
SCASE: Automated Secret Recovery via Side-Channel-Assisted Symbolic Execution

Daniel Weber
CISPA Helmholtz Center
for Information Security

Lukas Gerlach
CISPA Helmholtz Center
for Information Security

Leon Trampert
CISPA Helmholtz Center
for Information Security

Youheng Lü
SCHUTZWERK GmbH

Jo Van Bulck
DistriNet, KU Leuven

Michael Schwarz
CISPA Helmholtz Center
for Information Security

Abstract
In recent years, there has been an explosion of research on
software-based side-channel attacks, which commonly require
an in-depth understanding of the victim application to extract
sensitive information. With evermore leakage sources and
targets, an important remaining challenge is how to automati-
cally reconstruct secrets from side-channel traces.

This paper proposes SCASE, a novel methodology for in-
ferring secrets from an opaque victim binary using symbolic
execution, guided by a concrete side-channel trace. Our key
innovation is in utilizing the memory accesses observed in the
side-channel trace to effectively prune the symbolic-execution
space, thus avoiding state explosion. To demonstrate the ef-
fectiveness of our approach, we introduce Athena, a proof-of-
concept framework to automatically recover secrets from Intel
SGX enclaves via controlled channels. We show that Athena
can automatically recover the 2048-bit secret key of an en-
clave running RSA within 4 minutes and the 256-bit key from
an RC4 KSA implementation within 5 minutes. Furthermore,
we demonstrate key recovery of OpenSSL’s 256-bit AES S-
Box implementation and recover the inputs to OpenSSL’s
binary extended Euclidean algorithm. To demonstrate the ver-
satility of our approach beyond cryptographic applications,
we further recover the input to a poker-hand evaluator. In
conclusion, our findings indicate that constraining symbolic
execution via side-channel traces is an effective way to auto-
mate software-based side-channel attacks without requiring
an in-depth understanding of the victim application.

1 Introduction

Despite being recognized for several decades, software-based
side-channel attacks remain a significant threat to the confi-
dentiality of computations in contemporary systems, affect-
ing a wide range of applications from web browsers [1–7]
to trusted execution environments [8–23]. While side chan-
nels serve as potent leakage primitives, successfully exploit-
ing them in practical proof-of-concept (PoC) attacks often

demands substantial manual effort. Attackers are assumed
to have expert knowledge of the low-level behaviors they
exploit, along with a comprehensive understanding of the
targeted software, including its source code vulnerabilities
and binary layout [24, 25]. The latter assumption may be
somewhat relaxed in certain attack strategies, such as cache
templating [26], which do not always require precise knowl-
edge of the victim’s internals. However, these strategies reveal
only the presence of secret-dependent behavior rather than
disclosing the actual secret values, e.g., individual bytes of a
key or password. Additionally, side channels inherently only
leak metadata about the victim, such as memory and data
access patterns, requiring further manual domain expertise to
correlate such metadata patterns with the target secret.

Over the last decade, the research community has invested
considerable efforts in developing practical tools to find po-
tential side-channel vulnerabilities in applications [27–29].
Static and dynamic analysis techniques, such as statistical
tests, symbolic execution, or abstract interpretation, have been
shown to identify potential side-channel vulnerabilities and
sometimes even pinpoint the exact location of the vulnerable
code pattern [27]. However, these tools commonly suffer from
false positives, and manual verification is required to confirm
that a potential leak is an actually exploitable vulnerability.
In this respect, a recent comprehensive expert survey [28]
among cryptographic library developers explicitly pointed
to overwhelming false-positive rates. The need for manual
validation of attacks can also be seen in the context of respon-
sible disclosure, where empirical validation of attack evidence
through PoC exploits is a common requirement. Besides en-
abling reproduction, PoC exploits enable improved bug pri-
oritization [30]. Thus, a key research question that received
comparably little attention is: How to automatically extract
secrets from empirical side-channel observation traces?

This paper responds to this need through an innovative
combination of concrete and symbolic execution: we lever-
age the side-channel information gathered during an online
concrete run of a victim binary to effectively prune the search
space of an offline symbolic execution of the same binary. Our

resulting side-channel-assisted symbolic execution (SCASE)
methodology enables the progressive collection of path con-
straints while mitigating state explosion, ultimately allowing
the constraint solver to autonomously concretize the secret.
Crucially, our methodology does not require any understand-
ing of the target program or how exactly the leakage correlates
with the underlying secret, solely requiring (i) an automated
side-channel trace extraction framework to record the victim’s
code and data accesses at a certain granularity; and (ii) the
annotation of the secret’s location in the target binary.

Figure 1 compares SCASE to prior automated approaches,
further discussed in Section 6.1. The horizontal axis distin-
guishes works that aim to exploit or mitigate side-channel
vulnerabilities, while the vertical axis indicates the level of
how general an approach is. While this work is not the first
approach to automate side-channel attacks (cf. Figure 1’s
right-hand side), previous approaches were either restricted
to a specific type of victim application target (e.g., AES [31]
or secret-dependent loop conditions [32]) or a specific type
of secret (media content [33, 34] or simple unstructured se-
crets [26]). Notably, cache-template attacks [26] are limited
to binary events, such as keystroke presses, and necessitate
manual effort to extract more complex secrets, like crypto-
graphic keys. In contrast, our approach can automatically infer
non-trivial secrets, e.g., cryptographic keys, from the generic
target application. Furthermore, our approach is not limited
to a specific type of side-channel attack.

To demonstrate SCASE in practice, we develop Athena,
a PoC framework to automatically build end-to-end side-
channel attacks for Intel SGX enclaves. To instantiate
SCASE’s requirement for automated side-channel trace ex-
traction, Athena includes a practical profiling tool that con-
structs a trace of a victim enclave’s code and data ac-
cesses at a 4 kB page-level granularity using controlled chan-
nels [21, 22, 35, 36]. Athena further implements a novel side-
channel-assisted exploration technique as an extension to the
popular angr [37, 38] binary symbolic execution framework,
allowing to automatically recover the secrets used during en-
clave execution. We show that Athena can recover a 2048-bit
RSA key from a Square and Multiply implementation in less
than 4 minutes and demonstrate the automated extraction of
a 256-bit secret key from the RC4 key-scheduling algorithm
(KSA). To the best of our knowledge, our work is the first
that demonstrates a single-trace key recovery attack on RC4
KSA. To showcase that Athena is capable of handling com-
plex data-flow constraints, we recover a 256-bit AES key from
OpenSSL’s S-Box implementation, thus requiring Athena to
automatically infer the AES master key from the memory
accesses made with the round keys. As a demonstration of
Athena’s applicability to complex mixed control- and data-
flow constraints, we recover the secret input to OpenSSL’s
binary extended Euclidean algorithm, which is used to gener-
ate key material for cryptographic algorithms [8, 22, 39]. We
further recover the secret input to a poker-hand evaluator to

Exploitation

Generic

Fix

Specific

SCASERandomization [40–46]

Runtime monitoring [47–53]

Compile-time
rewriting [54, 55]

Language
frameworks

[56–58]

Yuan et al. [33],
Zhang et al. [34]

Hardware-software
co-design [59, 60]

FaultMorse [32]

AES-SAT [31]
Cache Template [26]

Figure 1: Categorization of related works and how SCASE
fits into the landscape.

showcase the versatility of our approach besides purely cryp-
tographic applications. Additionally, we show that Athena
can generate new attacks by showing a completely novel
side-channel attack on RC4 key initialization.

These case studies demonstrate that combining memory
trace guidance with symbolic execution enables practical and
efficient secret extraction without prior knowledge of victim
layouts or complex reverse engineering.
Contributions. We summarize our contributions as follows.

• We present a novel approach to guide symbolic execution
with memory observations from side-channel attacks. This
allows for automatically recovering secrets from memory
observations. Thus, we significantly reduce the manual
effort required to create PoC exploits.

• We develop Athena, an open-source framework for au-
tomated secret extraction from Intel SGX enclaves, in-
cluding a powerful page-access profiler and side-channel
assisted exploration for the popular angr framework.

• We showcase Athena by recovering the private key of Intel
SGX enclaves running a 2048-bit Square and Multiply
RSA implementation in less than 4 minutes.

• We automatically extract a 256-bit key from an RC4
KSA, a 256-bit AES key from OpenSSL, and the input to
OpenSSL’s binary extended Euclidean algorithm.

• We recover a poker hand from a poker-hand evaluator,
showcasing the versatility of our approach, automatically
handling complex lookup structures.

Availability. Our code is available at https://github.com/
cispa/scase and https://doi.org/10.5281/zenodo.
15609410.

2 Background

In this section, we provide background for the paper, covering
software-based side-channel attacks and symbolic execution.

https://github.com/cispa/scase
https://github.com/cispa/scase
https://doi.org/10.5281/zenodo.15609410
https://doi.org/10.5281/zenodo.15609410

2.1 Software-Based Side-Channel Attacks
Side-channel attacks refer to a class of attacks that leak meta
information about a program’s execution to infer confidential
information about said program. The majority of software-
based side-channel attacks abuse the interaction of a program
with software components or the CPU’s microarchitecture
to leak information. The source of this leakage can be di-
verse, ranging from the CPU caches [61–65] over the state
of internal structures of the CPU [66–68] and contention on
the CPU’s execution units [69–71] to its power consump-
tion [72,73]. Modern software-based side-channel attacks are
often very powerful, achieving high accuracy and through-
put [74]. Besides local scenarios, software-based side-channel
attacks are also applicable in remote scenarios [75–77].

2.2 Symbolic Execution
Symbolic execution [78] is a static program analysis technique
that systematically explores all reachable execution states of a
program under all possible inputs. Inputs to the symbolic exe-
cution engine (SEE) can be either concrete, i.e., represented
by fixed values, or symbolic, i.e., represented by symbols with
associated constraints. Symbolic execution typically consists
of two main phases. In the path exploration phase, they ex-
plore the program’s control-flow graph (CFG) by emulating
all possible execution paths. When encountering a branch that
cannot be decided based on concrete inputs, the SEE explores
both branches by forking the current execution state and con-
tinuing the emulated execution for both possible outcomes.
For each branch target, the branch condition’s symbolic val-
ues are then constrained to achieve the outcome leading to the
current state. These constraints represent conditions the sym-
bolic values must satisfy to reach the current state. Eventually,
in the solving phase, a logic solver, e.g., a SAT solver, can be
used in conjunction with these constraints to derive concrete
values for the symbolic values that fulfill the associated logi-
cal constraints. Symbolic execution can proceed at either the
source code [79] or binary levels [38, 80]. A mature example
of the latter is the popular angr [37,38] framework, which has
found widespread use in vulnerability research on real-world
binaries, including on Intel SGX enclaves [81–83]. Despite
its advantages, symbolic execution is known to suffer from
state explosion, as each fork, i.e., each branch of the program,
exponentially grows the memory states and the conditions
that the SAT solver of the SEE has to solve. Thus, while
symbolic execution has many practical applications, e.g., for
improving fuzzers [84] or detecting vulnerabilities [85–88],
solving complex conditions such as cryptographically-secure
encryption or hashing schemes is considered infeasible.

2.3 Intel Software Guard Extensions
Intel’s Software Guard Extensions (SGX) [89, 90] is a promi-
nent trusted execution environment (TEE) that provides run-

time confidentiality and integrity guarantees for hardware-
isolated memory regions, called enclaves. SGX enclaves live
within a conventional user process and remain protected even
against root adversaries that control privileged software on
the target platform. SGX’s ambitious isolation model and
small trusted computing base make it ideal for high-security
workloads, such as cryptographic libraries. SGX enclaves
can be accessed through designated entry points known as
ECALL functions, while OCALL functions are implemented in
the untrusted host process and serve as untrusted callbacks.

Over the past decade, SGX has attracted an extensive line
of offensive research [91, 92] exploiting the privileged adver-
sary’s control over the untrusted operating system to mount
new [11, 20–22, 35, 93–96] or improved [9, 15, 17, 19, 36]
side-channel attacks. This ongoing scrutiny has prompted
Intel to denote SGX as “the most researched, updated and
battle-tested TEE for data center confidential computing, with
the smallest attack surface within the system” [97]. Conse-
quently, SGX also serves as a foundational element for newer
virtualization-based technologies like Intel TDX [98].

2.4 Controlled-Channel Attacks

One notable side-channel attack on TEEs, such as Intel SGX,
is the controlled-channel attack [35]. In a controlled-channel
attack, the attacker abuses the fact that TEE enclaves often
rely on the attacker-controlled operating system to set up
their memory pages. The attacker can thus manipulate the
page-table entries of the enclave to fault upon access, e.g.,
by clearing the present bit of the page-table entry. When the
enclave accesses a faulting memory page, the enclave exe-
cution is halted via an asynchronous exit of the enclave, and
control is transferred to the OS. While modern enclaves clear
registers during asynchronous exit, the information that the
specific page-table entry was accessed, and hence a memory
access to the underlying page occurred, is leaked.

Another notable attack technique on TEEs is single-
stepping [36]. Single-stepping works by programming a timer
interrupt to occur precisely after executing exactly one in-
struction of the enclave code. Van Bulck et al. [36] showed
that single-stepping gives the attacker precise control over the
execution of an Intel SGX enclave. Due to the fine-grained
execution capabilities that single-stepping gives an attacker,
it also improves on the temporal resolution of controlled-
channel attacks. Single-stepping is not restricted to SGX but
can be applied to other TEEs and secure VMs, e.g., Intel
TDX [99] or AMD SEV [100, 101]. To ease attacks on SGX,
Van Bulck et al. developed the SGX-Step framework [36].
Besides functions to modify page-table entries, the framework
also provides functions to single-step an SGX enclave.

3 SCASE

We present SCASE (Side-Channel-Assisted Symbolic
Execution), our novel approach to automatically recover se-
crets from a victim program. On a high level, our approach
uses information obtained from a side-channel attack to guide
an SEE. This guidance empowers the SEE to overcome previ-
ous limitations and automatically recover the victim’s secrets.

3.1 General Threat Model

In our threat model, we assume that the attacker has access
to the target binary. Note that this enables the attacker to
execute the victim symbolically. The attacker aims to recover
a secret, e.g., a private key, from the target application. We
assume the attacker cannot directly extract the secret and can
only leak meta information about the victim application, i.e.,
observe a side channel. Besides this meta information leakage,
we assume no further vulnerabilities in either hardware or
software. Furthermore, we assume that the attacker has all the
capabilities required to monitor this information, e.g., many
side-channel attacks require native code execution [61–64].

3.2 Overview

To ease the generation of PoC exploits for secret leakage,
we propose SCASE, a combination of side-channel attacks
and symbolic execution. SCASE uses memory traces ob-
tained from a side-channel attack to guide the path explo-
ration and constraint creation of an SEE. With the help of
the side-channel traces, the SEE can recover the value of the
symbolized target secret, as the search space is drastically
reduced. Figure 2 shows an overview of our approach, con-
sisting of an online and an offline phase. In the online phase,
a side-channel attack is mounted on the victim application
that tries to infer as much information as possible about the
victim application’s memory access patterns. We refer to the
information recovered by this side-channel attack as memory
trace. The content of the memory trace is split into control-
flow- and data-flow-related memory accesses, which we refer
to as control-flow trace and data-flow trace, respectively.

In the offline phase, these traces support an SEE to recover
the victim’s secrets. Figure 3 illustrates how the offline phase
leverages the traces from the online phase. The control-flow
trace conveys information about the control-flow decisions of
the victim, i.e., which branches were taken. The control-flow
trace can be used to prune execution the victim did not take
during the online phase. Figure 3a illustrates this concept by
displaying that side-channel information (cornered nodes) can
be used to prune away states not reached during the online
phase. This pruning significantly reduces the state space that
the SEE has to explore. Furthermore, secret-dependent control
flow, e.g., if-branches based on the secret value, leads to
constraints on the victim’s secret encoded in this trace.

The data-flow trace conveys information about the data
flow of the victim, i.e., which memory locations were ac-
cessed. Thus, encoding secret-dependent memory accesses,
e.g., array lookups based on the secret value. Hence, knowing
the data-flow access patterns allows the SEE to prune states
where the data-flow access pattern does not match the ob-
served one. Figure 3b displays this concept by illustrating that
a memory access containing information about the memory
access f to node F can be used to prune away state G. Despite
conveying information that allows further pruning of states,
data-flow memory traces can encode additional constraints
on the secret value.

To summarize, after mapping the entries of both memory
traces to the state space of the SEE, we can prune the state
space and infer additional constraints on the secret. Hence,
in the offline phase, the SEE can efficiently reason about the
secret of the victim due to the meta information obtained in
the online phase.

3.3 Introductory Toy Example

Figure 4 illustrates the general idea of our approach. The
code implements a simple cryptographic algorithm that uses
a secret value as an index to a lookup table and enters a loop
that squares the variable ct whenever the current bit of the
secret key, i.e., the variable SK, is 1. Despite the simplicity of
the code patterns, they are widely used primitives, e.g., lookup
tables in AES [102] and multiplication algorithms used for
RSA computations [103].

Executing the code with the secret key SK = 0b1101 yields
a memory trace, as shown in the middle of Figure 4. This
memory trace is obtained in the online phase and illustrates
the meta information leaked by a side-channel attack. In this
case, the side-channel attack leaks the branch decisions of
Line 10 to 12 as well as the fact that a memory access was
made to the lookup table, i.e., the variable lut. While such a
memory trace may contain enough information to recover the
secret key directly, recovery requires a precise understanding
of the initial algorithm. In this case, a human expert needs to
understand that branching in line 12 corresponds to a ‘1’-bit
in the secret, while a not branching refers to a ‘0’-bit.

In the offline phase, we symbolize the secret, i.e., SK, and
let an SEE find the concrete value. While SEEs are designed
to recover input for generic programs, this does not work
directly for complex programs such as cryptographic algo-
rithms. SEEs reason over all possible states of a program,
i.e., the CFG (see right of Figure 4). Thus, the SEE iterates
over all paths, leading to a doubling of the state space for
every encountered branch. Hence, the state space that has to
be explored quickly becomes infeasibly large Section 2. In
our toy example, the number of states, i.e., the state space, is
already 2n for n rounds.

For SCASE, we combine the online and offline phases.
While the memory trace, recovered by a side-channel attack,

Victim

3 control-flow graph (CFG)

1 Side-channel
attack(s)

C
on

tro
l fl

ow
Data flow

4 Prune

Pruned

5 Constrain Final CFG

= (λ⊕0x f)∧ (α+β)θ

= secret

7 solve

2 annotate secret

6 concretize

Figure 2: In the online phase, SCASE mounts a side-channel attack on the victim (1) to obtain data- and control-flow traces.
In the offline phase,SCASE annotates the secret (2) and creates a CFG (3) of the victim. The previously obtained traces are
then used to prune states from the CFG directly (4) and indirectly via constraints (5). The final reduced CFG allows symbolic
execution to concretize (6) the symbolized secret without state explosion, resulting in the automated extraction of the actual
secret (7) used by the victim.

A

CB

GFED

(a) Side-channel information on
the control flow (nodes A to F)
helps the SEE to prune states
(B,D,E) not reached during ex-
ecution.

A

CB

GFED

f g

(b) Side-channel information on
the data flow (nodes f and g)
helps prune states (G) where the
access pattern does not match the
observed one.

Figure 3: The side-channel traces from the online phase (blue
dotted rectangles) enable the symbolic execution in the offline
phase to prune states to a manageable number of states for
which the SEE can find concrete values.

does not directly contain the key, it provides information on
which branch was taken. Thus, the execution trace removes
the need for the SEE to explore every possible path, leading
to a significant reduction of the state space that has to be
explored. In other words, for every branch contained in the
memory trace, the state space for the SEE no longer doubles,
as we can guide the SEE to the chosen branch target.

3.4 Major Challenges

To achieve the goal of fully automating the secret extraction,
we have to overcome various challenges.
C1: State Explosion. The feasibility of symbolic execution is
limited by the state explosion problem, i.e., the exponentially
growing state space required to model all possible execution
paths of a program (cf. Section 3.3). For every branch, the
outcome of the branch decision is not concrete, the SEE has

to fork the current state. While this is a key aspect of SEEs,
as it allows to reason about all theoretically possible states, it
is also the main reason why symbolic execution is infeasible
for complex programs. The state explosion is a particular
challenge for cryptographic algorithms as their security guar-
antees are rooted in having a large state space. Hence, secret-
dependent control-flow of a typical cryptographic application
leads to an exponentially growing state space. Another prob-
lem using symbolic execution to recover complex secrets is
that the SEE has to constrain the secret value. For a typical,
i.e., unguided, SEE, this requires additional information, e.g.,
the ciphertext that was created by cryptographic algorithm.
Otherwise, the SEE could only output all possible final states,
even when assuming that the state explosion would have been
solved. As both problems are rooted in the growing number
of states, we consider both problems as a major challenge.
For SCASE, we tackle this challenge by using the memory
access information obtained from the online phase, i.e., a side-
channel attack, to reduce the number of branch targets that
the SEE has to explore.

C2: Map Side-Channel Information to the SEE’s State
Space. To make use of the side-channel information in the
SEE, we have to map these real-world observations to the
emulated execution of the SEE. This step is crucial as for
each memory access that the SEE encounters in any state,
we need to know to which memory access in the memory
trace it corresponds. In other words, we need to establish
an injective mapping between memory trace entries and the
emulated memory accesses for potential states of the SEE.
The mapping is injective as for every memory trace entry,
there is exactly one corresponding execution state in the SEE.
Note that each virtual address, e.g., each assembly instruction
or data in the target application, can be accessed multiple

1 // secret key
2 nibble SK = <...>;
3 // plaintext
4 nibble PT = <...>;
5 size_t ROUNDS = 2;
6

7 nibble ct =

8 lut[(SK >> 2) ^ PT];

9

10 for (int i = 0;

11 i < ROUNDS; i++){

12 if (SK & 1)

13 ct = ct * ct;
14 SK >>= 1;
15 }

memAccess(

lut[0b11^pt])

br_line11(true)

br_line12(false)

br_line11(true)

br_line12(true)

ct← 0

ct← lt[0b00⊕ pt]
SK = 0b00??

. . . ct← lt[0b11⊕ pt]
SK = 0b11??

. . .
ct← lt[0b11⊕ pt]

SK = 0b110?
ct← lt[0b11⊕ pt]2

SK = 0b1101

ct← lt[0b11⊕ pt]
SK = 0b1100

ct← lt[0b11⊕ pt]2

SK = 0b1101

. . .

Figure 4: Code snippet of a toy cryptographic algorithm (left), a corresponding memory trace (middle), and its CFG (right). The
side-channel trace encodes the branching decisions of the algorithm, which are highlighted in the CFG.

times during the execution. Hence, a correct mapping needs to
ensure that each memory trace entry is mapped to the correct
execution state of the SEE, i.e., the correct and exact point in
time of the emulated execution. Note that a correct mapping is
especially challenging in the presence of a noisy side-channel
attack as a single incorrect mapping can lead to incorrect
conclusions, thus potentially preventing the approach from
recovering the target application’s secret. Hence, it is crucial
to establish a noise-free and correct mapping. Depending on
the side-channel attack and the attacker’s capabilities, there
exist different ways to tackle this challenge (cf. Section 3.5).
C3: Separating Control- and Data-Flow-Related Memory
Accesses. While both, control- and data-flow-related memory
accesses, can be used to guide SEEs, they impact the emulated
execution in different ways. To precisely guide the emulated
execution, it is not sufficient to know that any memory access
has taken place at a given state of the emulation. Instead,
we need to know whether the memory access stems from
the fetching of an instruction from memory or the execution
of the current instruction. Being able to distinguish these
two cases allows to reason about misalignments between the
real-world trace and the emulated execution. Note that this
separation is not a strict requirement for our approach but
significantly improves the guidance of the SEE by benefiting
both the pruning of state spaces and the constraint creation.

3.5 SCASE: Recovering Secrets from Memory
Traces using Symbolic Execution

In this section, we describe the details of SCASE and how
we handle the previously introduced challenges. We discuss
how memory traces can be split into control- and data-flow
traces, thus tackling C3. We explain techniques of creating an
injective mapping between the memory traces and the states of
the SEE, thus tackling C2. We elaborate on how overcoming
C2 and C3 allows us to use the memory trace’s information to

prune the SSE’s state space while adding further constraints
on the secret value, thus tackling C1.
Splitting Memory Traces into Control- and Data-Flow
Memory Traces. For precise guidance, the attacker has to
separate control- and data-flow-related memory accesses (cf.
C3). The reason is that for optimal guidance of the SEE, it
is beneficial to know whether a memory access at a certain
position was caused by the CPU frontend fetching the instruc-
tions or by the actual execution of the instruction. Hereby,
the former means that the address of the current instruction
has to match the next entry in the memory trace. The latter
means that the memory trace entry instead has to match the
semantics of a memory-accessing instruction. The potential
methods of separating control- and data-flow-related mem-
ory accesses depend entirely on the side-channel attacker’s
capabilities. In a strong attacker model, where the attacker
has operating system capabilities, e.g., in the threat model of
trusted-execution environments, the attacker can read the per-
mission bits of the victim’s memory pages. The permission
bits are control bits of the page-table entries associated with
each memory page. Along other aspects, these bits control
whether a page is writable or executable, whereas the latter is
a requirement to execute code stored in a memory page. On
modern CPUs, attackers can rely on the bit in the page table
entry indicating whether a page is executable. Our PoC imple-
mentation Athena (cf. Section 4) uses this type of separation
and shows that it is a feasible method to separate control- and
data-flow-related memory accesses for various target appli-
cations. Alternatively, a less privileged attacker can reason
whether a memory access stems from the CPU frontend by
observing the state of microarchitectural components. For
example, the instruction cache or the iTLB are only affected
by frontend memory fetches. Thus, monitoring them allows
to reason about the type of memory accesses.
Creating a Mapping between Memory Trace Entries and
Emulated States. Creating an injective mapping between

the memory trace entries and each potential state of the SEE
is required to effectively guide the SEE (cf. C2). Creating
such a mapping is easiest when the attacker ensures that the
memory traces are error-free. Here, methods to ensure error-
free memory traces again depend largely on the side-channel
attack. To achieve this, the attacker can use multiple runs of a
side-channel attack to cross-verify the information contained
in the resulting memory traces. Alternatively, side-channel
attacks exist that do not contain errors in the first place, e.g.,
controlled-channel attacks [35]. Once the memory traces are
free of errors, the attacker needs to map the entries of the mem-
ory traces to the SEE’s state space. For this, the most intuitive
and straightforward approach is to map memory trace entries
based on their virtual memory addresses. The attacker has to
ensure that each memory trace entry is mapped to the exact
point of access in the emulated execution. This is because a
given address can be accessed multiple times during the exe-
cution of a program. Hence, the implementation of SCASE
has to maintain the current position for both the control- and
data-flow memory trace for any exploration that is emulated
by the SEE. This means that every time the SEE has to fork,
another position in the memory trace must also be maintained.
A potential implementation of this is to increase an index for
each emulated memory access to the corresponding memory
trace file and to maintain a different index for every fork of
the SEE’s states. Note that while virtual memory addresses
are not the only feasible mapping between side-channel in-
formation and the emulated execution, they are applicable
for a range of side-channel attacks, e.g., Flush+Reload [61],
Flush+Flush [62], the umwait-based TLT side channel [104],
and controlled-channel attacks [35]. We discuss alternative
injective mappings in Section 4.4.
Pruning the State Space and Adding Additional Con-
straints. The traces, which are mapped to the SEE’s repre-
sentation, are used to prune states that are not reached during
the actual execution and to further create constraints on the
secret (cf. C1). For example, when exploring the first level
of the CFG of Figure 4, we adapt the SEE to ignore the first
two child nodes as the control-flow memory trace yields the
information that the third node was executed when the vic-
tim application computed on its secret. In the example of
Figure 4, knowing that the branch in Line 10-11 was true
when the branch is first encountered, adds the constraint i <
ROUNDS for the given node in the CFG. Note that the control-
flow memory trace does not always contain information about
the path taken for every branch decision.

Besides pruning the state space, constraints stemming from
the memory traces are added to the SEE. For example, when
the exploration hits the third node of the CFG in Figure 4, we
add the constraint that at this the execution path, the mem-
ory access to the lookup table, i.e., lut, was made at index
0b11 XOR pt. The resulting constraint, i.e., addr(LUT) +
(SK » 2 XOR PT) == ObservedAddress, allows the SEE
to further reason about the secret input.

After finishing the path exploration phase, the SEE can
use its solver to recover the confidential information, e.g., the
private key, by concretizing the constraints added to the secret.
Depending on the complexity of the victim binary and the
exact memory accesses that were monitored, solving for the
secret is feasible. Generally speaking, all types of attacks that
purely rely on the memory access behavior of an application
can be automated using this approach. The reason is that these
memory accesses are encoded in the memory traces and thus
be converted to constraints for the solver of the SEE.

4 Athena Framework

In this section, we discuss the implementation of our
PoC framework Athena. Athena implements SCASE with
controlled-channel attacks as a side channel. Thus, Athena
automatically generates exploits for side-channel vulnerable
Intel SGX enclaves. While SCASE is not limited to Intel
SGX or trusted-execution environments in general, controlled-
channel attacks provide a powerful way of automating the
online phase to obtain noise-free traces. For Athena, we imple-
ment 2 main parts: an automated controlled-channel attack for
Intel SGX based on single stepping and monitoring access bits
as the online phase (Section 4.2), and an exploration strategy
for the SEE angr [37, 38] as the offline phase (Section 4.1).

Concrete Threat Model. The threat model for Athena ex-
tends and concretizes the threat model of SCASE (cf. Sec-
tion 3.1). In line with the Intel SGX threat model, which
is also commonly used in related work [24], we assume a
privileged native-code attacker, which includes the ability to
load arbitrary kernel modules, e.g., the SGX-step module [36].
Note that as we assume full knowledge over the content of
the enclave beside the target data, the attacker can execute a
copy of the victim application, e.g., as a debug enclave [89]
or in an emulator, without the actual secrets.

4.1 Offline Phase

Emulating the Target. In the offline phase, Athena utilizes
Guardian [83] to make angr [37, 38] compatible with Intel
SGX enclave binaries. This is possible since Intel SGX en-
claves are represented by ELF files, which allows to execute
specific enclave functions without the need for conversion.
Additionally, the code of enclaves is attacker-accessible in the
SGX threat model [89]. To enable executing enclave functions
that use OCALLs, i.e., functionality for the enclave provided by
the host application, OCALLs can be hooked by Guardian to
return dummy values. For applications that do not work with
dummy values, angr’s SymProcedures feature can be used
to create custom hooks. Since the result of OCALLs generally
cannot be trusted as it represents the result of an untrusted
computation, a situation where the result of an OCALL is used

to derive a secret or as part of a confidential computation
is unlikely. Note that emulating the enclave binary does not
allow extracting secrets, as any secret is typically loaded from
a secure remote instance only after successful remote attesta-
tion. Even an attacker fully aware of the target enclave’s code
and data cannot impersonate a remote attestation successfully.

Mapping the Leakage to angr’s State. As control- and
data-flow-related memory accesses contain information that
has to be handled differently for an optimal recovery, we split
the memory trace into two parts. Control-flow-related memory
accesses, i.e., accesses to executable memory pages, convey
information about which branch decisions were taken by the
victim program. Hence, we use this information to guide the
exploration phase based on the concept described in Section 3.
More specifically, we create a new ExplorationTechnique
subclass for angr, allowing us to precisely control how angr
symbolically executes binaries. A crucial part is the step
member function of the ExplorationTechnique class. The
step function is called every time any possible path that
angr explores encounters a control-flow branch, i.e., every
time a new basic block is reached. Single-stepping the vic-
tim enclave during memory trace creation yields exactly one
memory access per instruction pointer increment. Thus, we
keep track of the expected memory access, i.e., the position
in the control-flow trace, by incrementing the index into the
control-flow trace based on the number of instructions in the
current basic block. This allows us to create a step function
that checks on every branch decision whether the memory
access pattern differs from the control-flow memory trace. If
so, we drop the execution state and restrict the exploration
to paths that align with the memory trace. As discussed in
Section 3, this effectively prevents the state-explosion prob-
lem that would occur otherwise. It is important to note that
by dropping branch targets that do not align with the mem-
ory trace, we implicitly encode the constraints given by the
side-channel leakage into the SAT-solving engine of angr.

The data-flow memory trace is handled differently as it
does not correspond to changes in the instruction pointer but
instead adds explicit constraints to the memory accesses made
by the program, i.e., that at a specific point of the execution
a specific memory access was made. To model this, Athena
registers callbacks on all memory reads and writes made by
angr. Similar to the control-flow traces, the code in these
callbacks keeps track of the current position in the data-flow
trace for a given execution state. Note that calculating the
position in the data-flow trace is trivial, as per definition,
every invocation of the callback just increments the position
by 1 for its respective execution state. Thus, all that is left
is actually constraining the solver to a memory access that
aligns with the data-flow trace. For this, we directly add the
constraint mActual AND NEG64-bit(0xFFF) == mTrace to
the SAT solver, where mActual denotes to the actual memory
address accesses at the specific point of the execution, mTrace

corresponds to the page-aligned entry in the data-flow-trace,
and NEG64-bit is the binary negation of a 64-bit integer. The
previous formula assumes a page size of 4 kB and that we
only add the constraint for a memory access at one specific
point of the execution state, i.e., a memory load inside a loop
can have different constraints for each iteration of the loop
despite having the same memory address in every iteration.

Symbolizing and Constraining the Secret. For recovering
the secret, Athena requires the user to symbolize the memory
range holding the secret bytes (cf. Section 4.3). Athena then
adds data- and control-flow constraints, stemming from the
side-channel memory-access trace, to the symbolized secret
when exploring the victim program’s control-flow graph. Note
that this allows our approach to also recover partial secrets,
even when the side-channel trace does not provide enough
information to fully disclose the secret (cf. Section 5.3).

In the broader landscape of symbolic-execution tech-
niques [105], our approach represents a novel form of concolic
or dynamic symbolic execution, as it integrates both symbolic
exploration and concrete execution traces. While Athena con-
ducts a symbolic exploration of the target binary, it uses the
side-channel traces from a concrete execution to prune states,
whenever possible, and optimize the exploration.

4.2 Online Phase
Athena requires memory traces that are as fine-grained as pos-
sible. For our PoC implementation, we mainly use controlled-
channel attacks to create these memory traces, as they pro-
vide fine-grained information and were used on various target
applications in previous work [18, 35, 36, 55]. We mount a
controlled-channel attack to observe the memory access pat-
terns of the victim enclave. More precisely, we follow the
approach of Moghimi et al. [22] and monitor the access bits
of the page-table entries while single-stepping through the
victim enclave. We divide the page-table entries into two sets
based on the entry’s “NX” bit and clear all “accessed” bits.
If the page is marked as non-executable, we assume it only
holds data and track it as part of the data-flow trace. If the
page is not marked as non-executable, we assume it holds
code, and hence we track it as part of the control-flow trace.
This differentiation is beneficial when the memory traces are
handled by angr, as it optimizes the information gain. Note
that splitting the traces can also be done by an unprivileged
attacker who knows the memory map of the victim applica-
tion. When knowledge of the memory map is not available,
the victim binary itself gives this information for all statically
defined memory pages. Alternatively, previous work used side
channels to determine whether a page is executable [106].

We exclude memory pages from the traces that technically
belong to the victim but do not give meaningful information
about the access pattern of the victim, such as the memory
pages of the enclave thread control structures (TCS). Note

that the attacker application starting the SGX enclave is given
the memory location and size of the TCS and other excluded
memory pages, which reduces this step to a mere parsing
of attacker-available information. Eventually, we use SGX-
Step [36] to single-step through the enclave while observing
the accessed bits of the page-table entries. If an accessed bit
is set, we append it to the corresponding trace, i.e., control-
or data-flow trace, and clear it again before resuming the
execution of the victim enclave. The result are two traces, i.e.,
ordered lists of memory pages, that correspond to the control-
and data-flow access pattern of the victim enclave.

4.3 Usage

Athena allows to automatically retrieve the secret from a vic-
tim enclave by only adapting as few as 3 lines of code for
a specific target application. The implementation is almost
entirely automated, requiring only 2 user interactions. For the
memory tracing to work, the tracer needs to call the vulner-
able ECALL of the target enclave. For this, the user needs to
implement a callback that executes the ECALL. During our
experiments, these callbacks were 1 to 3 lines of C code, as
they are essentially just a function call with appropriate argu-
ments. Note that for simple ECALLs, this step can be further
automated by parsing the type information of the ECALL ar-
guments and automatically creating a call with appropriate
arguments, similar to the approach by Cloosters et al. [82].

The offline phase of Athena, i.e., the actual extraction
of the secret from the memory traces, is executed by call-
ing a corresponding Athena Python module. This only re-
quires the user to annotate the secret that should be re-
covered. Section A shows an example of how the Athena
Python module is used. Section A matches a secret recov-
ery from the function encrypt(const char* key, const
char* key_len, const char* msg). As dictated by the
System-V AMD64 ABI, the first argument, i.e., the secret
key, is passed in the RDI register, while the second argument,
i.e., the key length, is encoded in the RSI register. Thus, lines
15-17 instruct the framework to retrieve the secret key passed
in the RDI register. Note that only the highlighted 3 lines and
the parameters specifying the target ECALL and target func-
tion need to be adapted when the target changes. Due to the
combination of side-channel information that the framework
automatically obtains and encodes in an SEE, Athena reduces
the effort of creating a PoC for a vulnerable enclave to a bare
minimum. Hence, Athena makes PoC generation faster for
experts and accessible to a broader audience.

4.4 Alternative Side-Channel Traces

While our PoC framework uses a controlled-channel attack
to monitor the victim program, many other software-based
side-channel attacks would work similarly.

Spatial Resolution. One major difference between
controlled-channel attacks and most other software-based
side-channel attacks is that most of them cannot monitor
every victim page. For example, an attacker mounting Flush+
Reload needs to restrict their attack to a much smaller set
of addresses that can be monitored, as thousands of pages
cannot be monitored reliably in parallel using Flush+Reload.
While this is a drawback compared to controlled-channel
attacks, most other software-based side-channel attacks
have a finer granularity than controlled-channel attacks,
e.g., cache-line granularity, which gives the attacker more
precise information for recovering secrets. Athena can easily
be adapted to work with side-channel attacks that do not
monitor every memory page. As an attacker knows the set of
monitored memory pages, this information can be used in
Athena to restrict the guidance of all memory accesses to the
set of monitored pages.

Athena could be further extended to support side-channel
attacks that do not work directly on virtual addresses but
instead on microarchitectural structures, e.g., cache sets for
Prime+Probe. For this, one has to simulate the cache set be-
havior in the SEE, i.e., the initial state of the monitored cache
set and how it changes over time. While this is more challeng-
ing than modeling attacks where a mapping based solely on
virtual memory addresses can be used, implementing this is
merely an engineering task.

Dealing with Noise. Another considerable difference be-
tween controlled-channel attacks and most other software-
based side-channel attacks is that the latter are often not noise-
free, e.g., cache attacks may be impacted by false positives
and false negatives. Importantly, previous research [16,17,74]
has convincingly demonstrated that reliable information can
be extracted by repeating an attack multiple times. To empiri-
cally validate this, we implement a Flush+Reload attack on
the square-and-multiply algorithm implemented in mbedTLS
2.16.1. When decrypting a ciphertext with a 1024-bit key, we
observe 68 out of 100 traces to be entirely error-free. Thus,
by running the attack 3 times and using majority vote, we can
straightforwardly construct a noise-free trace without errors.

While correcting all errors for Prime+Probe is harder than
for Flush+Reload, previous research [16, 17] has shown that
the error rate of a Prime+Probe attack can be overcome by
repeating an attack multiple times. To empirically validate
this, we implement a Prime+Probe PoC on a program with
a secret-dependent branch processing 2048 secret bits. To
remove the errors, we repeat the complete attack multiple
times, while using a majority vote over the resulting leakage
pattern until we reach a stable leakage pattern for 30 consecu-
tive runs. After, on average, 115 repetitions, we reach a stable
leakage pattern, which correctly encodes the 2048 bit secret
key in 98 % of our tests. Thus, while it is more challenging to
gather stable traces from more noisy side-channel attacks, it

is feasible to do so by repeating the attack and pre-processing
the traces before feeding them into Athena.

5 Evaluation

In this section, we evaluate SCASE, focussing on our PoC
implementation Athena. First, we evaluate how well the
memory-trace-guided symbolic execution performs using
artificial traces (Section 5.1). Second, we analyze the per-
formance of Athena with real-world SGX traces, similar to
Moghimi et al. [22] (Section 5.2). Afterward, we evaluate
Athena on four further realistic examples.

5.1 Efficiency of Secret Recovery
In this section, we evaluate how different granularities of
memory traces improve the path exploration of angr [37, 38],
the symbolic execution framework used in Athena. We lever-
age a custom victim program that exhibits control- and data-
flow leakage via a jump table with secret-dependent indices.
This setup allows for measuring the influence of the memory
traces on the SEE in a controlled and precise manner. To eval-
uate the influence on a cryptographic target, we implement
the square-and-multiply algorithm as a victim program. Our
evaluation leverages a custom angr-based memory-tracing
tool that allows us to generate memory traces of the victim
program with varying granularities. We use an Intel Core
i7-9700K CPU with 32 GB memory for the evaluation.

5.1.1 Jump-Table Example

The custom victim program features a secret input that con-
sists of n-bytes, each from the range 0 to 15, i.e., a hexadeci-
mal digit. The program converts the secret into a numerical
value via value-specific parsing functions and lookup tables
by interpreting each byte as a hexadecimal digit. Hereby, the
program iterates over the secret and uses each byte of the
secret as an index into a jump table. The jump table contains
16 entries, each pointing to a different function that writes the
corresponding numerical value of the byte to a buffer. The
program therefore exhibits both control and data flow leakage
of the secret during the conversion of the secret.

First, we examine the ability of Athena to recover the secret
for varying granularities of the memory traces. We rely on
byte-granular memory traces of the victim program using
our custom memory-tracing tool. We vary the granularity
of the memory traces by zeroing out the lower bits of the
memory addresses contained in both traces. Thus, we achieve
byte granularity by zeroing out no bits and page granularity
by zeroing out the 12 least significant bits. Figure 5 shows
the runtime of Athena for recovering a 64-byte secret with
memory traces of different granularities. Each data point is
the average of 10 runs, each with a different pseudorandom
secret. The left side of the x-axis represents byte granularity,

0 2 4 6 8 10 12

101

102

Ignored bits

R
un

tim
e

[s
ec

on
ds

]

Figure 5: Athena’s runtime for recovering a 64-byte secret
with varying memory trace granularities. Zeroed-out bits of
the memory addresses in the control- and data-flow traces are
on the x-axis. The error band shows the min and max runtime.

2 4 8 16 32 64

100

102

Key length [bytes]

R
un

tim
e

[s
ec

on
ds

]

Byte Granular Page Gran.
No Guidance

Figure 6: Athena’s runtime for recovering varying-length
secrets, from 1 to 64 bytes.

while the right side represents page granularity. Note the
logarithmic scale of the y-axis. We observe that the runtime
increases exponentially with the decreasing granularity of the
memory traces. Further, we notice that the runtime of Athena
is almost entirely spent in the path exploration phase, while
the runtime of the solving phase is negligible. Intuitively, the
runtime grows exponentially because the more information
the memory traces contain, the more effective the SEE can
prune away states during the path exploration phase, i.e., the
overwhelming majority of the runtime.

Second, we evaluate the performance of Athena for recov-
ering the secret with varying secret lengths. This evaluation
also relies on byte-granular traces from our custom angr-based
memory-tracing tool. We evaluate byte and page granularity,
i.e., the most and least granular memory traces. In addition,
we compare the performance of Athena against the regular
performance of angr without any memory-trace guidance.
Figure 6 shows the runtime of Athena for recovering the se-
cret with varying secret lengths. The x-axis shows the number
of bytes of the secret, while the y-axis shows the runtime in
seconds. Note the logarithmic scale of the y-axis. We observe
that the runtime of Athena increases linearly with the secret
length. Furthermore, we observe that the runtime of Athena is
significantly lower than the runtime of angr without memory-
trace guidance, which fails to recover the secret for secret
lengths above 2 bytes in under 103 seconds. This is due to the
exponential state explosion that angr encounters during the
path exploration phase without memory-trace guidance. The
evaluation shows that memory-trace guidance allows efficient
secret recovery, even for long secrets.

1 uint64_t mod_exp(uint64_t base,
2 const char* exp, size_t exp_len) {
3 uint64_t result = 1;
4 for (int i = 0; i < exp_len; i++) {
5 result = square(result);
6 if (exp[i] == ’1’) // leakage
7 result = multiply(result, base);
8 result = result % N;
9 }

10 return result;
11 }

Listing 1: Square-and-multiply victim used during evaluation.
Assuming that the variable exp is secret, the function does a
secret-depending memory access in line 7. Thus, the memory
access pattern of the program leaks information about exp.

816 32 64 128 256
0

5

10

Key length [bits]

R
un

tim
e

[s
ec

on
ds

] Byte Granular
Page Gran.

Figure 7: Athena’s runtime for recovering the secret in the
Square and Multiply example with varying secret lengths.

5.1.2 Square and Multiply Example

Listing 1 shows the square-and-multiply implementation cal-
culating on a secret exponent, i.e., the variable exp. In line 7,
the function performs a secret-dependent branch, leading to
the conditional execution of multiply. For a sufficiently
large exponent, retrieving the exponent is infeasible for an
SEE. During our tests, 16 exponent bits already exceeded a
runtime of 10 minutes for angr without memory-trace guid-
ance. The code of the functions square and multiply resides
on different pages.

We evaluate Athena’s performance with byte- and page-
granular traces from our memory-tracing tool. We choose
secret exponents 2n, whereas n ranges from 1 to 8. For each
exponent, we execute 10 runs, each with a different pseudo-
random secret. Figure 7 shows the runtime of Athena for re-
covering the secret with varying lengths. The x-axis shows the
secret length, while the y-axis shows the runtime in seconds.
We observe that the runtime of Athena increases linearly with
the secret length. Note that the y-axis is not scaled logarithmi-
cally. The runtime of the solving phase is negligible compared
to the runtime of the path exploration phase.

5.2 SGX Traces with Athena

In this section, we evaluate Athena on traces recovered from
an SGX enclave using single-stepping. This experiment shows
that Athena can be used on memory traces obtained from a

controlled-channel attack. We recover the secret of the previ-
ously discussed square-and-multiply example (cf. Listing 1)
running inside an SGX enclave, reachable via an ECALL. To
model a realistic scenario, we use a 2048-bit key for the ex-
ponent, a typical key length for RSA.

We execute the SGX enclave and recover the memory
traces on an Intel Core i3-7100T CPU with 8 GB DRAM. As
recovering a 2048-bit key is memory-intensive, we execute
the offline phase of Athena on an Intel Core i9-12900K CPU
with 104 GB DRAM. Note that 104 GB DRAM is still reason-
able for an attacker. In line with the previous experiments, we
randomly generate secret keys while timing the exploration
and solving phase of Athena. We recover the traces using the
memory tracing approach discussed in Section 4.2, similar to
Moghimi et al. [22]. Our evaluation shows that Athena can
successfully recover all 2048 bits of the secret in 10 out of
10 cases, i.e., a 100 % success rate. Furthermore, the average
runtime for the guided exploration phase is 195.7 s with the
minimal and maximal observed runtime being 194.3 s and
196.8 s, respectively. For every execution, the time spent in
the solving phase was below 10 ms. The DRAM usage of
Athena spiked at 62 GB. We conclude that Athena can suc-
cessfully recover complex secrets from SGX enclaves using
memory traces obtained from controlled-channel attacks.

5.3 Recovering AES S-Box Keys

To demonstrate Athena’s ability to leverage complex data-
flow constraints, we target OpenSSL’s AES S-Box implemen-
tation. Athena successfully reconstructs the AES master key
from the S-Box lookups used in the substitute step.
Overview. A common optimization in software-based AES
implementations is the use of lookup tables containing pre-
computed values of either complete AES rounds [107] or
single steps of the AES algorithm [108]. For example, the
substitution step of an AES round can be sped up by look-
ing up the secrets in a precomputed lookup table, i.e., the
AES S-Box. As the values looked up in the S-Box depend on
the round keys, which are derived from the master key, these
accesses leak information about the master key. As the S-
Box is only 256 bytes large, an attacker requires fine-grained
side-channel information to distinguish between its different
entries. For our evaluation, we target the AES master key
passed to OpenSSL 1.0.2p’s AES_encrypt function and let
Athena automatically reconstruct the master key from the S-
Box lookups. Note that for 256-bit AES keys, the derivation
of the master key from the round keys is more complex than
for smaller key sizes, as it must be reconstructed from the
combination of multiple round keys.
Results. Table 1 summarizes Athena’s runtime and key bit
recovery for varying side-channel trace leakage granularities.
The results stay the same, when restricting Athena to just data-
flow leakage. When restricting Athena to pure control-flow
leakage, it fails to recover the master key since the control

Table 1: Athena’s performance for recovering 256-bit AES
keys with varying leakage granularities.

Granularity (Bytes) Key Bits Recovered Runtime

1 256 bits (100.0 %) 2.68 s
2 182 bits (71.1 %) 8.40 s
4 178 bits (69.5 %) 30.95 s
8 174 bits (68.0 %) 93.11 s

16 161 bits (62.9 %) 461.37 s

flow does not depend on any secrets. Thus, we observe that
byte-granular data-flow leakage from the S-Box yields enough
information to recover the entire master key. More coarse-
grained leakage only allows partial key recovery. As expected,
the runtime grows exponentially with reduced information.

An important aspect of the partial key leakage stemming
from our approach is that, in contrast to partial key leakage
due to noise, the recovered constraint makes it clear which of
the resulting key bits are fully constrained, i.e., reported as re-
covered, and which are unconstrained. Thus, post processing
techniques, e.g., bruteforcing of the remaining bits, can be
restricted to the unconstrained bits. From this, we conclude
that when armed with a side-channel attack that can differ-
entiate between all entries of the S-box, e.g., the prefetcher
side channel introduced by Hetterich et al. [109], Athena can
automatically reconstruct the master key from the meta in-
formation gained about the different round keys. This case
study demonstrates the ability of Athena to recover secrets
from complex data-flow constraints.

5.4 Exploiting OpenSSL’s Binary Extended
Euclidean Algorithm

While the previous experiments demonstrate that Athena can
handle both control- and data-flow constraints, this case study
demonstrates Athena’s handling of combined complex data-
and control-flow constraints. For this, we target OpenSSL’s
implementation of the binary extended Euclidean algorithm
(BEEA). Most notably, the BEEA is used during the key
generation process of cryptographic algorithms, such as RSA,
DSA, and ECDSA, and is a popular target of prior manual
attacks [8, 22, 39].
Overview. The BEEA, an optimized variant of the extended
Euclidian algorithm, is used to compute the greatest common
divisor and the modular inverse of two numbers. We target the
BEEA implementation in OpenSSL 1.1.0h, as displayed in
Section B. The implementation does not directly iterate over
all bits of the input but instead only allows limited information
gain about its intermediate states, e.g., the branch in line 10 re-
veals whether the least significant bit of the intermediate state
is 1. Previous work [8] has shown that with a set of manually-
crafted non-trivial rules, page-granular side-channel leakage
is sufficient to recover one input by assuming knowledge of

2,000 2,200 2,400 2,600 2,800 3,000

2
4
6
8

Exploration Steps

A
ct

iv
e

St
at

es

(a) Concurrently active states during Athena’s path exploration. For
readability reasons, only 1000 exploration steps are displayed.

0 1,000 2,000 3,000 4,000
0

1,000
2,000

Exploration Steps

Pr
un

ed
St

at
es

(b) States pruned by Athena due to control- or data-flow mismatches.

Figure 8: Path exploration results of OpenSSL’s BEEA imple-
mentation: (a) active states, (b) pruned states.

the other input, which is typically publicly known [8, 22, 39].
This case study shows that our approach can automatically
infer the rules required to recover the secret input from the
BEEA.
Results. Our experiment uses a randomly chosen secret to-
gether with the (fixed) public RSA exponent as input, in line
with previous work [8, 22, 39]. Athena autonomously recov-
ers the secret input within hours to days, depending on the
concrete secret. To evaluate whether the combination of data-
and control-flow constraints benefits our approach, we test the
experiment with just data- and just control-flow constraints.
In both cases, Athena cannot recover the secret input, thus
confirming that the combination of both types of constraints
is beneficial depending on the target. Figure 8 displays de-
tailed statistics about Athena’s path exploration process on
the BEEA implementation. Figure 8a shows the number of
concurrently active states in the SEE, oscillating between 1
and 10. We observe that the constraints added by the leakage
allow the SEE to continuously reduce the number of active
states whenever mismatches to the side-channel leakage are
detected. Figure 8b shows the overall impact of this, resulting
in the pruning of multiple thousand steps during the explo-
ration. Furthermore, Figure 9 highlights how the amount of
data-flow constraints increases over time, resulting in multi-
ple thousand constraints added during exploration. As neither
the data- nor the control-flow access patterns of the BEEA
implementation (cf. Section B) directly depend on its inputs,
we conclude that Athena can recover secrets from complex
mixed data- and control-flow constraints.

5.5 Attacking RC4 KSA
In this case study, we attack an implementation of the RC4
key-scheduling algorithm (KSA). To the best of our knowl-

0 1,000 2,000 3,000 4,000 5,000
0

2,000
4,000

Exploration Steps

C
on

st
ra

in
ts Memory Reads Memory Writes

Figure 9: Data-flow constraints added during the path ex-
ploration of OpenSSL’s BEEA implementation. Constraints
come from memory reads and memory writes.

edge, we are the first to show an entire key recovery on this
using side-channel leakage. Athena can automatically recover
the private key from leakage caused by lookup-table accesses.
Overview. In a typical RC4 KSA implementation, as illus-
trated in Section C, the internal state is represented as an array
of 256 entries. The KSA generates a random key-dependent
permutation by iterating over the internal state and swapping
the current element with another element based on the key.
These accesses lead to leakage exploitable by Athena.

While RC4 is no longer considered secure due to the un-
derlying cryptographic structures [110], it still acts as a good
example of secret-dependent data-flow leakage that a side-
channel attacker can exploit. While a typical side-channel
attacker has to model the everchanging content of S to recover
the key, Athena can automatically recover the key without an
attacker having to investigate the function KSA.

As this attack requires a fine-grained leakage, we manually
extract a byte-granular data-flow trace that an attacker can
create using a fine-grained side-channel attack, e.g., similar to
Gyselinck et al. [95] or Hetterich et al. [109]. Still, this demon-
strates the applicability of SCASE to previously unexploited
targets requiring a fine-grained side-channel attack.
Results. We try to recover 10 randomly generated 256 bit
keys from the implementation displayed in Section C. We
execute the recovery process on a commodity laptop equipped
with an Intel Core i7-1165G7 CPU and 16 GB RAM. For
each run, Athena successfully recovers 100 % of the key. The
recovery time ranges from 4 min and 29 s to 4 min and 54 s
with an average of 4 min and 35 s. For all runs, the time spent
in the solving phase was below 10 ms. We conclude that given
a fine-grained memory trace, our approach can automatically
recover cryptographic keys from applications that leak key
bits via their data-flow activity. Further, we show that Athena
recovers the key from a side-channel attack that has not been
previously exploited without requiring access to expensive
computation resources.

5.6 Recovering Poker Cards
To demonstrate SCASE on non-cryptographic targets, we
recover cards processed by a poker hand evaluator. We at-
tack the implementation of the TwoPlusTwoHandEvaluator1,

1https://github.com/tangentforks/TwoPlusTwoHandEvaluator

which is based on a poker-hand evaluation algorithm by Paul
D. Senzee and Cactus Kev [111, 112].
Overview. While the space of possible poker hands com-
prises millions of states, all hands can be ranked based on
their strength compared to other potential hands [111]. Poker
hand evaluators calculate the strength of one or multiple hands,
e.g., to determine the winner of a poker game. To speed up
the evaluation, Paul D. Senzee and Cactus Kev developed
an evaluation strategy that acts as a precomputed hash func-
tion [111, 112]. The TwoPlusTwoHandEvaluator is an imple-
mentation of this evaluation strategy. In the implementation,
the value of a hand is determined by following a pointer chain
through a precomputed hash table. Each of the 7 accesses,
besides the first one, depends on the result of the previous
accesses, and the hash table consists of 32.49 million entries.
Hence, manually recovering the complete hand is challenging,
as it requires an in-depth understanding of the algorithm.
Results. Our evaluation recovers 10 randomly generated
poker hands. We execute the recovery with a commodity lap-
top equipped with an Intel Core i7-1165G7 CPU and 16 GB
RAM and conduct the experiment on byte-granular traces. For
each run, we successfully recover 100 % of the cards. Athena
spends on average 255 ms, ranging from 250 ms to 280 ms in
the path exploration and below 10 ms in the solving phase.

6 Discussion

In the following, we discuss related work and how SCASE
and our Athena framework compare to it (Section 6.1). Fur-
thermore, we discuss the limitations of SCASE (Section 6.2).

6.1 Related Work

The following paragraphs discuss previous approaches that
aimed to automate secret recovery from side-channel leakage.
Machine Learning for Side-Channel Attack Automation.
Prior work has investigated the potential of machine learn-
ing for secret recovery from side-channel attacks [33, 34].
Yuan et al. [33] focused on recovering images and text
from traces generated using the Intel PIN utility or Prime+
Probe [64] via manifold learning. For image recovery, they
achieved an accuracy of up to 45.4 %, where a face recog-
nition API determined accuracy. For text recovery, they
achieved an accuracy of up to 43.4 % for a next-word pre-
dictor. Note that the recovered secrets were only similar to
the originals and not identical. A later reproduction study by
Zhang et al. [34] indicates that Yuan et al. tend to only gener-
ate images instead of reconstructing them from actual leakage.
They further analyzed the effectiveness of auto encoders in
recovering images. While promising for artificial memory
traces, their approach was unsuccessful in recovering images
from leakage by actual side-channel attacks. GPAM [113] is
a deep learning framework targeting physical side-channel

https://github.com/tangentforks/TwoPlusTwoHandEvaluator

attacks on cryptographic algorithms to produce probabilis-
tic results. In contrast, our approach recovers secrets with
certainty from generic software-based side-channel attacks.

Generally, SCASE improves upon machine-learning-based
approaches by enabling accurate secret recovery, i.e., our ap-
proach can infer complete secrets instead of recreating suffi-
ciently similar secrets, or probabilistically recovering secrets.
In contrast to Zhang et al. [34], our approach applies to non-
artificial memory traces generated by real-world side-channel
attacks. Moreover, SCASE does not require an initial training
phase, further reducing the effort for generating attacks.
Symbolic Execution for Side-Channel Attack Automation.
Phan et al. [114] automate input generation to maximize an
application’s side-channel leakage. The approach is tailored
towards side-channel attacks requiring multiple runs to leak a
secret fully. Their framework can synthesize the next input an
attacker needs to query to minimize the remaining entropy for
the side-channel attacker. In contrast, our approach targets the
orthogonal problem of reconstructing the secret input from
the observed leakage. Dubrova [31] demonstrated an attack on
AES-128 by combining deep-learning-based power analysis
with SAT solving. While their work focuses on power side
channels, uses deep learning, and specifically targets AES, our
approach targets memory access traces from generic binaries
and automatically generates logic constraints.
Differential Fault Analysis. Hu et al. [32] developed an
approach to automatically extracting secrets by analyzing the
longest recurring sequence of memory accesses. By analyz-
ing the number of memory accesses between the two longest
recurring sequences, they can determine whether the secret
contains a zero or a one bit. While their approach works on
vulnerable programs where leakage stems from branch condi-
tions of loops, our technique makes fewer assumptions about
the program’s control flow. Hence, our approach applies to a
wider range of target applications and side-channel attacks.

6.2 Limitations

The major limitations of SCASE stem from the limitations of
symbolic execution. As the SEE needs to emulate the victim
application, we require access to the code or the binary of the
victim application. Access to code of the victim application is,
however, not only in line with with Kerckhoff’s principle but
also a typical scenario for realistic attack vectors [89]. SCASE
computes the relationship between the side-channel leakage
and the corresponding secret by solving the constraints cre-
ated during the exploration of the binary with a SAT solver.
Despite being powerful, SAT solvers can not solve arbitrary
equations in a reasonable time. While for the applications
attacked in this paper, the SAT solving time was negligible
(cf. Section 5), it could become infeasible to solve for secrets
that have a very complex correlation with the side-channel
leakage. Our approach empowers an SEE using the meta in-
formation leaked by a side-channel attack. Hence, the amount

of information leakage directly correlates with the capability
to recover the target application’s secret. Thus, SCASE will
likely be unsuccessful on a program that does not show any or
only minor side-channel leakage. Furthermore, while SCASE
significantly reduce the human effort required to recover se-
crets, human experts are still beneficial for certain targets as
they can leverage domain knowledge to come up with more
efficient ways to recover a secret.

Athena is focusing on non-interactive single-trace attacks.
While Athena also has support for storing and restoring con-
straints to enable multi-trace attacks, these types of attacks
often require specifically crafted inputs, e.g., specific plain-
texts, which require manual engineering. Thus, our evaluation
consists of victims that can be exploited via a single execu-
tion. This excludes interactive attacks, e.g., padding oracles
or early-abort string comparisons, where the attacker chooses
input values interactively. This limitation can be overcome by
adapting the framework to remember constraints for multiple
executions and traces of the side-channel attack.

Parts of our evaluation were conducted on byte-granular
traces. While side-channel attacks with fine-grained leakage
exist [95, 109], this work does not aim to discover novel side-
channel attacks nor evaluate the feasibility of these attacks on
specific targets. Instead, our approach is based on the leakage
stemming from such an attack and demonstrates the potential
impact of its leakage. We stress that developers should not
rely on the absence of a concrete attack and instead consider
every leakage as a potential attack vector, which is in line
with the principles of constant-time programming.

7 Conclusion

We proposed SCASE, an approach to automatically infer se-
crets from side-channel attacks, thus automating the creation
of PoC exploits. The key idea behind SCASE is to guide a
SEE with side-channel traces. To showcase SCASE, we de-
veloped a PoC implementation, Athena, targeting Intel SGX
enclaves. Athena recovered a 2048-bit RSA key and a 256-bit
secret key of an RC4 KSA. We demonstrated key recovery
from OpenSSL’s AES S-Box implementation and its binary
extended Euclidean algorithm. Furthermore, we recovered the
values processed by a poker hand evaluator. We conclude that
the technique is versatile and practical in recovering secrets
from complex implementations without requiring an in-depth
understanding of the victim application.

8 Ethics Considerations

The tool proposed in this work does not discover new vul-
nerabilities but rather automates the exploitation of known
vulnerabilities. Hence, we do not see a direct ethical concern.
While it could be used to assist in implementing attack ap-
plications, it is intended to be used for defensive purposes

and lowers the barrier for security researchers to evaluate
the security of an application. Furthermore, our experiments
have been conducted on machines belonging to the authors
themselves or their affiliation and do not involve any personal
data. Nevertheless, to ensure that Intel is aware of our PoC
implementation, we disclosed our work to them.

9 Open Science

To enable the reproducibility of our results and to encourage
future work, we released the entire source code of our tool as
open-source software, including the memory traces and code
samples used in our evaluation to allow for reproducibility of
our results.2

Acknowledgments

We thank our shepherd and the anonymous reviewers for
their feedback and suggestions. We thank Daniel Gruss for
his valuable input about this work, especially in the early
stages. This work was partly supported by the Semiconductor
Research Corporation (SRC) Hardware Security Program
(HWS) and by the by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) - 491039149. Further
funding was provided by the Research Fund KU Leuven and
by the Cybersecurity Research Program Flanders.

References

[1] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard,
“Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript,”
in FC, 2017.

[2] F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida,
and K. Razavi, “Smash: Synchronized many-sided row-
hammer attacks from javascript.” in USENIX, 2021.

[3] D. Gruss, C. Maurice, and S. Mangard, “Rowham-
mer.js: A Remote Software-Induced Fault Attack in
JavaScript,” in DIMVA, 2016.

[4] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D.
Keromytis, “The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications,” in CCS,
2015.

[5] A. Shusterman, A. Agarwal, S. O’Connell, D. Genkin,
Y. Oren, and Y. Yarom, “Prime+Probe 1, JavaScript 0:
Overcoming Browser-based Side-Channel Defenses,”
in USENIX Security Symposium, 2021.

2Available at https://github.com/cispa/scase and https://doi.
org/10.5281/zenodo.15609410.

[6] D. Gruss, D. Bidner, and S. Mangard, “Practical Mem-
ory Deduplication Attacks in Sandboxed JavaScript,”
in ESORICS, 2015.

[7] M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C.-m.-t.-n.
Maurice, and S. Mangard, “Practical Keystroke Timing
Attacks in Sandboxed JavaScript,” in ESORICS, 2017.

[8] S. Weiser, R. Spreitzer, and L. Bodner, “Single Trace
Attack Against RSA Key Generation in Intel SGX
SSL,” in AsiaCCS, 2018.

[9] T. Huo, X. Meng, W. Wang, C. Hao, P. Zhao, J. Zhai,
and M. Li, “Bluethunder: A 2-level Directional Pre-
dictor Based Side-Channel Attack against SGX,” in
CHES, 2020.

[10] F. Dall, G. De Micheli, T. Eisenbarth, D. Genkin,
N. Heninger, A. Moghimi, and Y. Yarom, “Cachequote:
Efficiently recovering long-term secrets of SGX EPID
via cache attacks,” in CHES, 2018.

[11] P. Qiu, Y. Lyu, H. Wang, D. Wang, C. Liu, Q. Gao,
C. Wang, R. Sun, and G. Qu, “Pmuspill: The counters
in performance monitor unit that leak sgx-protected
secrets,” arXiv:2207.11689, 2022.

[12] I. Puddu, M. Schneider, M. Haller, and S. Čapkun,
“Frontal Attack: Leaking Control-Flow in SGX via
the CPU Frontend,” in USENIX Security Symposium,
2021.

[13] A. Moghimi, T. Eisenbarth, and B. Sunar, “MemJam:
A False Dependency Attack against Constant-Time
Crypto Implementations in SGX,” in CT-RSA, 2018.

[14] D. Kim, D. Jang, M. Park, Y. Jeong, J. Kim, S. Choi,
and B. B. Kang, “SGX-LEGO: Fine-grained SGX
controlled-channel attack and its countermeasure,”
Computers & Security, vol. 82, 2019.

[15] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and
M. Peinado, “Inferring Fine-grained Control Flow
Inside SGX Enclaves with Branch Shadowing,” in
USENIX Security Symposium, 2017.

[16] M. Schwarz, D. Gruss, S. Weiser, C. Maurice, and
S. Mangard, “Malware Guard Extension: Using SGX
to Conceal Cache Attacks,” in DIMVA, 2017.

[17] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cache-
zoom: How SGX amplifies the power of cache attacks,”
in CHES, 2017.

[18] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bind-
schaedler, H. Tang, and C. A. Gunter, “Leaky Caul-
dron on the Dark Land: Understanding Memory Side-
Channel Hazards in SGX,” in CCS, 2017.

https://github.com/cispa/scase
https://doi.org/10.5281/zenodo.15609410
https://doi.org/10.5281/zenodo.15609410

[19] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller,
“Cache Attacks on Intel SGX,” in EuroSec, 2017.

[20] J. Van Bulck, F. Piessens, and R. Strackx, “Nemesis:
Studying Microarchitectural Timing Leaks in Rudi-
mentary CPU Interrupt Logic,” in CCS, 2018.

[21] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens,
and R. Strackx, “Telling Your Secrets Without Page
Faults: Stealthy Page Table-Based Attacks on Enclaved
Execution,” in USENIX Security Symposium, 2017.

[22] D. Moghimi, J. V. Bulck, N. Heninger, F. Piessens,
and B. Sunar, “CopyCat: Controlled Instruction-Level
Attacks on Enclaves for Maximal Key Extraction,” in
USENIX Security Symposium, 2020.

[23] K. Ryan, “Hardware-Backed Heist: Extracting ECDSA
Keys from Qualcomm’s TrustZone,” in CCS, 2019.

[24] M. Schwarz and D. Gruss, “How Trusted Execution
Environments Fuel Research on Microarchitectural At-
tacks,” IEEE Security & Privacy, 2020.

[25] D. Weber, A. Ibrahim, H. Nemati, M. Schwarz, and
C. Rossow, “Osiris: Automated Discovery of Microar-
chitectural Side Channels,” in USENIX Security, 2021.

[26] D. Gruss, R. Spreitzer, and S. Mangard, “Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-
Level Caches,” in USENIX Security Symposium, 2015.

[27] A. Geimer, M. Vergnolle, F. Recoules, L.-A. Daniel,
S. Bardin, and C. Maurice, “A systematic evaluation
of automated tools for side-channel vulnerabilities de-
tection in cryptographic libraries,” in SIGSAC, 2023.

[28] J. Jancar, M. Fourné, D. D. A. Braga, M. Sabt,
P. Schwabe, G. Barthe, P.-A. Fouque, and Y. Acar,
““they’re not that hard to mitigate”: What cryptographic
library developers think about timing attacks,” in SP,
2022.

[29] S. Weiser, A. Zankl, R. Spreitzer, K. Miller, S. Man-
gard, and G. Sigl, “DATA - Differential Address Trace
Analysis: Finding Address-based Side-Channels in Bi-
naries,” in USENIX Security, 2018.

[30] C. Easdon, M. Schwarz, M. Schwarzl, and D. Gruss,
“Rapid Prototyping for Microarchitectural Attacks,” in
USENIX Security, 2022.

[31] E. Dubrova, “Solving aes-sat using side-channel hints:
A practical assessment,” Cryptology ePrint Archive,
2024.

[32] L. Hu, F. Zhang, Z. Liang, R. Ding, X. Cai, Z. Wang,
and W. Jin, “Faultmorse: An automated controlled-
channel attack via longest recurring sequence,” Com-
puters & Security, 2023.

[33] Y. yuan, Q. Pang, and S. Wang, “Automated Side Chan-
nel Analysis of Media Software with Manifold Learn-
ing,” in USENIX Security, 2022.

[34] Z. Zhang, Z. Lai, and U. Parampalli, “R+R: Demystify-
ing ML-Assisted Side-Channel Analysis Framework:
A Case of Image Reconstruction,” in ACSAC, 2024.

[35] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted
Operating Systems,” in S&P, 2015.

[36] J. Van Bulck, F. Piessens, and R. Strackx, “SGX-Step:
A Practical Attack Framework for Precise Enclave Ex-
ecution Control,” in Workshop on System Software for
Trusted Execution, 2017.

[37] The angr Project contributors, “angr,” 2024. [Online].
Available: https://github.com/angr/angr

[38] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens,
M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser,
C. Kruegel, and G. Vigna, “Sok: (state of) the art of
war: Offensive techniques in binary analysis,” in S&P,
2016.

[39] A. C. Aldaya and B. B. Brumley, “When one
vulnerable primitive turns viral: Novel single-trace
attacks on ECDSA and RSA,” IACR Cryptology
ePrint Archive, 2020. [Online]. Available: https:
//eprint.iacr.org/2020/055

[40] E. Stefanov, E. Shi, and D. Song, “Towards practical
oblivious ram,” arXiv preprint, 2011.

[41] B. Pinkas and T. Reinman, “Oblivious ram revisited,”
in CRYPTO, 2010.

[42] E. Stefanov, M. v. Dijk, E. Shi, T.-H. H. Chan,
C. Fletcher, L. Ren, X. Yu, and S. Devadas, “Path oram:
an extremely simple oblivious ram protocol,” JACM,
2018.

[43] J. Wichelmann, A. Rabich, A. Pätschke, and T. Eisen-
barth, “Obelix: Mitigating side-channels through dy-
namic obfuscation,” in S&P, 2024.

[44] S. Aga and S. Narayanasamy, “Invisipage: oblivious
demand paging for secure enclaves,” in International
Symposium on Computer Architecture, 2019.

[45] P. Zhang, C. Song, H. Yin, D. Zou, E. Shi, and
H. Jin, “Klotski: Efficient obfuscated execution against
controlled-channel attacks,” in International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, 2020.

https://github.com/angr/angr
https://eprint.iacr.org/2020/055
https://eprint.iacr.org/2020/055

[46] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto,
K. Kostiainen, and A.-R. Sadeghi, “Dr. SGX: au-
tomated and adjustable side-channel protection for
SGX using data location randomization,” in Annual
Computer Security Applications Conference (ACSAC),
2019.

[47] W. Kosasih, Y. Feng, C. Chuengsatiansup, Y. Yarom,
and Z. Zhu, “SoK: Can We Really Detect Cache Side-
Channel Attacks by Monitoring Performance Coun-
ters?” in AsiaCCS, 2024.

[48] D. Weber, L. Niemann, L. Gerlach, J. Reineke, and
M. Schwarz, “No Leakage Without State Change: Re-
purposing Configurable CPU Exceptions to Prevent
Microarchitectural Attacks,” in ACSAC, 2024.

[49] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-
time side-channel attack detection system in clouds,”
in RAID, 2016.

[50] M. Payer, “HexPADS: a platform to detect “stealth”
attacks,” in ESSoS, 2016.

[51] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX:
Eradicating controlled-channel attacks against enclave
programs,” in NDSS, 2017.

[52] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “De-
tecting Privileged Side-Channel Attacks in Shielded
Execution with Déjà Vu,” in AsiaCCS, 2017.

[53] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and
C. Fetzer, “Varys: Protecting SGX enclaves from practi-
cal side-channel attacks,” in USENIX Annual Technical
Conference (ATC), 2018.

[54] P. Borrello, D. C. D’Elia, L. Querzoni, and C. Giuf-
frida, “Constantine: Automatic side-channel resistance
using efficient control and data flow linearization,” in
SIGSAC, 2021.

[55] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena,
“Preventing page faults from telling your secrets,” in
ACM Asia Conference on Computer and Communica-
tions Security (AsiaCCS), 2016.

[56] S. Cauligi, G. Soeller, F. Brown, B. Johannesmeyer,
Y. Huang, R. Jhala, and D. Stefan, “FaCT: A flexible,
constant-time programming language,” in 2017 IEEE
Cybersecurity Development (SecDev). IEEE, 2017,
pp. 69–76.

[57] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Gré-
goire, V. Laporte, T. Oliveira, H. Pacheco, B. Schmidt,
and P.-Y. Strub, “Jasmin: High-assurance and high-
speed cryptography,” in ACM SIGSAC Conference on
Computer and Communications Security, 2017.

[58] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and
B. Beurdouche, “HACL*: A verified modern crypto-
graphic library,” in CCS, 2017.

[59] S. Constable, J. Van Bulck, X. Cheng, Y. Xiao, C. Xing,
I. Alexandrovich, T. Kim, F. Piessens, M. Vij, and
M. Silberstein, “Aex-notify: Thwarting precise single-
stepping attacks through interrupt awareness for intel
sgx enclaves,” in USENIX, 2023.

[60] M. Orenbach, A. Baumann, and M. Silberstein, “Au-
tarky: Closing controlled channels with self-paging
enclaves,” in European Conference on Computer Sys-
tems (EuroSys), 2020.

[61] Y. Yarom and K. Falkner, “Flush+Reload: a High Res-
olution, Low Noise, L3 Cache Side-Channel Attack,”
in USENIX Security Symposium, 2014.

[62] D. Gruss, C. Maurice, K. Wagner, and S. Mangard,
“Flush+Flush: A Fast and Stealthy Cache Attack,” in
DIMVA, 2016.

[63] A. Purnal, F. Turan, and I. Verbauwhede,
“Prime+Scope: Overcoming the Observer Effect
for High-Precision Cache Contention Attacks,” in
CCS, 2021.

[64] C. Percival, “Cache Missing for Fun and Profit,” in
BSDCan, 2005.

[65] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Transla-
tion Leak-aside Buffer: Defeating Cache Side-channel
Protections with TLB Attacks,” in USENIX Security
Symposium, 2018.

[66] S. Bhattacharya and D. Mukhopadhyay, “Who watches
the watchmen?: Utilizing Performance Monitors for
Compromising keys of RSA on Intel Platforms,” Cryp-
tology ePrint Archive, Report 2015/621, 2015.

[67] O. Acıiçmez, J.-P. Seifert, and c. K. Koç, “Predicting
secret keys via branch prediction,” in CT-RSA, 2007.

[68] T. Schlüter, A. Choudhari, L. Hetterich, L. Trampert,
H. Nemati, A. Ibrahim, M. Schwarz, C. Rossow, and
N. O. Tippenhauer, “FetchBench: Systematic Identifi-
cation and Characterization of Proprietary Prefetchers,”
in CCS, 2023.

[69] B. Gras, C. Giuffrida, M. Kurth, H. Bos, and K. Razavi,
“ABSynthe: Automatic Blackbox Side-channel Synthe-
sis on Commodity Microarchitectures,” in NDSS, 2020.

[70] Z. Wu, Z. Xu, and H. Wang, “Whispers in the Hyper-
space: High-speed Covert Channel Attacks in the
Cloud,” in USENIX Security Symposium, 2012.

[71] T. Rokicki, C. Maurice, and M. Schwarz, “CPU Port
Contention Without SMT,” in ESORICS, 2022.

[72] L. Yan, Y. Guo, X. Chen, and H. Mei, “A Study on
Power Side Channels on Mobile Devices,” in Sympo-
sium on Internetware, 2015.

[73] A. Kogler, J. Juffinger, L. Giner, L. Gerlach,
M. Schwarzl, M. Schwarz, D. Gruss, and S. Man-
gard, “Collide+Power: Leaking Inaccessible Data with
Software-based Power Side Channels,” in USENIX Se-
curity, 2023.

[74] F. Rauscher, C. Fiedler, A. Kogler, and D. Gruss, “A
systematic evaluation of novel and existing cache side
channels,” in NDSS, 2025.

[75] M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss, “Net-
Spectre: Read Arbitrary Memory over Network,” in
ESORICS, 2019.

[76] M. Kurth, B. Gras, D. Andriesse, C. Giuffrida, H. Bos,
and K. Razavi, “NetCAT: Practical cache attacks from
the network,” in S&P, 2020.

[77] M. Schwarzl, P. Borrello, G. Saileshwar, H. Müller,
M. Schwarz, and D. Gruss, “Practical Timing Side-
Channel Attacks on Memory Compression,” in S&P,
2023.

[78] J. C. King, “Symbolic execution and program testing,”
Commun. ACM, 1976.

[79] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: unas-
sisted and automatic generation of high-coverage tests
for complex systems programs.” in OSDI, 2008.

[80] L.-A. Daniel, S. Bardin, and T. Rezk, “Binsec/rel: Effi-
cient relational symbolic execution for constant-time
at binary-level,” in S&P, 2020.

[81] F. Alder, L.-A. Daniel, D. Oswald, F. Piessens, and
J. Van Bulck, “Pandora: Principled symbolic validation
of intel sgx enclave runtimes,” in S&P, 2024.

[82] T. Cloosters, M. Rodler, and L. Davi, “{TeeRex}: Dis-
covery and exploitation of memory corruption vulnera-
bilities in {SGX} enclaves,” in USENIX Security Sym-
posium, 2020.

[83] P. Antonino, W. A. Woloszyn, and A. Roscoe,
“Guardian: Symbolic validation of orderliness in sgx
enclaves,” in CCSW, 2021.

[84] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vi-
gna, “Driller: Augmenting Fuzzing Through Selective
Symbolic Execution.” in NDSS, 2016.

[85] Y. Wang, S. Sheng, and Y. Wang, “A systematic litera-
ture review on smart contract vulnerability detection
by symbolic execution,” in International Conference
on Blockchain and Trustworthy Systems, 2024.

[86] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and
Z. Zuo, “Specusym: Speculative symbolic execution
for cache timing leak detection,” in ACM/IEEE Inter-
national Conference on Software Engineering, 2020.

[87] O. Bazhaniuk, J. Loucaides, L. Rosenbaum, M. R. Tut-
tle, and V. Zimmer, “Symbolic execution for {BIOS}
security,” in WOOT, 2015.

[88] D. Davidson, B. Moench, T. Ristenpart, and S. Jha,
“{FIE} on firmware: Finding vulnerabilities in embed-
ded systems using symbolic execution,” in USENIX,
2013.

[89] V. Costan and S. Devadas, “Intel SGX Explained,”
Cryptology ePrint Archive, Report 2016/086, 2016.

[90] Intel, “Get Started with the SDK,” 2019. [Online].
Available: https://software.intel.com/en-us/sgx/sdk

[91] S. Fei, Z. Yan, W. Ding, and H. Xie, “Security vulnera-
bilities of sgx and countermeasures: A survey,” CSUR,
2021.

[92] A. Nilsson, P. Nikbakht Bideh, and J. Brorsson, “A sur-
vey of published attacks on intel sgx,” arXiv preprint,
2020.

[93] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx, “Foreshadow: Extracting
the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution,” in USENIX Security, 2018.

[94] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck,
J. Stecklina, T. Prescher, and D. Gruss, “ZombieLoad:
Cross-Privilege-Boundary Data Sampling,” in CCS,
2019.

[95] J. Gyselinck, J. Van Bulck, F. Piessens, and R. Strackx,
“Off-limits: Abusing legacy x86 memory segmentation
to spy on enclaved execution,” in ESSoS, 2018.

[96] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck,
D. Gruss, and F. Piessens, “Plundervolt: Software-
based Fault Injection Attacks against Intel SGX,” in
S&P, 2020.

[97] Intel, “Intel Xeon scalable platform built
for most sensitive workloads,” October
2020. [Online]. Available: https://www.
intel.com/content/www/us/en/newsroom/news/
xeon-scalable-platform-built-sensitive-workloads.
html

https://software.intel.com/en-us/sgx/sdk
https://www.intel.com/content/www/us/en/newsroom/news/xeon-scalable-platform-built-sensitive-workloads.html
https://www.intel.com/content/www/us/en/newsroom/news/xeon-scalable-platform-built-sensitive-workloads.html
https://www.intel.com/content/www/us/en/newsroom/news/xeon-scalable-platform-built-sensitive-workloads.html
https://www.intel.com/content/www/us/en/newsroom/news/xeon-scalable-platform-built-sensitive-workloads.html

[98] ——, “Intel Trust Domain Extensions,” 2023.
[Online]. Available: https://cdrdv2-public.intel.com/
690419/TDX-Whitepaper-February2022.pdf

[99] L. Wilke, F. Sieck, and T. Eisenbarth, “TDXdown:
Single-Stepping and Instruction Counting Attacks
against Intel TDX,” in CCS, 2024.

[100] L. Wilke, J. Wichelmann, A. Rabich, and T. Eisenbarth,
“Sev-step: A single-stepping framework for amd-sev,”
2023.

[101] R. Zhang, L. Gerlach, D. Weber, L. Hetterich, Y. Lü,
A. Kogler, and M. Schwarz, “CacheWarp: Software-
based Fault Injection using Selective State Reset,” in
USENIX Security, 2024.

[102] R. Spreitzer and T. Plos, “Cache-Access Pattern Attack
on Disaligned AES T-Tables,” in COSADE, 2013.

[103] N. Lawson, “Side channel attacks on cryptographic
software,” IEEE Security & Privacy, vol. 7, no. 6, pp.
65–68, 2009.

[104] R. Zhang, T. Kim, D. Weber, and M. Schwarz,
“(M)WAIT for It: Bridging the Gap between Mi-
croarchitectural and Architectural Side Channels,” in
USENIX Security, 2023.

[105] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu,
and I. Finocchi, “A survey of symbolic execution tech-
niques,” CSUR, 2018.

[106] Y. Jang, S. Lee, and T. Kim, “Breaking Kernel Address
Space Layout Randomization with Intel TSX,” in CCS,
2016.

[107] S. Van Schaik, C. Giuffrida, H. Bos, and K. Razavi,
“Malicious Management Unit: Why Stopping Cache
Attacks in Software is Harder Than You Think,” in
USENIX Security Symposium, 2018.

[108] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen,
“A side-channel analysis resistant description of the aes
s-box,” in Fast Software Encryption, 2005.

[109] L. Hetterich, F. Thomas, L. Gerlach, R. Zhang,
N. Bernsdorf, E. Ebert, and M. Schwarz, “ShadowLoad:
Injecting State into Hardware Prefetchers,” in ASPLOS,
2025.

[110] P. Jindal and B. Singh, “RC4 Encryption - A Literature
Survey,” in ICICT, 2014.

[111] S.-g. Kim and Y.-G. Kim, “A learning ai algorithm for
poker with embedded opponent modeling,” Interna-
tional Journal of Fuzzy Logic and Intelligent Systems,
2010.

[112] L. F. Teófilo, L. P. Reis, and H. L. Cardoso, “Com-
puting card probabilities in texas hold’em,” in CISTI,
2013.

[113] E. Bursztein, L. Invernizzi, K. Král, D. Moghimi, J.-
M. Picod, and M. Zhang, “Generalized power attacks
against crypto hardware using long-range deep learn-
ing,” CHES, 2024.

[114] Q.-S. Phan, L. Bang, C. S. Pasareanu, P. Malacaria, and
T. Bultan, “Synthesis of adaptive side-channel attacks,”
in CSF, 2017.

A Athena Usage Example

Listing 2 shows an example of how to use Athena to recover
a secret key from a victim function. Only the code parts
highlighted in orange and written in cursive require changes
when adapting the code to a different target.

1 athena_framework = athena.AthenaFramework(
2 ENCLAVE_PATH, TARGET_ECALL, TARGET_FUNC,
3 enable_control_flow_tracing=True,
4 control_flow_tracefile=CFTRACE_FILE,
5 enable_data_flow_tracing=True,
6 data_flow_tracefile=DFTRACE_FILE,
7 base_addr=ENCLAVE_BASE_ADDR)
8

9 s = athena_framework.get_initial_state()
10

11 # Victim function call layout:
12 # RDI: pointer to secret key
13 # RSI: len(secret key)
14

15 l = s.regs.rsi.concrete_value
16 scrt = s.solver.BVS("secret", l * 8)
17 s.memory.store(s.regs.rdi.concrete_value, scrt)
18

19 athena_framework.set_initial_state(s)
20

21 athena_framework.run()
22 solution = athena_framework.solve(scrt)

Listing 2: Example usage of Athena. Only the highlighted are
target-specific, as they annotate the value to be recovered. In
this case, the RDI register points to the secret.

B OpenSSL’s Binary Extended Euclidean Al-
gorithm

Listing 3 shows the implementation of OpenSSL’s binary
extended Euclidean algorithm (BEEA).

C RC4 Key Scheduling Algorithm

Listing 4 shows the implementation of the RC4 key schedul-
ing algorithm (KSA) used in our evaluation.

https://cdrdv2-public.intel.com/690419/TDX-Whitepaper-February2022.pdf
https://cdrdv2-public.intel.com/690419/TDX-Whitepaper-February2022.pdf

1 static BIGNUM *euclid(BIGNUM *a, BIGNUM *b) {
2 BIGNUM *t;
3 int shifts = 0;
4 bn_check_top(a);
5 bn_check_top(b);
6

7 while (!BN_is_zero(b)) {
8 if (BN_is_odd(a)) {
9 if (BN_is_odd(b)) {

10 if (!BN_sub(a, a, b))
11 goto err;
12 if (!BN_rshift1(a, a))
13 goto err;
14 if (BN_cmp(a, b) < 0) {
15 t = a; a = b; b = t;
16 }
17 } else {
18 if (!BN_rshift1(b, b))
19 goto err;
20 if (BN_cmp(a, b) < 0) {
21 t = a; a = b; b = t;
22 }
23 }
24 } else {
25 if (BN_is_odd(b)) {
26 if (!BN_rshift1(a, a))
27 goto err;
28 if (BN_cmp(a, b) < 0) {
29 t = a; a = b; b = t;
30 }
31 } else {
32 if (!BN_rshift1(a, a))
33 goto err;
34 if (!BN_rshift1(b, b))
35 goto err;
36 shifts++;
37 }
38 }
39 }
40 if (shifts) {
41 if (!BN_lshift(a, a, shifts))
42 goto err;
43 }
44 bn_check_top(a);
45 return (a);
46 err:
47 return (NULL);
48 }

Listing 3: OpenSSL’s implementation of the binary extended
euclidian algorithm.

1 for (int i = 0; i < 256; i++)
2 S[i] = i;
3 int j = 0;
4 for (int i = 0; i < 256; i++) {
5 j = (j + S[i] + key[i % keylen]) % 256;
6 swap(S[i], S[j]);
7 }

Listing 4: RC4 Key Scheduling Pseudocode.

D Jump-Table Example Implementation

Listing 5 shows the toy victim that we attack in Section 5.1.1.

1 unsigned char dec_to_hex[] = "0123456789abcdef";
2 unsigned char hex_to_dec_lut[256];
3

4 unsigned char hex_to_dec(unsigned char c) {
5 return hex_to_dec_lut[c];
6 }
7

8 unsigned char buffer[KEYSIZE] = {0};
9 unsigned int buffer_pos = 0;

10

11 void func_0() { buffer[buffer_pos++] = ’0’; }
12 void func_1() { buffer[buffer_pos++] = ’1’; }
13 [...]
14 void func_f() { buffer[buffer_pos++] = ’f’; }
15

16 struct lut_entry {
17 void* func;
18 char padding[PADDING];
19 };
20

21 struct lut_entry __attribute__((aligned(4096)))
22 lut[16] = {
23 {&func_0, {0}}, {&func_1, {0}},
24 [...], {&func_f, {0}},
25 };
26

27 void __attribute__((aligned(4096))) victim(
28 unsigned char* key, int len,
29 struct lut_entry* lut) {
30 for (int i = 0; i < len; i++) {
31 int idx = hex_to_dec(key[i]);
32 ((void(*)())lut[idx].func)();
33 }
34 }

Listing 5: Toy victim program exposing control- and data-flow
side-channel leakage.

	Introduction
	Background
	Software-Based Side-Channel Attacks
	Symbolic Execution
	Intel Software Guard Extensions
	Controlled-Channel Attacks

	SCASE
	General Threat Model
	Overview
	Introductory Toy Example
	Major Challenges
	SCASE: Recovering Secrets from Memory Traces using Symbolic Execution

	Athena Framework
	Offline Phase
	Online Phase
	Usage
	Alternative Side-Channel Traces

	Evaluation
	Efficiency of Secret Recovery
	Jump-Table Example
	Square and Multiply Example

	SGX Traces with Athena
	Recovering AES S-Box Keys
	Exploiting OpenSSL's Binary Extended Euclidean Algorithm
	Attacking RC4 KSA
	Recovering Poker Cards

	Discussion
	Related Work
	Limitations

	Conclusion
	Ethics Considerations
	Open Science
	Athena Usage Example
	OpenSSL's Binary Extended Euclidean Algorithm
	RC4 Key Scheduling Algorithm
	Jump-Table Example Implementation

