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“Embedded-systems security is,
for lack of a better word, a mess.”

– John Viega & Hugh Thompson

VIEGA John, THOMPSON Hugh, The state of embedded-device security (spoiler alert: 
It's bad), IEEE Security & Privacy (10.5), September 2012, pp. 68-70.
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Software Isolation

Embedded

● Cheap
● Low power

=> Single-address-space

Conventional

● Relatively expensive
● Power-consuming

=> Virtual memory & 
kernel mode
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Protected Module Architectures

STRACKX Raoul et al., Protected Software Module Architectures, ISSE 2013 Securing Electronic Business Processes, 
Springer Fachmedien Wiesbaden, 2013, pp. 241-251.

From \ to Protected Unprotected
Entry Code Data

Protected r-x r-x rw- rwx
Unprotected / other SPM r-x r-- --- rwx

● Isolated execution areas in a single-
address-space

● Program counter based access control 
mechanism
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Sancus

● Hardware-level PMA

● Zero-software TCB

→ strong attacker model
● SM == unit of protection / authentication

→ hardware UID and cryptographic key per SM
→ sancus_verify_address & sancus_get_caller_id 

NOORMAN Job et al., Sancus: Low-cost Trustworthy Extensible Networked Devices with a Zero-software Trusted Computing Base, 
Proceedings of the 22nd USENIX conference on Security symposium, 2013, pp. 479-494.
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Resource Sharing Approach

SM_B
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Embedded device

R
Unprotected

MMIO
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Secure Resource Sharing

Sancus secludes SMs in protection domains:

☺ hardware-enforced security guarantees
☹ no secure sharing of platform resources

=> protected “OS” modules to supplement hw

<> monolithic privileged kernel
 ~   extreme microkernel idea
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Sancus File System (SFS)

Front-End Access Control Layer

Protected file system  SMsfs boundary

MMIO Serial Flash 
Drive

CFS API

Flash Storage 
Back-End

Shared Memory 
Back-End

CFS API

SMA SMB
SFS API

System boundary

OR
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Access Control Overhead

Majority of cycles caused by SM switching

Relative access control overhead decreases with the 
amount of work done in the back-end

☹ Protected shared memory back-end
☺ Flash Coffee FS: 20% for getc and 15% for putc
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Conclusion

● Generic resource sharing mechanism
● Confined and explicit TCB:

→ attestable via sancus_verify
→ principle of least privilege

● Supplement hw-enforced security guarantees
→ build upon hw primitives (isolation + caller auth)

→ sw-based access control guarantees
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