security objectives

5 Foreshadow-NG implications

6 Mitigations and conclusion

Foreshadow-NG: Breaking the virtual memory abstraction

L1 terminal fault [Int18]

Unmap page → read arbitrary cached physical memory

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault

Weisse et al. “Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient Out-of-Order Execution”
14 / 17

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault

Foreshadow-NG: Breaking the virtual memory abstraction

SGX?
EPT

walk?
PT

walk?

L1D

vadrs
guest
padrs

host
padrs

Tag? Pass to out-of-order

CPU micro-architecture

EPCM fail

1 2 3

3a

Weisse et al. “Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient Out-of-Order Execution”

15 / 17

Road map

1 Introduction

2 The Foreshadow attack

3 Demo

4 Dismantling Intel SGX security objectives

5 Foreshadow-NG implications

6 Mitigations and conclusion

Mitigating Foreshadow

16 / 17

Mitigating Foreshadow

Future CPUs

(silicon-based changes)

https://newsroom.intel.com/editorials/advancing-security-silicon-level/

16 / 17

https://newsroom.intel.com/editorials/advancing-security-silicon-level/

Mitigating Foreshadow

OS kernel updates

(sanitize page frame bits)

Intel SGX: untrusted OS → no software-only mitigations

16 / 17

Mitigating Foreshadow

Intel microcode updates

⇒ Flush L1 cache on enclave/VMM exit + disable HyperThreading

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault

16 / 17

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault

Conclusions and lessons learned

Take-away message

Foreshadow == L1 cache read primitive → collapse CPU protection

↔ Intel µ-code patches for TCB recovery (+ disable HyperThreading!)

⇒ Importance of fundamental side-channel research (e.g., page table attack surface)

⇒ TEE design: avoid single point of failure (domino effects)

17 / 17

Conclusions and lessons learned

Take-away message

Foreshadow == L1 cache read primitive → collapse CPU protection

↔ Intel µ-code patches for TCB recovery (+ disable HyperThreading!)

⇒ Importance of fundamental side-channel research (e.g., page table attack surface)

⇒ TEE design: avoid single point of failure (domino effects)

17 / 17

Conclusions and lessons learned

Take-away message

Foreshadow == L1 cache read primitive → collapse CPU protection

↔ Intel µ-code patches for TCB recovery (+ disable HyperThreading!)

⇒ Importance of fundamental side-channel research (e.g., page table attack surface)

⇒ TEE design: avoid single point of failure (domino effects)

17 / 17

Thank you! Questions?

https://foreshadowattack.eu

https://foreshadowattack.eu
https://foreshadowattack.eu

References I

G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai.

Sgxpectre attacks: Leaking enclave secrets via speculative execution.
arXiv preprint arXiv:1802.09085, 2018.

Intel Corporation.

Intel analysis of L1 terminal fault, August 2018.
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg.

Meltdown: Reading kernel memory from user space.
In 27th USENIX Security Symposium (USENIX Security 18), 2018.

J. Van Bulck, F. Piessens, and R. Strackx.

SGX-Step: A practical attack framework for precise enclave execution control.
In Proceedings of the 2nd Workshop on System Software for Trusted Execution, SysTEX’17, pp. 4:1–4:6. ACM, 2017.

J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx.

Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution.
In Proceedings of the 26th USENIX Security Symposium. USENIX Association, August 2017.

O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom.

Foreshadow-NG: Breaking the virtual memory abstraction with transient out-of-order execution.
Technical Report, 2018.

Y. Xu, W. Cui, and M. Peinado.

Controlled-channel attacks: Deterministic side channels for untrusted operating systems.
In 36th IEEE Symposium on Security and Privacy. IEEE, May 2015.

18 / 17

https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault

Appendix: Remote attestation

Intel
Provisioning Service

Intel
Quoting Service

Provisioning
Enclave

Quoting
Enclave

Application
Enclave

Remote
Verifier

A

B

1

3

2

5

4

7

6

19 / 17

Appendix: Key derivation

do_egetkey(&tmp);
memcpy(&key, &tmp);

memset(&tmp, 0x0);
free(&tmp);

do_egetkey (0x02658)

...
enclu[EGETKEY]
...
ret

sgx_get_key (0x11760)

selib (trusted runtime)

tmp (0xc6400)

3

key (0xe87b0)

le_get_launch_token

5

1

2

sgx_get_key(&key, keyid);

sgx_cmac128(&key, token); memset(&key, 0x0);6 7

return;

4

20 / 17

	Introduction
	The Foreshadow attack
	Demo
	Dismantling Intel SGX security objectives
	Foreshadow-NG implications
	Mitigations and conclusion
	Appendix

