
Secure Resource Sharing for Embedded
Protected Module Architectures

Jo Van Bulck, Job Noorman, Jan Tobias Mühlberg and
Frank Piessens

August 24, 2015

2

Contents

1. Embedded Problem Domain

2. Protected Module Architectures

3. Motivation

4. Logical File Access Control

5. Conclusion

3

“Embedded-systems security is,
for lack of a better word, a mess.”

– John Viega & Hugh Thompson

VIEGA John, THOMPSON Hugh, The state of embedded-device security (spoiler alert:
It's bad), IEEE Security & Privacy (10.5), September 2012, pp. 68-70.

4

Software Isolation

Embedded

● Cheap
● Low power

=> Single-address-space

Conventional

● Relatively expensive
● Power-consuming

=> Virtual memory &
kernel mode

5

Contents

1. Embedded Problem Domain

2. Protected Module Architectures

3. Motivation

4. Logical File Access Control

5. Conclusion

6

Protected Module Architectures

STRACKX Raoul et al., Protected Software Module Architectures, ISSE 2013 Securing Electronic Business Processes,
Springer Fachmedien Wiesbaden, 2013, pp. 241-251.

From \ to Protected Unprotected
Entry Code Data

Protected r-x r-x rw- rwx
Unprotected / other SPM r-x r-- --- rwx

● Isolated execution areas in a single-
address-space

● Program counter based access control
mechanism

7

Protected Module Architectures

STRACKX Raoul et al., Protected Software Module Architectures, ISSE 2013 Securing Electronic Business Processes,
Springer Fachmedien Wiesbaden, 2013, pp. 241-251.

From \ to Protected Unprotected
Entry Code Data

Protected r-x r-x rw- rwx
Unprotected / other SPM r-x r-- --- rwx

● Isolated execution areas in a single-
address-space

● Program counter based access control
mechanismPC

8

Sancus

● Hardware-level PMA

● Zero-software TCB

→ strong attacker model
● SM == unit of protection / authentication

→ hardware UID and cryptographic key per SM
→ sancus_verify_address & sancus_get_caller_id

NOORMAN Job et al., Sancus: Low-cost Trustworthy Extensible Networked Devices with a Zero-software Trusted Computing Base,
Proceedings of the 22nd USENIX conference on Security symposium, 2013, pp. 479-494.

9

10

Contents

1. Embedded Problem Domain

2. Protected Module Architectures

3. Motivation

4. Logical File Access Control

5. Conclusion

11

Resource Sharing Approach

SM_B

SM_A

Embedded device

R
Unprotected

MMIO

12

Resource Sharing Approach

SM_Server

SM_B

SM_A

Embedded device

R
Protected

MMIO

13

Secure Resource Sharing

Sancus secludes SMs in protection domains:

☺ hardware-enforced security guarantees
☹ no secure sharing of platform resources

=> protected “OS” modules to supplement hw

<> monolithic privileged kernel
 ~ extreme microkernel idea

14

Contents

1. Embedded Problem Domain

2. Protected Module Architectures

3. Motivation

4. Logical File Access Control

5. Conclusion

15

Sancus File System (SFS)

Front-End Access Control Layer

Protected file system SMsfs boundary

MMIO Serial Flash
Drive

CFS API

Flash Storage
Back-End

Shared Memory
Back-End

CFS API

SMA SMB
SFS API

System boundary

OR

16

Sancus File System (SFS)

Front-End Access Control Layer

Protected file system SMsfs boundary

MMIO Serial Flash
Drive

CFS API

Flash Storage
Back-End

Shared Memory
Back-End

CFS API

SMA SMB
SFS API

System boundary

OR

UNIX like file
system API

(incl. chmod)

17

Sancus File System (SFS)

Front-End Access Control Layer

Protected file system SMsfs boundary

MMIO Serial Flash
Drive

CFS API

Flash Storage
Back-End

Shared Memory
Back-End

CFS API

SMA SMB
SFS API

System boundary

OR

Access control using
sancus_get_caller_id

UNIX like file
system API

(incl. chmod)

18

Sancus File System (SFS)

Front-End Access Control Layer

Protected file system SMsfs boundary

MMIO Serial Flash
Drive

CFS API

Flash Storage
Back-End

Shared Memory
Back-End

CFS API

SMA SMB
SFS API

System boundary

OR

Access control using
sancus_get_caller_id

Pluggable private
back-end encapsulating

resource

UNIX like file
system API

(incl. chmod)

19

20

Access Control Overhead

Majority of cycles caused by SM switching

Relative access control overhead decreases with the
amount of work done in the back-end

☹ Protected shared memory back-end
☺ Flash Coffee FS: 20% for getc and 15% for putc

21

Contents

1. Embedded Problem Domain

2. Protected Module Architectures

3. Motivation

4. Logical File Access Control

5. Conclusion

22

Conclusion

● Generic resource sharing mechanism
● Confined and explicit TCB:

→ attestable via sancus_verify
→ principle of least privilege

● Supplement hw-enforced security guarantees
→ build upon hw primitives (isolation + caller auth)

→ sw-based access control guarantees

Secure Resource Sharing for Embedded
Protected Module Architectures

Jo Van Bulck, Job Noorman, Jan Tobias Mühlberg and
Frank Piessens

https://distrinet.cs.kuleuven.be/software/sancus/wistp2015/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

