Secure Resource Sharing for Embedded
Protected Module Architectures

Jo Van Bulck, Job Noorman, Jan Tobias Muhlberg and
Frank Piessens

August 24, 2015

uLEwvEN 9™ iMinds

CONNECT.INNOVATE.CREATE

Contents

1. Embedded Problem Domain

2. Protected Module Architectures
3. Motivation

4. Logical File Access Control

5. Conclusion

“Embedded-systems security is,
for lack of a better word, a mess.”

— John Viega & Hugh Thompson

VIEGA John, THOMPSON Hugh, The state of embedded-device security (spoiler alert:
It's bad), IEEE Security & Privacy (10.5), September 2012, pp. 68-70. m

Software Isolation

Conventional Embedded

* Relatively expensive * Cheap

* Power-consuming * Low power

=> Virtual memory & => Single-address-space

kernel mode

Contents

1. Embedded Problem Domain

2. Protected Module Architectures
3. Motivation

4. Logical File Access Control

5. Conclusion

Protected Module Architectures

0x000000

 Isolated execution areas in a single-

Unprotected memory
address-space
el e Program counter based access control
(4] .
E mechanism
[45]
§ Data
E From \ to Protected Unprotected
Entry Code Data
Protected r-X r-X rw- TrwX
Unprotected / other SPM | r-x r-- --- rwx
OxFFFFFF

STRACKX Raoul et al., Protected Software Module Architectures, ISSE 2013 Securing Electronic Business Processes,

Springer Fachmedien Wiesbaden, 2013, pp. 241-251.

Protected Module Architectures

0x000000 - . .
 Isolated execution areas in a single-

Unprotected memory
address-space
- Program counter based access control
PC ? Code .
E mechanism
[45]
§ Data
E From \ to Protected Unprotected
Entry Code Data
Protected r-x r-x rw- TrwX
Unprotected / other SPM | r-x r-- --- rwx
OxFFFFFF

STRACKX Raoul et al., Protected Software Module Architectures, ISSE 2013 Securing Electronic Business Processes,
Springer Fachmedien Wiesbaden, 2013, pp. 241-251.

Sancus

 Hardware-level PMA

« Zero-software TCB
- strong attacker model
* SM == unit of protection / authentication

- hardware UID and cryptographic key per SM
— sancus verify address & sancus get caller 1id

NOORMAN Job et al., Sancus: Low-cost Trustworthy Extensible Networked Devices with a Zero-software Trusted Computj
Proceedings of the 22nd USENIX conference on Security symposium, 2013, pp. 479-494.

SM, text section SM protected data section
. .

=
2> S
= ol
= . | Code & constants Protected data
= £
=
N7
Caller KN, SP,SMq IDSMl SMl metadata
Protected | . . |
UID : : :
storage < 5

area

Contents

1. Embedded Problem Domain

2. Protected Module Architectures
3. Motivation

4. Logical File Access Control

5. Conclusion

Resource Sharing Approach

Embedded device

@ Unprotected
MMIO

Resource Sharing Approach

Embedded device

Protected
- »SM_Server
MMIO

SM A

SM B

Secure Resource Sharing

Sancus secludes SMs in protection domains:

© hardware-enforced security guarantees
® no secure sharing of platform resources

=> protected “OS” modules to supplement hw

<> monolithic privileged kernel
~ extreme microkernel idea

13

Contents

1. Embedded Problem Domain

2. Protected Module Architectures
3. Motivation

4. Logical File Access Control

5. Conclusion

Sancus File System (SFS)

SMy

SMp

System boundary

x SE'S API /4
=

Front-End Access Control Layer

i CFS API

Shared Memory
Back-End

OR

$ CFS API

Flash Storage
Back-End

Protected file system SMgr boundary

MMIO

<

Serial Flash
Drive

15

SMy

SMp

x SE'S API /4
=

Front-End Access Control Layer

i CFS API

Shared Memory
Back-End

OR

i CFS API

Flash Storage
Back-End

Protected file system SMgr boundary

MMIO

<

- Sancus File System (SFS)

System boundary

Serial Flash

Drive

16

SMy

SMp

X SE'S API /4
=

Front-End Access Control Layer

i CFS API

Shared Memory
Back-End

OR

$ CFS API

Flash Storage
Back-End

Protected file system SMgr boundary

MMIO

<

- Sancus File System (SFS)

System boundary

Serial Flash

Drive

17

- Sancus File System (SFS)

SMy

SMp

System boundary

X SE'S API /4
=

Front-End Access Control Layer

Shared Memory
Back-End

Flash Storage
Back-End

Protected file system SMgr boundary

CFS APW

MMIO

<

Serial Flash
Drive

18

[clientA] revoking B permissions
INFO::sfs chmod: trying to modify ACL for file 'a'
WARNING: :ACL entry currently open; setting to SFS_NIL
INFO::sfs chmod: trying to modify ACL for file 'b'
WARNING: :ACL entry currently open; setting to SFS _NIL
INFO::sfs dump: dumping global protected ACL data structures:
FILE with name 'b' at 0x554; open count 2, next ptr = 0x54c
PERM (2, Oxff) at Oxb86; file ptr = 0x534; next ptr = 0x58e
PERM (3, 0x00) at Ox58e; file ptr = 0x554; next ptr = 0
FILE with name 'a' at 0x54c; open count 2, next ptr =0
PERM (2, Oxff) at Ox576; file ptr = 0x54c; next ptr = 0x5/e
PERM (3, Ox00) at Oxb57e; file ptr = 0x54c; next ptr = 0

INFO: :sfs dump: dumping global protected file descriptor cache:

i T T | I T TN [

(@, Bx576); (1, Ox586); (2, Ox5/7e); (3, Ox58e); (4, 0x0); (5, Ox0); (6, Ox0); (7, Ox0Q);

[clientA] accessing B files (shouldn't work)

[clientB] accessing bunch of files
INFO: :sfs getc: read a char from file with fd Z
INFO::sfs getc: read a char from file with fd 3
INFO: :sfs putc: write a char to file with fd 3

[clientA] closing b files

Access Control Overhead

Majority of cycles caused by SM switching

Relative access control overhead decreases with the
amount of work done in the back-end

® Protected shared memory back-end
© Flash Coffee FS: 20% for getc and 15% for putc

B 20

Contents

1. Embedded Problem Domain

2. Protected Module Architectures
3. Motivation

4. Logical File Access Control

5. Conclusion

Conclusion

* Generic resource sharing mechanism
« Confined and explicit TCB:

- attestable via sancus verify

- principle of least privilege

 Supplement hw-enforced security guarantees
- build upon hw primitives (isolation + caller auth)
— Sw-based access control guarantees

B 22

Secure Resource Sharing for Embedded
Protected Module Architectures

Jo Van Bulck, Job Noorman, Jan Tobias Muhlberg and
Frank Piessens

https://distrinet.cs.kuleuven.be/software/sancus/wistp2015/

uLEwvEN 9™ iMinds

CONNECT.INNOVATE.CREATE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

